Transcriptómica y coexpresión génica

Prof. Ulises Urzúa DOBC, Facultad de Medicina, Universidad de Chile

uurzua@med.uchile.cl

Temario

PARTE 1

- Introducción. Genómica
- Microarreglos de DNA. Fundamentos
- Transcriptomica
- Co-expresion de genes. Casos

PARTE 2

- Aplicaciones en cancer (4)
- Microarray-CGH
- Cancer ovarico y envejecimiento

 <u>Genoma</u>: secuencia completa del material genético de un organismo.

Genómica - tamaño genómico

1 bp = un par de bases. (A-T, C-G)

1 Kb = 1000 bp 1 Mb = 1.000.000 pb

T2 phage	Escherichia coli	Drosophila melanogaster	Homo sapiens	Paris japonica
170,000 bp	4.6 million bp	130 million bp	3.2 billion bp	150 billion bp
A.	N	50	Ń	×
	72 phage 170,000 bp	T2 phage Escherichia coli 170,000 bp 4.6 million bp Image: Color of the state of the sta	T2 phageEscherichia coliDrosophila melanogaster170,000 bp4.6 million bp130 million bpImage: State of the sta	T2 phageEscherichia coliDrosophila melanogasterHomo sapiens170,000 bp4.6 million bp130 million bp3.2 billion bpImage: Stress of the same stress of the

http://ib.bioninja.com.au/

Genómica - cromosomas

Genómica - cromosomas

• Tipos de secuencia del genoma humano.

<u>*Gen*</u>: i) secuencia parcial del genoma que <u>*codifica*</u> para un producto (transcrito, proteína);

ii) unidad hereditaria física y funcional que es transferida desde una célula parental a una célula hija.

Genes H sapiens	Número
Codificantes	20,376
No-codificantes	22,305
- Pequeños	5,363
- Largos	14,720
- Misceláneos	2,222
Pseudogenes	14,692
Transcritos	203,903

<u>*Gen*</u>: i) secuencia parcial del genoma que <u>*codifica*</u> para un producto (transcrito, proteína);

ii) unidad hereditaria física y funcional que es transferida desde una célula parental a una célula hija.

Protein	Chrom	Gene	Length	Exons	Exon length	Intron length	Alt splicin g
Histone H1A	6	HIST1H1A	781	1	781	0	no
Cytochrome b	MT	<u>MTCYB</u>	1,140	1	1,140	0	no
Hemoglobin beta subunit	11	HBB	1,605	3	626	979	no
Glyceraldehyde-3- phosphate dehydrogenase	12	<u>GAPDH</u>	4,444	9	1,425	3,019	yes
Breast cancer type 2 susceptibility protein	13	BRCA2	83,736	27	11,386	72,350	yes
Cystic fibrosis transmembrane conductance regulator	7	<u>CFTR</u>	202,881	27	4,440	198,441	yes
Titin	2	<u>TTN</u>	281,434	364	104,301	177,133	yes
Dystrophin	Х	DMD	2,220,381	79	10,500	2,209,881	yes
Promedio			26,288	11	309		

Genes, genomas y genómica

Genes, genomas y genómica

Improved diagnosis and disease classification of leukemia and lymphoma

100 years ago	Disease of the blood								
80 years ago	Leukemia or lymp	homa	~0%						
60 years ago	Chronic leukemia Acute leukemia Preleukemia	Indolent lymphoma Aggressive lymphoma							
Today	 -38 leukemia types identified: Acute myeloid leukemia (-12 types) Acute lymphoblastic leukemia (2 types) Acute promyelocytic leukemia (2 types) Acute monocytic leukemia (2 types) Acute erythroid leukemia (2 types) Acute megakaryoblastic leukemia Acute myelomonocytic leukemia (2 types) Chronic myeloid leukemia Chronic myeloid leukemia Chronic myeloproliferative disorders (5 types) Myelodysplastic syndromes (6 types) Mixed myeloproliferative/myelodysplastic syndromes (3 types) 	 51 lymphomas identified: Mature B-cell lymphomas (~14 types) Mature T-cell lymphomas (15 types) Plasma cell neoplasm (3 types) Immature (precursor) lymphomas (2 types) Hodgkin's lymphoma (5 types) Immunodeficiency-associated lymphomas (~5 types) Other hematolymphoid neoplasms (~7 types) 	709						

Allison M (2008) Nat Biotechnol;26(5):509-17

PEG en leucemias

Urzua et al - BMC Genomics 2016 Oct 25;17(Suppl 8):728 Urzua et al - BMC Genomics 2016 Oct 25;17(Suppl 8):728

Microarreglos vs RNAseq

Glass slide microarrays

- *Microarray*: ordered arrangement of known DNA sequences on a solid-planar substrate which allows the hybridization binding of labeled sample RNAs or DNAs.
- A single microarray contains from few hundreds to 400.000 microscopic elements of uniform size and spacing.
- Immobilized DNAs are *oligonucleotides* (20-80 mer), *cDNAs* (0.5-5 Kb) or *BAC* clones (10-50 Kb). Substrates are rigid, thermostable, optically flat surfaces like nylon, glass or silica.
- DNAs are spotted onto chemically modified substrates and then immobilized using UV. Oligonucleotides can be either spotted or synthesized *in situ*.

A comparative hybridization experiment

Experimental design and variability

Sources of variability:

- Due to <u>attributes</u> or <u>conditions</u>
- *Biological variation* is intrinsic; influenced by genetic & environmental factors, as well as whether samples are from populations or individuals
- Due to *technical issues,* results during sample extraction (*guality*), labeling and hybridization

• Due to *fluorophore stability* during laser scanning and fluorescence detection

Transcriptome of Sjögren syndrome

Julieta González - ICBM Paola Pérez – NIDCR/ NIH

Focal lip sialadenitis in Sjogren`s syndrome

Focus: clusters of > 50 lymphocytes Focus score: number of focus/40mm² glandular tissue $(0 \rightarrow 4)$

Isolation of epithelial cells

POMELO II (THE RETURN OF THE POMELO)

http://pomelo2.iib.uam.es/

A-14		_	0					÷							2							<u></u>					_			4			
Adj. p-value	FUR indep.	Έ	ε	εε	" o	æ	σ (5 0	ð	σ	5"	<u>د</u> 2		: c		· ·		้อ	Ð	ωa	υų	4	4	4	× ×	. _	'a	۵	ء م	2 0	O	o	ο [']
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
0	0.000245706																																
5e-06	0.000245706																																
5e-06	0.000245706																																
5e-06	0.000245706													-																			
5e-06	0.000245706																																
5e-06	0.000245706								-					-																			
5e-06	0.000245706						-							+-				+			-					-						\square	
5e-06	0.000245706						-		-				+	-			+				+					-				+			
1e-05	0.000245706												+																				
1e-05	0.000245706			-			+		-					-			+							-	-	-				+			
10-05	0.000245706						+	-	+					-											-	-							
16-05	0.000245706						+	-	-					-			+				-			-	+	+				+			
30-05	0.000245706			-			+	-					+	+	-	++	-							-	+	+				+			
3 50-05	0.000245706			-			+	-	+				+	+-	-		+	-			-			-	+-	+				+		\vdash	
5.00-00	0.000245706			-			-	-	+				+	+	-			-			-			-	-	+				+		\vdash	
68-VU 68-05	0.000243706						-		-				-	+			+				+			-	-	+				+		\vdash	
08-VU 7 Eo AE	0.000243706			-			+	-	-				+	+	-		+	-			-			-+-	-	+				+	-	\vdash	
7.3e-V3	0.000243706			-			-	_	-					-	-	++	-	-			-			-	-	+				+-	-	\vdash	
7.0e-V0	0.000243706		+				-		-					-	-	++	-	-			-			-	-	+				-		+	
7.5e-05	0.000245706						-	_	-				_	-	-		-	-			_			-	_	-				4		\vdash	
7.5e-05	0.000245706						-		-				_	-	-		_	-						-	_	-				+		\square	
7.5e-05	0.000245706				+		_		-					_		+		-						_	_	-				-			
0.00011	0.000245706						_	_						_				-			_												
0.00011	0.000245706			_					_				_	_							_			_						4			
0.00011	0.000245706																													4		\square	
0.00011	0.000245706																															\square	
0.00013	0.000245706																															\square	
0.00013	0.000245706																																
0.000135	0.000245706																																
0.000135	0.000245706																																
0.000155	0.000245706																																
0.000175	0.000245706																																
0.000215	0.000245706																																
0.000225	0.000245706																																
0.00023	0.000245706																																
0.000285	0.000245706																																
0.00029	0.000245706												T																				
0.00029	0.000245706																																
0.000305	0.000245706																																
0.00032	0.000245706																																
0.0004	0.000245706																																
0.000405	0.000245706																																
0.00041	0.000245706																																
0.000415	0.000245706																																

10K cDNA microarray 2-channels

Genomic response to RSV infection

Sandra Ampuero – ICBM

Carmen Larrañaga – ICBM

Respiratory syncytial virus (RSV)

C Healthwise, Incorporated

NCI-H292 cells

In vitro RSV infection

Activación inicial e inhibición tardía

Celulas NCI-H292 epiteliales mucoepidermoides

In vitro RSV infection

Inhibición inicial y activación tardía

Severe and mild infection in RSV affected infants - Blood

Functional profile of genes in severe and mild RSV infection

	GO term	Genes	Р						
	Cell cycle	ANAPC2, BIN1, CCNG2, CCPG1, CDC27, CDC42, CDKN1C, GAS7, PIM2, TGFB1, RBL2, RASAL3, RASS5F5, INCENP	1.51e-4						
129 genes	Immune response	FCN2, IL16, IGHG1, PTPRC, TNFRSF14, TCF7, TGFB1, IL1RN, IFI6, TUBB	8.71e-3						
Ļ	Lymphocyte activation	LAT , PTPRC, TGFB1							
	G1 phase	CDKN1C, ANAPC2, CDC42	5.85e-4						
	DAG binding	GMIP, PRKCH, RASS5F5	8.18e-3						

	GO term	Genes	Р
64	Protein synthesis	EEF1D, FAU, MRPS16, RPL13A, RPL18A, RPL35, RPS8, RPS9	4.03e-3
genes	Carbohydrate metabolism	ALDH2, ENO1, GAPDH, TKT, CHID1, GAPDHL18, MANBA	6.52e-3
•	Notch signaling pathway	APP, DLL1	8.17e-3

Genes overexpressed in infants severely infected by RSV

Blood gene expression - clinical RSV parameters

- Diagn = diagnosis (BN, BN+SBO, BQ)
- ES = evolution score (hosp x O_2 x Fi O_2)
Functional profile of genes associated to diagnosis

GO term	Genes	Р
Cell proliferation	CAPN1, CKLF, CUL1, FGF18, FRAT2, <mark>IL8RB</mark> , IL15RA, ISG20, PTEN, STAMBP	5.16e-4
Immune system process	AP2A2, CD14, CD24, CKLF, CORO1A, FCGR3A, IGHG1, IGKC, IL8RB, ITGB2, LY96, MAP3K7, NCF1	2.32e-2
Cell matrix adhesion	ITGB2, PTEN, TNXB	4.10e-3
Leukocyte migration	CKLF, CD24, CORO1A, IL8RB, ITGB2	9.61e-5
Neutrophil chemotaxis	ITGB2, CKLF, IL8RB	5.14e-6
Cellular defense response	NCF1, LY96, IL8RB	5.85e-4
Growth factor activity	FGF18, GMFG, SDCBP, LTBP4	9.79e-3
Cytokine binding	IL8RB, IL15RA, LTBP4	8.88e-3

Wine yeast genomics

Claudio Martinez – CECTA – USACH Ma Angelica Ganga – CECTA – USACH

Yeast genome may undergo genomic changes when exposed to the environment

Salinas et al; J Appl Microbiol. 2010 May;108(5):1850-8

EC1118	amplif Chr I, III, XII
L-1333	del Chr IV, X, XV
L-957	amplif Chr XVI

Yeast genes involved in nitrogen metabolism

Gene	ORF	Description	Highest mRNA level	FC (microarray)	FC (QPCR)
ATO2	YNR002C	Putatively involved in ammonium transport	AC19	1.46	2.64
ICY1	YMR195W	Unknown function	AC19	1.5	3.03
ZRT1	YGL255W	Involved in Zn transport	AC19	3.72	4.72
CMP2	YML057W	Isoform of calcineurin A	AC114	1.43	1.66
NHA1	YLR138W	Na+/K+ pump	AC114	2.03	1.25
RDL1	YOR285W	Unknown funtion	AC114	2.52	1.87
VPS8	YAL002W	Vacuolar localization	AC114	3.25	2.6
ARR3	YPR201W	Arsenite transporter	AC115	5.73	3.08
ARR1	YPR199C	Transcriptional factor	AC115	1.57	3.24
RDL1	YOR285W	Unknown funtion	AC115	1.59	3.04
TVP23	YDR084C	Integral membrane protein of Golgi	AC115	9.51	2.02

AC19 vs AC114 – N from NH4 AC19 vs AC115 – N from aa's

Contreras et al. W J Microbiol Biotechnol. 2012 Mar;28(3):1107-13

Estudios genómicos en cáncer

Prof. Ulises Urzúa DOBC, Facultad de Medicina, Universidad de Chile

uurzua@med.uchile.cl

• Gene expression as prognostic classifier

Gene expression as predictive classifier

Chromosome aneuploidies are frequent in several solid tumors

46 chromosomes in healthy human cell

59 chromosomes in colorectal cancer cell

Array-CGH en biomedicina

Análisis genómico - array CGH

Impact of DNA copy number on gene transcription

Microarray-CGH...

RNA (cDNA) sample

DNA sample

Genome sequence complexity makes a difference.

RNA and DNA raw data distribution

• Test RNA and DNA obtained from the same source were hybridized against their respective reference RNA and DNA. Statistical values are shown for 13,417 clones from the NIA-15K cDNA mouse clone set.

Microarray-CGH, experimental optimization

Urzúa et al. (2005) Tumor Biol. 26, 236-44

Conventional-CGH vs microarray-CGH

Mouse ovarian surface epithelial (MOSE) cells – an EOC model

Urzúa et al. (2005) Tumor Biology 26(5):236-44

Conventional-CGH vs microarray-CGH

Frankenberger et al. (2006) Appl. Bioinformatics 5, 125-30

Infinium Human Core Exome-24 beadchip - Illumina

Transcriptomic profiling of human ovarian cancer

Carmen Romero – HCUCH

Gene expression differences - IOSE vs EOC III

NGF signaling pathway and related genes

Aplicaciones biomédicas 5

A mouse model of ovarian cancer

DID 2006-08 UChile

A syngeneic mouse model of ovarian cancer

11 9530006BC Mt1 -- me || Uch11 --11 Mt2 -- me || Col3a1 --|| Uch11 --11 Ndr2 -- M || Col3a1 --|| Igfbp5 --|| Col3a1 --11 Unknown 11 Unknown || Guey1a3 -|| Podx1 --11 Krt2-7 --|| Spint2 --II Unknown || Gstm1 --11 Ero11 --|| Gstm1 --II Mus muscu II Serping1 11 Spint2 --

Urzúa et al. (2006)

J. Cell. Physiol. 206, 594-602

Human-Mouse Comparison

• SOM clustering of IG10 and IF5 cell lines compared to human ovarian tumors based on 872 genes with equivalent biological function. Samples description is as follows:

- 1.- LMP
- 2.- Stage III
- 3.- Serous BOT
- 4.- Mucinous BOT
- 5.- Mouse IG-10
- 6.- Mouse IF-5

Urzúa et al. (2006)

J. Cell. Physiol. 206, 594-602

A syngeneic mouse model of ovarian cancer

Roby et al. Carcinogenesis 21, 4, 585-91 (2000)

Table I. Ten cell lines were cloned from late passage MOSEC

Clonal lines	Tumor loads	Days to death
IC5	1.5 ± 0.2	105 ± 6
ID3	1.2 ± 0.2	95 ± 10
ID8	2.1 ± 0.3	114 ± 3
ID9	0.8 ± 0.3	99 ± 5
IF5	1.4 ± 0.2	182 ± 3
IG10	0.7 ± 0.1	72 ± 2
2C6	1.7 ± 0.2	133 ± 7
2C12	0.7 ± 0.2	101 ± 8
3E3	1.0 ± 0.2	125 ± 6
3B11	1.1 ± 0.2	99 ± 7

Genes correlated to tumor loads

Map4k4, mitogen-activated protein kinase 4

0270-7306/03/\$08.00+0 DOI: 10.1128/MCB.23.6.2068-2082.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Vol. 23, No. 6

The STE20 Kinase HGK Is Broadly Expressed in Human Tumor Cells and Can Modulate Cellular Transformation, Invasion, and Adhesion

Jocelyn H. Wright,* Xueyan Wang, Gerard Manning, Brandon J. LaMere, Phuong Le, Shirley Zhu, Deepak Khatry, Peter M. Flanagan, Sharon D. Buckley, David B. Whyte, Anthony R. Howlett, James R. Bischoff, Kenneth E. Lipson, and Bahija Jallal

Sugen, Inc., South San Francisco, California 94080

Arpc1b, actin related protein 2/3 complex, subunit 1B

Genes correlated to survival

Pura, purine rich element binding protein A

Cancer Res 2008; 68: (8). April 15, 2008

Research Article

Androgen Receptor Overexpression in Prostate Cancer Linked to $Pur\alpha$ Loss from a Novel Repressor Complex

Longgui G. Wang,¹ Edward M. Johnson,² Yayoi Kinoshita,³ James S. Babb,¹ Michael T. Buckley,¹ Leonard F. Liebes,¹ Jonathan Melamed,¹ Xiao-Mei Liu,¹ Ralf Kurek,⁴ Liliana Ossowski,³ and Anna C. Ferrari¹

'New York University Cancer Institute, New York, New York; 'Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia; 'Mount Sinai School of Medicine, New York, New York; and 'Stadtische Kliniken, Offenbach, Germany

Cnn3, calponin 3

Clin Exp Med DOI 10.1007/s10238-014-0298-1

ORIGINAL ARTICLE

Expression of *AKR1C3* and *CNN3* as markers for detection of lymph node metastases in colorectal cancer

Chiaki Nakarai · Kayo Osawa · Minami Akiyama · Nagahide Matsubara · Hiroki Ikeuchi · Tomoki Yamano · Seiichi Hirota · Naohiro Tomita ·

Received: 17 February 2014/Accepted: 10 May 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Time to death (days)

Proteomics with antibody microarrays

Proteomic comparison between MOSE cells of extreme tumor inducing capacity

Urzúa et al. (2010) Mol Biosyst 6(12):2521-8

Protein networks in MOSE cells

Urzúa et al. (2010) Mol Biosyst 6(12):2521-8
A syngeneic mouse model of ovarian cancer

Roby et al. (2000)

Summary of transcriptional and genomic changes

Protein-protein interaction network at passage 14 - Upregulated

Urzua et al - BMC Genomics 2016 Oct 25;17(Suppl 8):728

Pathways altered prior to early aneuploidies (up)

Cytoskeleton (22 genes, adjp 5.6e-7) Actn1, Anin, Anxa2, Msn, Triobp, Fscn1 Krt18, Krt8, Tmsb4x, Abi2, Tubb2c, Csrp1

Chromosome (14 genes, adjp 2.8e-7)

H2afz, Hist1h2ao, Hist1h4n, Hmga1, Hmga2, Hmgb2, Hmgcr, Hmgn2, Mcm2, Mcm3, Mcm6

Published OnlineFirst January 11, 2011

Cancer

Research

HMGA2 Overexpression-Induced Ovarian Surface Epithelial Transformation Is Mediated Through Regulation of EMT Genes

Jingjing Wu^{1,2}, Zhaojian Liu², Changshun Shao^{1,3}, Yaoqin Gong¹, Eva Hernando⁴, Peng Lee⁴, Masashi Narita⁵, William Muller², Jinsong Liu⁶, and Jian-Jun Wei²

Abstract

Molecular and Cellular Pathobiology

The AT-hook transcription factor HMGA2 is an oncogene involved in the tumorigenesis of many malignant neonlasms HMGA2 overexpression is common in both early and late-stage high-grade overian serous nanillary

Cenpa, Top2a, Ncapd2, Nusap1, Chaf1b

Cell cycle (22 genes, adjp 4.2e-9)

Ccna2, Ccnb1, Ccnb2, Cdc20, Cdc5l, Cdca8,

Prc1, Birc5, Ncapd2, Racgap1, Dlgap5,

Tacc3, Ckap2, Kif23

Protein-protein interaction network at passage 14 - Downregulated

Pathways altered prior to early aneuploidies (down)

mRNA processing (11 genes, adjp 4.8e-9)

Ddx3x, Ttc14, Clk4, Rps24, Eif4a2, Sfpq, Matr3, Clk1, Rbms1, Srsf11, Zfml

Nuclear bodies (5 genes, adjp 3.5e-3)

Malat1, Neat1, Sfpq, Atrx, Crebbp

Response to ER stress (6 genes, adjp 7.5e-3)

Hspa5, Pdia3, Pdia4, Itpr1, Dnajc3, Hsp90b1

Tumor suppression (9 genes, adjp 3.5e-3)

Crebbp, Ddx3x, Eef1a1, Pten, Hsp90b1, Arhgef12, Nupr1, Pdcd4, Ndrg2

Microarray-CGH of MOSE cells at passage 18

Urzua et al - BMC Genomics 2016 Oct 25;17(Suppl 8):728

DNA and RNA data correlation at passage 18

Urzua et al (2016) BMC Genomics - accepted

Genomics 2016 Oct 25;17(Suppl 8):728

81

Ovarian tumor & reproductive parameters

BALB/c

SWR

Spontaneous ovarian tumors and reproductive phenotypes

Strain	Tumor frequency*	Litter size	Number of litters	Productive matings (%)	Relative fecundity ¶
BALB/c	3.80	4.9	3.6	55.6	9.80
C57BL/6	1.60	6.6	3.8	87.4	21.9
FVB	7.00	9.5	4.8	90.0	41.0
SWR	57.0	7.5	2.3	58.3	10.1

* Spontaneous tumors

[¶] Derived from LS, NL and PM

Correlation – an example

Urzúa et al - BMC Genomics. 2010 Dec 22;11 Suppl 5:S1

Strength of OTF correlation respective to transcriptional shift

Urzúa et al - BMC Genomics. 2010 Dec 22;11 Suppl 5:S1

Ovarian expression profiles - phenotypes

Functional analysis OTF-, NL+

RNA binding

40 of 76 genes, 6 major funtions

Genes ¶	Tissue/ System	Function/ Disease	
Cpsf6 Ddx17 Arnt Sfrs6 Sfrs2 Fubp1 <mark>Rbm39</mark> Rbm25 Hnrpa2b1	Ovary	ovarian cancer ER-alpha transcription C-myc transcription apoptosis Bcl-x splicing antiangiogenic VEGF cisplatin resistance	
Rbm26 Son MII3	Blood	lymphomas leukemogenesis	
Sfrs7 Tra2a	Endocrine	GnRH mRNA splicing scavenger recep. splicing	
Pabpn1 Mycbp2	Muscle	dystrophy neuromuscular dev	

Ovarian parity genes compared to parous breast

Aplicaciones biomédicas 7

An ovarian cancer mouse model at estropausal age

Fondecyt 1130292

Working model for follicle depletion and ovarian aging in ovarian tumorigenesis

Smith et al. Front Oncol. 2014 Feb 26;4:36.

Proyecto Fondecyt 1130292

Circulating pituitary hormones

1500 1000 LH FSH ** -750· 1000 *** 500· pg/mL 500 250 0 0 3×10⁰⁴ – PRL TSH *** 800-** 2×10⁰⁴ pg/mL *** *** 400-1×10⁰⁴· 0 0 young adult **m**-aged virgin **-**aged multiparous

Milliplex magnetic bead assay -

(*) p < 0.05

(**) p < 0.01

Circulating cytokines, chemokines and interleukins

Milliplex magnetic bead assay (*) p < 0.05 (**) p < 0.01

Urzua et al – Aging Dis 2017 Oct 1;8(5):546-557

Gene expression profiling between young and aged ovaries

Follicle gene signature in aged ovaries according to parity status

Cell immunity-related gene signature in aged ovaries according to parity status

Gene expression profiling - Oviduct

15-months old Oviducts

Illumina BeadChip Microarrays MouseRef-8_v2

PI3K-Akt signaling pathway (8)

Tight junctions (8)

IFN alpha signaling (4)

T-test (permutations) \rightarrow 187 DEG p<0,05 FC +/- 1.5