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Abstract High-throughput DNA sequencing (HTS) is of

increasing importance in the life sciences. One of its most

prominent applications is the sequencing of whole gen-

omes or targeted regions of the genome such as all exonic

regions (i.e., the exome). Here, the objective is the iden-

tification of genetic variants such as single nucleotide

polymorphisms (SNPs). The extraction of SNPs from the

raw genetic sequences involves many processing steps and

the application of a diverse set of tools. We review the

essential building blocks for a pipeline that calls SNPs

from raw HTS data. The pipeline includes quality control,

mapping of short reads to the reference genome, visuali-

zation and post-processing of the alignment including base

quality recalibration. The final steps of the pipeline include

the SNP calling procedure along with filtering of SNP

candidates. The steps of this pipeline are accompanied by

an analysis of a publicly available whole-exome sequenc-

ing dataset. To this end, we employ several alignment

programs and SNP calling routines for highlighting the fact

that the choice of the tools significantly affects the final

results.

Introduction

The initial sequencing of the entire human genome with its

first draft published in 2001 was an effort that could only

be accomplished by large research consortia, and still

required a decade of time and large financial resources

(Consortium 2004; Lander et al. 2001; Venter et al. 2001).

The resulting blueprint of the human genome facilitated a

number of follow-up technologies such as (in their current

forms) genome-wide association studies and genome-wide

gene expression profiling using micro arrays. These tech-

nologies enable us to investigate the molecular biology

underlying diseases and other hereditary traits. The latest

technological advancement along this line, namely next

generation of sequencing (NGS), allows to routinely

sequence and re-sequence the whole genome of single

individuals in a single laboratory within a couple of weeks

and at comparably low cost. Feasibility aspects not only

include the essential sequencing power but also the

required computational capacities along with the necessary

bioinformatics tools for evaluating raw genetic data. NGS

is also referred to as high-throughput DNA sequencing

(HTS), a more general term which we will use through-out

the manuscript as it also includes future generations of

sequencing technologies.

The sequence data for the human genome project were

produced using the traditional capillary-based Sanger

sequencing technology generating readouts of 500–1,000
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nucleotides. The workflow of today’s most widely applied

HTS platforms entails the fragmentation of the DNA to be

sequenced into smaller segments. The nucleotide sequence

of these fragments is then determined either by synthesis or

ligation. Here, the employed nucleotides are modified such

that a light signal indicating the identity of the base is

emitted upon their integration; this is achieved, for e.g., by

chemoluminescence or fluorescence. An image-capturing

device records the light signals produced along the growing

second strand. The synthesis or ligation at a single strand of

DNA is, however, not sufficient for emitting sufficiently

strong light signal that can be recorded. As a consequence,

the single fragments are first amplified and fixed on a

medium to form colonies prior to the synthesis or ligation

step. Light signals emitted by these colonies can now be

recorded by image capturing devices and analyzed for

determining the nucleotide sequence. In principle, the

available platforms differ in the way the colonies are

formed and amplified and also how the nucleotide sequence

is determined in the end (see Metzker 2010 for a review on

HTS technologies). The high throughput is achieved by

sequencing millions of these colonies in parallel. Compared

to traditional Sanger sequencing, the readouts, often simply

referred to as ‘‘reads’’, generated by the platforms are

considerably shorter [e.g., 75 nucleotides for the SOLiD

platform (Shendure et al. 2005), 150 nucleotides for the

Illumina platform (Fedurco et al. 2006), 500 nucleotides for

454 pyrosequencing platform (Margulies et al. 2005)] and

contain more sequencing errors. Moreover, each platform

introduces sequencing errors that are characteristic for its

sequencing workflow. Hence, compared to Sanger

sequencing, HTS produces much more sequences, but of

much shorter length and inferior quality; this has a tre-

mendous impact on how the resulting readouts have to be

processed in a downstream analysis.

The technology of HTS is subject to an ongoing

development and the widely applied technologies of the

current generation are about to be replaced by more mod-

ern approaches (the ‘‘next–next generation’’) aiming at

eliminating some of the current technical problems. Mod-

ern methods move away from optical systems and towards

systems relying, for instance, on nanotechnology (Clarke

et al. 2009), semiconductors (Rothberg et al. 2011), and

microscopy (Tanaka and Kawai 2009). See Schadt et al.

(2010) for a review on novel HTS technologies.

For several applications (see below), the short length of

the DNA sequence imposes computational challenges for

the detection of specific sequence variations, such as longer

insertions and deletions as well as inversions. The limitation

of the short read length can be circumvented using protocols

that allow the generation of read pairs with a known dis-

tance between these pairs, typically referred to as insert

length and a known orientation with respect to the reference

sequence. Depending on the protocol used, these pairs are

referred to as paired-end sequencing or mate-pairs.

Having a tool for sequencing massive amounts of DNA

enables us to investigate almost any question that is asso-

ciated with the genetic sequence. First, it allows us to

determine the nucleotide sequence of a target region [e.g.,

all exonic regions or the whole exome (Yi et al. 2010)] or

the complete genome (Wang et al. 2008) and to identify

known as well as novel single nucleotide polymorphisms

(SNPs) in the sequenced region. Furthermore, paired reads

facilitate the investigation of larger structural variants such

as inversions, deletions, and insertions (see Xi et al. 2010

for a review). Moreover, by converting mRNA into cDNA,

we have the possibility to examine gene expression and

identify novel transcripts, splice variants, and to quantify

expression levels of even lowly expressed genes, e.g.

(Wang et al. 2009). Additional possibilities are the deter-

mination of RNA secondary structure (Kertesz et al. 2010),

de novo assembly of genomes and transcriptomes

(Robertson et al. 2010) as well as DNA sequences binding

to specific proteins, such as histones or transcription binding

factors [CHiP-Seq (Barski et al. 2007)]. Hence, high

throughput sequencing platforms can be regarded as the

Swiss pocketknife of molecular biology; here, we refer to

the flexibility of such a sequencing platform rather than to

its actual size. Each of the aforementioned applications

requires a cleverly designed laboratory procedure to phrase

the biological question into a problem that can be solved by

sequencing DNA. In addition, efficient bioinformatics

algorithms are necessary for analyzing the generated

genetic data and to answer the biological question.

In the following sections, we provide a general outline

of a bioinformatics pipeline that analyzes HTS data. In this

manuscript, we focus on the determination of SNPs, an

application that is closely related to traditional array-based

genome-wide association studies. The initial steps of the

analysis are in essence the building block for the analysis

of any HTS data. We will not concentrate on the proba-

bilistic background of the SNP calling methods, which is

already covered in detail in the review by Nielsen et al.

(2011), instead we aim at providing a hands-on guide to

calling SNPs from HTS data. To this end, we will illustrate

the data processing along the pipeline with a whole-exome

sequencing dataset obtained from the 1,000 genomes pro-

ject (Consortium 2010) (sampleID: NA12287; runID:

ERR034546; ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/

NA12287/sequence_read/). The dataset was generated

using the Illumina platform (Illumina HiSeq 2000) by

Beijing Genomics Institute and comprises 60,244,693

paired-end reads with a read length of 90 bases. For the

enrichment of the exonic regions prior to sequencing,

the NimbleGene SeqCap EZ Exome v2.0 (http://www.

niblegene.com) assay was used. For a review on exon
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Table 1 List of selected software tools for building a SNP calling pipeline

Name Description Link

Ibis (Kircher et al. 2009) Base calling; Illumina http://bioinf.eva.mpg.de/Ibis/

naiveBayesCall (Kao and Song 2011) Base calling; Illumina http://bayescall.sourceforge.net

Pyrobayes (Quinlan et al. 2008) Base calling; 454 http://bioinformatics.bc.edu/
marthlab/PyroBayes

Rsolid (Wu et al. 2010) Base calling; SOLiD http://rafalab.jhsph.edu/Rsolid

FastQC Quality control, all platforms, graphical user
interface, excellent tool for beginners

http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

PRINSEQ (Schmieder and Edwards 2011) Read trimming http://prinseq.sourceforge.net/

SolexaQA (Cox et al. 2010) Quality control, mainly Illumina, few basic
options visualizing Phred quality scores

http://solexaqa.sourceforge.net

BFAST (Homer et al. 2009) Mapping hash-based, supports color reads http://bfast.sourceforge.net/

Bowtie (Langmead et al. 2009) Mapping using BWT transform, version 2.0
does currently not support SOLiD color reads,
older versions do not support gapped
alignment, fastest read mapper

http://bowtie-bio.sourceforge.net

BWA (Li and Durbin 2009) Mapping using BWT transform, support for all
platforms, supports gapped alignment

http://bio-bwa.sourceforge.net

MAQ (Li et al. 2008) Mapping hash-based, SNP calling http://maq.sourceforge.net

SHRiMP2 (David et al. 2011) Mapping hash-based, supports color reads http://compbio.cs.toronto.edu/shrimp/

SOAP (Li et al. 2009b) Mapping hash-based, quality recalibration, SNP
calling and more

http://soap.genomics.org.cn

Stampy (Lunter and Goodson 2011) Mapping hash-based with optional speedup
using BWA, no support for color reads,
highlight: combines the speed-up from BWT
and the sensitivity from hash-based aligners

http://www.well.ox.ac.uk/
project-stampy

Picard Manipulation of SAM files, viewing, sorting,
filtering, duplicate removal, generates
statistics and more., more options and statistics
available than in SAMtools

http://picard.sourceforge.net

SAMtools (Li et al. 2009a) Manipulation of SAM files, viewing, sorting,
filtering, SNP calling and more. Likely the
fastest tool form SAM file manipulation

http://samtools.sourceforge.net

SMRA (Homer and Nelson 2010) Local re-alignment in color space http://srma.sourceforge.net/

GATK (McKenna et al. 2010) Quality recalibration, local realignment, SNP
calling, SNP filtering and much more.
Extremely powerful tool for post-processing
alignments and calling SNPs, requires in-depth
study of the manual

http://www.broadinstitute.org/gatk/

Beagle (Browning and Yu 2009) Software package for the analysis of large scale
genetic data sets, supports, e.g., genotype
calling, imputation, phasing

http://faculty.washington.edu/
browning/beagle/beagle.html

VCFtools (Danecek et al. 2011) Manipulate VCF files, generate statistics on
SNPs (e.g., Ts/Tv ratio)

http://vcftools.sourceforge.net

ANNOVAR (Wang et al. 2010) Annotation and filtering of variants, command
line, easy to used and fast

http://www.openbioinformatics.org/
annovar

SequenceVariantAnalyzer (Ge et al. 2011) Annotation of variants, graphical user interface http://www.svaproject.org/

IGV (Robinson et al. 2011) Visualization of alignments, graphical user
interface

http://www.broadinstitute.org/igv/

GenomeView (Abeel et al. 2012) Visualization of alignments, graphical user
interface

http://genomeview.org/

SAVANT (Fiume et al. 2010) Visualization of alignments, graphical user
interface, extendable by user-contributed
modules

http://genomesavant.com/

Galaxy (Goecks et al. 2010) Workflow automation: web-based platform for
data intensive biomedical research

http://galaxy.psu.edu/

SunGridEngine (Gentzsch 2001) Workflow automation: Open source (until
version 6.1) batch-queuing system, now
commercial as Oracle Grid Engine; an open
source version is maintained under the name
Open Grid Scheduler

http://gridscheduler.sourceforge.net
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enrichment methods and their advantages, we refer to Teer

and Mullikin (2010).

Table 1 provides a list of tools used or referred to during

the analysis along with a link to the corresponding web

resource. Of note, we restricted our selection to some of the

most popular and widely used tools. Table S1 in the sup-

plementary material provides the options for the tools used

during the analysis.

The SNP calling pipeline

The SNP calling pipeline comprises seven steps that are

also visualized in a flow chart in Fig. 1. The first step of the

pipeline is termed base calling and evaluates the images

taken during the sequencing process and generates the

short reads. This is followed by an initial quality control of

the generated reads succeeded by the alignment of the

reads to a reference sequence and a post-processing of the

alignment. These steps are shared by nearly all HTS

applications. The remaining three steps are more specific to

the SNP calling pipeline, namely quality score recalibra-

tion, SNP calling and filtering of SNP candidates.

Step 0: base calling

As mentioned above, an image-capturing device records

the light signals generated by the synthesis or ligation

processes at the newly generated strands. After acquisition

of the image data, these recorded signals have to be con-

verted into nucleotide bases. In case of the SOLiD plat-

form, the light signals encode neighboring dinucleotides

simply referred to as colors. In order to distinguish between

nucleotide sequences and colors, the terms base space and

color space are utilized. Furthermore, statistical models

provide a measure of certainty of each base call in addition

to the nucleotide itself. These statistical models base their

error estimate on information such as signal intensities

from the recorded image, the number of the sequencing

cycle and distances to other sequence colonies. These

certainties are usually expressed as Phred-like quality

scores, i.e., the decadic logarithm of the expected error

probability of the base call:

Qphred ¼ �10� log10 P errorð Þ

Using this formula, an error probably of 5 % translates

into a Phred score of about 13. This step is termed as

base calling and is usually automatically performed by

the sequencing platform itself. Again, each sequencing

platform has to solve challenges unique to the underlying

sequencing methodology. Thus, the base calling step is

specialized for each platform. In the recent past, however,

several algorithms have been proposed, which report

improvements in sequence quality with respect to the

manufacturer’s algorithms [Illumina (Kao and Song 2011;

Kircher et al. 2009), Roche 454 (Quinlan et al. 2008),

SOLiD (Wu et al. 2010)]. Unfortunately, altering or

improving the manufacturer’s base calling algorithm

requires in-depth knowledge of the standard sequencing

and analysis workflow of the platform as well as its

manipulation, which is not easily done. Thus, most users

still rely entirely on the base calling algorithms provided by

the sequencing platforms.

Step 1: quality control

Most platforms provide the read data directly in a flat file

format such as FASTQ (Cock et al. 2009) or at least pro-

vide tools for conversion of the native output format into

the quasi-standard FASTQ. Checking the quality of the

generated sequence data is the first step in the pipeline that

deals with the actual sequence data in base or color space.

The distribution of the quality scores at each sequence

position is one of the most interesting quality parameters

for the overall quality of the run. Typically, the base calling

software of the manufacturer already provides initial

overview on the data quality. For a more thorough quality

overview, freely available tools such as SolexaQA

(Cox et al. 2010) or FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) can be applied. By

default, SolexaQA generates three figures: the average

error probability per position in the read (Fig. 2), a histo-

gram of the maximal read length without a single base

quality below a specified threshold, and an overview about

the average quality per tile (Figure S1a and b, respectively,

in the supplementary material). FastQC can handle data

from all current HTS platforms and provides a user-

friendly graphical interface that allows, among other

things, to check for over-represented sequences, deviation

from the expected GC content, distribution of nucleotides

per read position, thus allowing a fast identification of

problems that can occur during sample preparation and

sequencing.

The output of SolexaQA for our example data indicates

that the error probability increases with increasing read

length. This behavior is typical for HTS platforms. As a

consequence, read trimming is often applied to increase the

number of mappable reads by removing bases at the end of

the read that are likely to contain sequencing errors. Hence,

read trimming may be of particular value in settings where

every aligned read is precious for the analysis. The trim-

ming can be carried out either explicitly by a tool such as

the DynamicTrim module provided by SolexaQA or

implicitly by the alignment algorithms used in the down-

stream process. Regarding the quality of the raw reads,

there are noticeable differences between the platforms.
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Illumina reads, for instance, undergo a quality control by

the manufacturer’s software. In case of the SOLiD plat-

forms, no quality control is provided. This platform relies

on the fact that reads of insufficient quality will not align to

the reference sequence. However, it makes sense to discard

reads with a mean quality score below 10 for the SOLiD

platform to reduce mapping time. Again this can be done

either explicitly via tools such as PRINSEQ (Schmieder

and Edwards 2011) or implicitly via the employed aligner,

e.g., SHRiMP2 (David et al. 2011).

Step 2: alignment/mapping

The next step in the processing pipeline for almost all

applications is the alignment of the reads to a reference

sequence, i.e., the human genome in our case. The

requirement for aligning several million short reads,

which contain small deviations (e.g., SNPs, indels) and

sequencing errors, to a reference sequence or a database

of sequences has brought forth a number of efficient

algorithms. In addition, some algorithms may be fine-

tuned for optimal compatibility to specific sequencing

platforms.

Briefly, two approaches are commonly used for solving

the task. The first one applies the lossless Burrows–

Wheeler transform (BWT) (Burrows and Wheeler 1994)

for efficient data compression. Other algorithms rely on

hashing to accelerate the alignment step. The use of

hashing allows quick access to the information on the

location of subsequences in the reference sequence. Hash-

based aligners either hash the reads, e.g., Eland (part of

the Illumina’s CASAVA suite), or the reference sequence,

Fig. 1 Workflow of the SNP

calling pipeline
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e.g., SOAP (Li et al. 2009b). See Li and Homer (2010) for

a recent survey on mapping methods.

In general, the choice of alignment tool and the corre-

sponding settings significantly affect the outcome. This

holds especially true for SNP calling, as wrongly aligned

reads may result in artificial deviations from the reference.

These deviations in turn may falsely be classified as SNPs

in the downstream processing. We will demonstrate the

dependence of the results on the aligner by employing

multiple tools for the alignment step. For other applica-

tions, misaligned reads may be less critical than they are

for variant calling. These include mainly quantitative

analyses such as gene expression profiling, where the

number of reads aligning to a gene is related to its

expression level. Here, the sequence content of the read is

only of secondary interest. Nevertheless, misalignments

may still distort the inferred expression levels.

In this work, we will focus on freely available software.

We used the following algorithms for mapping our example

reads: Bowtie (Langmead et al. 2009) and its successor

Bowtie2, BWA (Li and Durbin 2009), MAQ (Li et al.

2008), and stampy (Lunter and Goodson 2011). The reads

were aligned against the version 18 of the human genome as

provided by UCSC (Kent et al. 2002). Bowtie cannot per-

form gapped alignment; hence, one cannot find short indels

with this aligner. Its successor Bowtie2 included a number

of useful features such as gapped alignment. However,

currently, Bowtie2 cannot be applied to align SOLiD color-

space reads. Stampy is a hash-based aligner and also

incompatible with SOLiD color reads; it can be executed in

a hybrid mode that uses the much faster BWA aligner for

improving the runtime of the alignment process. We com-

pare stampy in normal and hybrid mode (stampyBWA). The

aligners employed here are only a small selection of the

freely available and widely used methods. Two further

widely applied hash-based aligners, which are also capable

of dealing with reads in color space, are SHRiMP2 (David

et al. 2011) and BFAST (Homer et al. 2009).

Table 2 depicts the time required on a single CPU for

aligning the paired-end reads of the example data to the

human genome. To further accelerate the alignment step,

many of the algorithms can be easily distributed on a larger

number of CPUs (e.g., Bowtie and BWA) by simply adding

a parameter at execution of the program. In contrast, for

other aligners, the input data have to be split in separate files

for parallelizing the alignment (e.g., MAQ), which typically

requires manual preprocessing. When stampy is executed in

hybrid mode, one can parallelize the BWA process via a

parameter. For instance, the allocation of ten CPUs instead

of a single CPU for the BWA part in stampy reduces the

time from 6,300 to 3,100 min in our example.

The clear advantage of the BWT-based algorithms

(here: BWA, Bowtie, Bowtie2) over the hash-based algo-

rithms (here: MAQ, stampy, stampyBWA) is the process-

ing speed (see Table 2). However, BWT algorithms are not

as sensitive as hash-based aligners, and therefore may

introduce mapping biases in regions with high variability

(see Lunter and Goodson 2011 for a detailed sensitivity/

specificity analysis). In our opinion, approaches like

stampy are a good compromise as they combine the sen-

sitivity of hash-based alignment with the speed-up gain

introduced by the BWT approach.

Furthermore, not only the choice of the alignment

algorithm is essential but also its parameter settings.

Clearly, if one allows only perfect matches between read

and reference, the downstream analysis will not find any

differences between the reference and the sequenced gen-

ome, thus no SNPs can be detected. Conversely, allowing

many mismatches between reference and read may pro-

mote many wrong alignments and result in a high number

of false-positive SNPs in the downstream analysis. Hence,

maximizing the number of aligned reads at all costs is not

the best strategy. Selecting the best number of accepted

mismatches is also highly depended on the species. Spec-

imen of Mus musculus strains, for instance, can deviate

quite significantly from the available reference (Keane

et al. 2011). Human samples, on the other hand, tend to be

less variable (Consortium 2010). Unfortunately, this
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Fig. 2 Output of SolexaQA for the first mate of the pair of the sample

data. This plot represents one of the three figures provided by

SolexaQA. The x axis refers to the position in the read (i.e., the

sequence cycle). The y axis depicts the mean probability of a

sequencing error. Red circles indicate the mean value for the whole

dataset, whereas filled black circles correspond to the mean for each

tile. Of note, the error probability increases with increasing sequence

length. This behavior is typical and common to all currently used

HTS platforms
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statement does not hold for the entire genome. The major

histocompatibility complex (MHC), for instance, shows

high variability between human individuals. Is it thus

generally very challenging to perform good alignments in

this region.

Once the reads have been aligned to the reference, many

algorithms allow to store the result in the sequence align-

ment/map (SAM) format (Li et al. 2009a). Briefly, the

SAM format stores information about each aligned read, in

particular, the position on the reference contig, the orien-

tation of the read, quality of the alignment and potential

further alignment possibilities of the read. In case the

aligner’s output is in a different format, third party tools

may be available for a conversion into the SAM format.

The SAM format and its binary version, the BAM format,

are by now a quasi-standard for storing the result of the

alignment step. Hence, many downstream processing tools

rely on the SAM/BAM format. Moreover, tools that pro-

vide an efficient manipulation of mappings stored in SAM

and BAM format have been published. The most widely

applied toolkits are SAMtools (Li et al. 2009a), GATK

(McKenna et al. 2010), and Picard (see Table 1).

After the mapping step, it is advisable to check the

alignment again. This can be done easily by generating a

mapping statistic, i.e., computing the fraction of reads that

was successfully mapped to the reference (using, e.g., the

flagstat command of SAMtools or the CollectAlign-

mentSummaryMetrics module of Picard). Moreover, when

working with paired reads, the fraction of reads that was

successfully paired (see Table 3) and the distribution of

the insert size are parameters of interest (see Fig. 3). In

our case, based on these metrics, we choose a larger insert

size of 1,000 bp for the following processing. When

analyzing data from target re-sequencing, the enrichment

of the reads in the target area compared to the off-target

area is of high interest. We found the CalculateHsMetrics

module of Picard to be most useful for computing

this ratio. In the example-data, we achieved a 34-fold

enrichment of reads regardless of the alignment method

we used. This indicates a successful enrichment process.

In addition to the enrichment, the module provides

information on the fraction of the target region that was

not covered by any read (about 15 % in our data), the

fraction of the target region with a minimum coverage of

10 (73 %), and also the mean coverage in the target

region (about 130).

A visual inspection of a whole genome sequencing

experiment is usually not realistic. One can, however, use a

tool (e.g., the view command of SAMtools) for extracting

the alignments within a target region and visualize only that

specific region in a genome browser such as the Integrative

Genomics Viewer (IGV) (Robinson et al. 2011). Figure 4

depicts the alignment of the reads in the SLC6A15 locus

using IGV. The visualization reveals that the aligned reads

concentrate on exonic regions. Hence, the whole exome

sequencing was successful, at least for the inspected region.

Moreover, it is interesting to note that the whole exome

enrichment process is not very precise, as adjacent intronic

regions are highly enriched as well. The coverage in the

adjacent intronic regions is, however, dominated by either

forward or reverse reads and may thus introduce a bias in

the SNP called in that region. Besides IGV, there are further

tools allowing visual inspection of alignments, for instance,

the software tools GenomeView (Abeel et al. 2012) and

SAVANT (Fiume et al. 2010). The latter can even be

extended by user-contributed software modules.

In general, fine-tuning the alignment parameters requires

some effort. Most of the projects involve a large body of

data, thus it saves time and hard drive space to only work

with a randomly selected subset of the reads, e.g., 10 %.

This also applies to the quality control aspect of step 1.

Step 3: alignment post processing

Prior to the actual variant calling, the algorithms require

the alignments to be sorted with respect to their chromo-

somal position. This can easily be done using tools like

SAMtools or Picard. Next, since the PCR used for ampli-

fying the library and adding adapters may introduce arti-

facts, i.e., reads or read pairs starting at exactly the same

position and having the same insert length, respectively, it

is common practice to remove or simply mark such PCR

artifacts. Again, SAMtools and Picard provide the means

for solving this task. The next post-processing step is the

removal of all non-unique alignments, i.e., reads with more

than one optimal alignment; since in these cases, it cannot

be determined from which site the read really originates.

And last but not least, it is common to realign reads around

small indels. Since, differences in resolving the indels may

cause artificial SNPs in the downstream analysis. The

GATK software for instance offers the possibility to realign

Table 2 Time (min) required for the mapping step by different

algorithms on a single CPU (AMD 2.1 GHz)

Mapping algorithm Time (min)

Default insert size 1,000 bp insert

Bowtie 910 780

Bowtie2 880 990

BWA 1,534 1,522

MAQ 14,719 14,848

Stampy 12,254 12,590

StampyBWA 6,362 6,302

The mapping was carried out with two different settings for the

expected insert size length (columns). The BWT-based aligners are

about one magnitude faster than the hash-based ones
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those reads. The tool SMRA (Homer and Nelson 2010)

allows to realign the reads in color space originating from

the SOLiD platform. Once these steps are completed, one

can proceed to the processing steps of the pipeline that are

specific to the SNP calling process.

Step 4: quality score recalibration

Previous works demonstrated that the Phred-like quality

scores issued by the sequencing platforms may often

deviate from the true error rate (Li et al. 2009b). Having

accurate quality scores is essential for the modern SNP

calling algorithms, as they integrate the Phred scores of the

bases covering the site to be examined into their scoring

functions (see step 5). The first software to provide recal-

ibration of quality scores was SOAPsnp (Li et al. 2009b).

The approach exploits sites in the reference genome

without any reported SNPs. On these sites, SOAPsnp

computes the empirical mismatch rate as an estimate for

the true base quality. More precisely, for a given machine

provided quality score, sequencing cycle (i.e., position of

the base in the read) and substitution type (e.g., A?G: A in

reference and G in read), it calculates the average mis-

match rate with respect to the reference. This mismatch

rate is then used as the recalibrated quality score. Based on

a similar concept, the GATK software also provides a

recalibration function: first, bases are grouped with respect

to several features (e.g., raw quality, dinucleotide content);

second, for each such category, the empirical mismatch

rate is computed and used to correct the raw quality score.

GATK’s recalibration functionality can be applied to the

sequencing data of various platforms. Figure 5 depicts

original and recalibrated quality scores using GATK for the

alignment with BWA.

Of note, since only little differences are expected from

an alternative order, steps 3 and 4 may be swapped.

Fig. 4 IGV visualization of the SLC6A15 locus (hg18 coordinates:

chr12:83,777,000–83,831,000). Inlet (a) shows the view of the entire

gene, while inlet (b) depicts a region covering a single exon within

SLC6A15. In all images the top most panel shows the view of the full

chromosome with the current position highlighted in red; the bottom
panel provides the exon–intron structure of the gene as listed in the

RefSeq database. The middle panels visualize the alignments for

Bowtie2 (top) and stampyBWA (bottom). These panels each show the

coverage, i.e., number of reads covering a specific region (upper part)
and the details of single reads or read-pairs (lower part). In subfigure

(a) one can see that most of the reads are concentrated in the area of

the exons and only few reads are aligned to intronic regions. Both

alignments are very similar; minor differences can be seen in

subfigure (b). For instance, the read-pair at the left side: Bowtie2

aligned only one mate of the pair, while stampyBWA aligned both.

Interestingly, whole-exome sequencing is not restricted to the exons

only, but also covers the adjacent intronic regions

Table 3 Overview of the fraction of aligned and properly aligned

reads for two different settings for the expected insert size

Default insert size 1,000 bp insert

%aligned %properly %aligned %properly

Bowtie 50.13 100.0 94.70 100.0

Bowtie2 99.45 96.52 99.58 99.74

BWA 95.93 96.18 95.93 96.18

MAQ 99.04 52.29 99.45 98.95

Stampy 98.32 96.84 98.25 0.00

StampyBWA 99.52 99.44 99.52 98.81

The fraction of aligned reads (%aligned) is in reference to the total

amount of reads, while the fraction of properly aligned reads (%

properly) is in reference to the aligned ones. Here properly refers to

the fact that both reads are aligned in the expected direction and the

expected distance. With the default insert size Bowtie only maps

about 50 % of the reads; reads with larger insert sizes are completely

rejected. MAQ, on the other hand, maps these reads and reports them

as not properly paired. Setting the insert size to 1,000 leads to com-

parable mapping statistics for all aligners

Fig. 3 Distribution of the insert size of the whole exome paired-end

alignments. Different colors correspond to the various aligners. The

default insert size parameter (a) appears to be too small as seen in the

example of Bowtie; the density distribution appears to be cut after

250 bp. A larger parameter for the insert size of 1,000 bp leads to

almost identical distributions for all alignment programs (b)

c
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Step 5: variant and genotype calling

Early variant or SNP calling approaches relied entirely on

counting the abundance of high-quality nucleotides at a

singe site (e.g., Wang et al. 2008). Recent approaches,

however, integrate several sources of information within a

probabilistic framework. This procedure facilitates SNP

calls in medium to low coverage regions, where for

example only five reads are covering the position of the

potential SNP. Moreover, these probabilistic approaches
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provide a natural way for quantifying uncertainty about the

variant call. Further details on the statistical models used

are available in the Online Supplementary Material.

One major advantage of the statistical framework is the

use of prior probabilities for a SNP at a given position.

These prior probabilities can be derived from databases

listing of confirmed SNPs such as the dbSNP (Sherry et al.

2001) or by carrying out SNP calling in multiple individ-

uals at the same time. The SNP calling routines imple-

mented in SAMtools and GATK both support the use of

multiple sample SNP calling. Further improvements can be

achieved by incorporating linkage disequilibrium (LD)

information. Here, the same principles that allow the

imputation of missing genotypes (see e.g., Howie et al.

2009; Marchini et al. 2007) facilitate more reliable geno-

type calls. This functionality is implemented in the soft-

ware Beagle for instance (Browning and Yu 2009).

However, when working with whole exome data, large

fractions of the LD structure are missing and therefore no

improvement can be expected from applying this step.

A thorough review on available SNP calling algorithms

is provided by Nielsen et al. (2011) and references therein.

For our example data, we applied two SNP calling pro-

grams: SAMtools and GATK. Since our example only

comprises data from a single individual, we did not make

use of the improved accuracy due to multi sample SNP

calling.

Step 6: filtering SNP candidates

Filtering is an essential step in reducing the number of

false-positive SNP calls. Typically applied filters check for

deviations from the Hardy–Weinberg equilibrium (HWE),

minimum and maximum read depth, adjacency to indels,

strand bias, etc. While filtering might also remove real

SNPs from the candidate list, it is an important tool for

minimizing SNP calling artifacts. Filtering is provided by

GATK, SAMtools (via the script ‘vcfutils.pl’) and VCF-

tools (Danecek et al. 2011). In particular, GATK provides

‘best practice’ settings for the variant calling pipeline,

including SNP candidate filtering. For our example data,

we used the SAMtools default filter (see Table 1) and the

GATK VariantFiltration. Here, we followed the recom-

mendations of the best practice guidelines version 3 and

used a hard filter due to the low sample number, i.e., a

single individual. More precisely, SNPs with a quality

below 30.0 or a quality per depth below 5.0 or SNPs within

a homopolymer of length 6 and more were discarded.

Most SNP calling tools have the option to generate the

data in the VCF format (Danecek et al. 2011). The VCF

format records for each identified SNP candidate basic

information such as the chromosomal position, the refer-

ence base, the identified alternative base or bases in case of

trialleic SNPs. Furthermore, information on the quality of

the SNP call as well as the amount of sequence data

available for the call are stored. The VCFtools provide the

possibility to easily manipulate VCF files, e.g., merge

multiple files and extract SNPs in defined regions.

Table 4 depicts the number of SNPs called with every

combination of alignment algorithm and SNP caller after

the initial filtering step. Given one alignment algorithm, the

SNPs called with the two different tools largely overlap,

i.e., about 85 % of the SNPs are shared. However, the

number of called SNPs exceeded the expected number by

one order of magnitude, this was likely due to reads aligned

outside the target region. Thus, we filtered the SNP can-

didates further using VCFtools. In particular, we required

that SNPs reside within the target region of the enrichment

assay ±50 bp and that positions with SNPs show a mini-

mum sequencing depth of ten. Table 5 shows the number

of SNPs after the second filtering step. Again, about 80 %

of the SNPs were identified with both SNP callers from the

same alignment. More precisely, GATK generated about

5,000 additional SNP candidates compared to SAMtools.

Table 6 shows the impact of the different alignment algo-

rithms given a fixed SNP caller. Here, most SNPs (about

85 %) were found in the alignments produced by the four

utilized aligners. Thus, both aligner and SNP caller showed

a significant impact on the result. The majority of SNPs,

however, was discovered with any combination of the tools

used here.
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Fig. 5 Average base qualities before and after quality score recal-

ibration for the alignment with BWA. Original quality scores (filled
circles) vary only a little along the position of the read (i.e., mean

scores are between 34 and 36). Recalibrated scores (filled squares) are

considerably lower (i.e., ranging from 28 at the ends of the read to 33

in the middle of the read), thus indicating an overestimation of the

error probability by the manufacturer’s base calling software

1550 Hum Genet (2012) 131:1541–1554

123



Making sense of SNP data

The SNP calling process on the whole exome data gener-

ated about 24,000 variants. Thus, following up on each

variant manually is clearly out of scope; even more so for

whole genome re-sequencing studies. Due to this require-

ment, tools for automated variant annotation have been

developed. ANNOVAR (Wang et al. 2010), for instance,

offers a command line interface for annotating variants

from different species. The tool relies on information

available via the UCSC genome browser and offers in

addition precomputed scores such as the SIFT-score (Ng

and Henikoff 2003) for predicting the likely functional

consequences of non-synonymous amino acid exchanges.

Furthermore, ANNOVAR allows to easily filter already

known SNPs using information from dbSNP or the 1,000

genome project. Table S2 in the Online Supplementary

material depicts the result of the functional annotation by

ANNOVAR for the SNPs that were called with any com-

bination of aligner and SNP caller. About 50 % of the

discovered SNPs are actually exonic variants; the remain-

ing 50 % originate from the region with 50 bp around the

target region. A further value of interest when analyzing

SNP data is the ratio between transitions and transversions.

This statistic can be easily computed using VCFtools. In

our case, the Ts/Tv ratio is between 2.1 and 2.4 (2.6 and

2.7) for SNPs called with GATK (SAMtools). Hence, the

SNPs called with GATK are closer to the expected ratio of

2, where transitions seemed to be enriched among the SNPs

called with SAMtools.

The post-processing and interpreting the generated SNP

data are the substantial challenges and the effort associated

with this important task should not be underestimated.

Apart from ANNOVAR, there are further tools that assist in

the interpretation of the SNP data, see for instance the tools

listed at http://www.gen2phen.org/wiki/tools-predicting-

overal-functional-consequences-snps. An example for

annotation software providing a graphical user interface is

the sequence variant analyzer (Ge et al. 2011). Moreover, a

number of commercial suites in addition to these free tools

exist.

Not only variant annotation but also the statistics for

finding significant associations have to be adapted. As

whole genome and whole exome sequencing studies will

produce more and more rare SNPs, i.e. SNPs with minor

allele frequencies below 1 %, standard statistical approa-

ches do not have sufficient power for finding significant

associations with the currently available and realistic

sample sizes. Thus, variants with similar characteristics

such as SNPs with the same functional annotation, SNPs

within the same biological pathway, or SNPs close on

genome (Cohen et al. 2004)) are often grouped to proxy

variables to increase power. These proxy variables are then

subject to statistical significance analysis. Here, variant

annotation and statistical analysis go hand-in-hand. Bansal

et al. (2010) provide a review on current statistical

approaches for analyzing rare variants.

Conclusion

The SNP calling pipeline, like many other HTS pipelines,

involves many different steps. Typically, these steps can be

Table 4 Number of SNPs for each combination of alignment algo-

rithm and SNP caller after the initial filtering

SAMtools GATK Common

Bowtie2 236,399 228,818 204,129

BWA 230,754 234,455 199,569

MAQ 248,853 241,234 212,724

StampyBWA 247,855 252,458 211,802

The absolute number varies from 230,000 SNPs to 250,000. The

column entitled ‘‘common’’ displays the number of SNPs that were

found with both SNP callers using the same alignment. Common

refers to identical position and identical genotype call. Here, numbers

range from 200,000 to 213,000

Table 5 Number of SNPs for each combination of alignment algo-

rithm and SNP caller after restriction to the target region ±50 bp and

min. sequencing depth of 10

SAMtools GATK Common

Bowtie2 25,115 30,519 23,988

BWA 24,645 30,471 23,976

MAQ 25,155 31,130 24,013

StampyBWA 25,166 31,512 24,057

The absolute number varies from 24,600 to 31,500 SNPs. The column

entitled ‘‘common’’ displays the number of SNPs that were found

with both SNP callers using the same alignment. Common refers to

identical position and identical genotype call. Here, numbers are close

to 24,000

Table 6 Number of SNPs in common (position and genotype call)

between the four alignment algorithms (also used in Tables 4, 5) after

restricting to the target region ±50 bp and a min. depth of 10

SAMtools GATK

Only in a single alignment 1,792 1,682

Only in two alignments 715 696

Only in three alignments 1,473 1,254

In all four alignments 23,110 29,199

Each column corresponds to one SNP caller; the rows indicate from

how many alignments a SNP could be called. The largest fraction of

SNPs (about 23,000) was found in all four alignments produced by

the algorithms listed in Table 5. Moreover, 22,383 SNPs could be

found with any combination of aligner and SNP caller
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integrated using shell scripts in combination with a queuing

system such as the Sun Grid Engine (Gentzsch 2001).

Another option that will also allow less computer-experi-

enced users to carry out many HTS tasks is the Galaxy web

service (Goecks et al. 2010). Galaxy is a ‘‘web-based

platform for data intensive biomedical research’’ and the

developers also provide it as a freely accessible web ser-

vice. For large datasets, however, it is essential to run

Galaxy on local computation infrastructure. Setup and

integration of new pipelines, however, requires in-depth

computer knowledge. An option that we did not address in

this review is the use of commercial software products.

Many companies have developed software packages that

allow basic and advanced analysis of HTS data. These

software suites are in general based on a graphical user

interface. The ease of use, however, may be compromised

by the lack of flexibility. In any case, costs associated with

software licenses are not negligible.

We have presented a SNP calling pipeline starting from

the sequenced reads to the annotation of the identified

variants. The presentation of the pipeline was illustrated by

processing a whole exome sample dataset. The results of

the example data demonstrated that the choice of the tools

and parameters have significant impact on the final result.

Thus, the outcome of a SNP calling pipeline is not set in

stone. A recommended strategy, for instance, is the use of

different aligners and SNP callers for generating indepen-

dent SNP candidates. Reliable candidates are those

appearing in more than one setting.

Working with HTS systems is a truly interdisciplinary

effort. While the generation of the data is mainly labora-

tory-centered, the initial processing of the short read data

falls into the domain of bioinformatics and can be auto-

mated to a certain degree. The interpretation of the results,

however, requires close interaction between biology and

bioinformatics in order to derive the maximal insights from

the data. The work associated with these three domains—

data generation, processing, and interpretation—is non-

negligible and requires dedicated resources (including

human resources) for guaranteeing a successful completion

of the research project.

Further reading

It is essential to stay updated regarding new developments

in the field. A virtual online issue of the journal Bioinfor-

matics collects articles related to HTS sequence analysis

published in the journal (http://www.oxfordjournals.org/

our_journals/bioinformatics/nextgenerationsequencing.html).

In general, the algorithm developers provide information

on improvements on the corresponding program websites

(see Table 1). For instance, GATK comes along with a best

practice guideline (http://www.broadinstitute.org/gsa/wiki/

index.php/Best_Practice_Variant_Detection_with_the_GATK

_v3), also the 1,000 genomes project provides information

on their processing pipelines (http://www.1000genomes.org).

Moreover, many of the developers are actively participat-

ing on the seqanswers (http://seqanswers.com) forum, a

discussion forum and source of information for all matters

regarding HTS. Seqanswers is probably the most helpful

online resource.
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