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A Methodology for Evaluation of Boundary
Detection Algorithms on Medical Images
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Abstract—Image segmentation is the partition of an image
into a set of nonoverlapping regions whose union is the entire
image. The image is decomposed into meaningful parts which
are uniform with respect to certain characteristics, such as gray
level or texture. In this paper, we propose a methodology for eval-
uating medical image segmentation algorithms wherein the only
information available is boundaries outlined by multiple expert
observers. In this case, the results of the segmentation algorithm
can be evaluated against the multiple observers’ outlines. We
have derived statistics to enable us to find whether the computer-
generated boundaries agree with the observers’ hand-outlined
boundaries as much as the different observers agree with each
other. We illustrate the use of this methodology by evaluating
image segmentation algorithms on two different applications in
ultrasound imaging. In the first application, we attempt to find the
epicardial and endocardial boundaries from cardiac ultrasound
images, and in the second application, our goal is to find the fetal
skull and abdomen boundaries from prenatal ultrasound images.

Index Terms—Average polygon, boundary detection, evalua-
tion, gold-standard, image segmentation, polygon metrics, vali-
dation.

I. INTRODUCTION

RESEARCHERS in the area of medical image analysis
have long sought to extract contours of different body

organs and tissue types from medical images of various
modalities. We believe that objective evaluation of these
medical image segmentation algorithms on a large set of
clinical data is one of the important steps toward establishing
validity and clinical applicability of an algorithm. However,
very few medical image segmentation researchers have carried
out such an evaluation of their algorithms on a large number
of clinical data sets, e.g., [1]–[6]. Many researchers have
compared their algorithms on phantoms [7] orin-vitro studies
[8], [9], which are typically idealistic representations of real
data. Predicting performance on real data, based on such
results, may be difficult. Even those who have evaluated their
algorithms on real clinical data have used different criteria and
different statistics [10]–[13], making it difficult to compare
the performance of their algorithms against other algorithms.
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Thus, there is a compelling need for validation and comparison
of medical image segmentation algorithms (as well as any
other medical imaging algorithms) using standardized proto-
cols. In this paper, we propose a methodology for evaluation
and comparison of boundary detection algorithms for medical
image segmentation.

Ideally, if the expected result were known, we would
have the gold-standard segmentation and we may compare
the segmentation output from the computer with this gold
standard. This comparison would be done for a large number
of clinical data sets to test the hypothesis that the segmentation
output from the computer is not statistically different from the
gold standard. The reasons that make such a medical image
segmentation evaluation task difficult are as follows.

• Lack of a definitive gold standard. In medical image
segmentation, typically, the only standards available for
comparison are segmentations produced by expert ob-
servers. Such segmentations cannot be considered as gold
standards because they may suffer from observer bias and
inter- and intraobserver variability.

• Difficultly in defining a metric. A well-defined metric is
needed to compare the computer-generated segmentation
results to the segmentation results produced by expert
observers. Such metrics are difficult to define for image
segmentation because of the complex multidimensional
nature of segmentation data.

• Lack of standardized statistical protocols. Summarizing
the results and making conclusions about the algorithm
performance require statistical analysis using standard
protocols. Due to the lack of a gold standard and difficulty
in defining metrics, defining such a standard statistical
protocol is difficult.

• Tedious and time-consuming data collection. Collecting a
large number of data sets with user-defined segmentation
results is a very difficult task. For the expert observers,
hand-segmenting the images is tedious and time consum-
ing.

Other researchers have addressed some of the issues iden-
tified above for medical image segmentation evaluation, but
no research group has addressed all the issues. For defining
the evaluation metric for boundary detection, most researchers
have used parameters derived from the boundaries, such as,
area or perimeter of the boundaries for comparison [11], [13].
A few researchers have also used metrics based on distances
between boundaries for their evaluation [3], [10]. DeGraafet
al. [14] used a metric based on the number of edit operations
to perform on the segmentation results. Hammoude [15] used
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an evaluation method based on a pixel-by-pixel comparison of
pixels enclosed by two different boundaries.

For addressing the problem of interobserver variability, Det-
meret al. [10] have independently evaluated the interobserver
variability of the hand-segmentation process, but they were
not able to use these results in their statistical evaluation
procedure. Most other researchers who have validated their
segmentation techniques on relatively large clinical data sets
have ignored the intra- or interobserver variability by compar-
ing the computer-generated boundaries to only one observer’s
hand-outlined boundaries [11], [13].

In this paper, we address the first three problems identified
above for a particular case of image segmentation—boundary
detection of a single object from an image. First, we propose a
metric to measure the distance between a computer-generated
boundary and a hand-outlined boundary. Next, we propose a
method based on averaging multiple expert observers’ outlines
to generate a gold-standard boundary. Next, we propose a
few statistical methods for validating the computer-generated
boundaries against boundaries outlined by expert observers.
Finally, to provide concrete examples of the application of
these techniques, we will consider its application in two
different domains, both related to finding organ boundaries
from ultrasound images. In the first application, we will
consider a computer algorithm for detecting endocardial and
epicardial contours on short-axis cardiac ultrasound images
[16]. In the second application, we will consider an algorithm
for detecting the boundaries of the fetal head and abdomen
from prenatal ultrasound images that generates automatic
measurements of diagnostically important parameters, such as
the biparietal diameter (BPD), the head circumference (HC)
and abdomen circumference (AC) [17].

We believe that comparing the result of the computer
segmentation to only one observer’s outline may not be
sufficient, because a single observer’s boundary may be subject
to the observer’s bias and intra- and interobserver variabil-
ity. The methodology that we propose here compares the
computer-generated boundaries to the multiple expert ob-
servers’ boundaries to check whether the computer-generated
boundaries differ from the manually outlined boundaries as
much as the manually outlined boundaries differ from one
another.

The methodology proposed in this paper will not only
be useful for evaluation of individual image segmentation
algorithms, but will also be applicable for comparison of
different boundary detection algorithms (or the same algorithm
with different parameters) for the same application. In much
of the research in the field of medical image segmentation,
performance of new algorithms is usually reported on data sets
that are limited in size and scope, without systematic compar-
ison to existing or commonly known algorithms, and without
studies revealing the types of data on which proposed methods
are effective, e.g., [1]–[6] and [10]–[13]. Establishment of
standardized evaluation protocols along with a database of
images for different applications may help alleviate some of
these problems. The data collection problem is not addressed
in this research; however, we believe that this problem can be
solved by a multicenter research initiative to set up a large

database of medical images of different modalities stored with
the various hand-segmented images. This methodology may
also prove useful for systematic selection of algorithms or the
parameters of one algorithm for a particular application.

II. M ETHODS

A. Error Metric

The first decision for image segmentation evaluation is to
choose a parameter to be compared. Parameters derived from
the boundaries, such as the area enclosed or the perimeter, may
be compared or the boundaries themselves may be compared
directly. The derived parameters are usually application de-
pendent, and often the accuracy of measuring these parameters
is the functional goal of image segmentation. In our cardiac
boundary detection application, for example, the derived pa-
rameters that need to be compared are the areas enclosed by
the end-diastolic (ED) and end-systolic (ES) boundaries. In
our fetal head detection application, two parameters of clinical
interest are the HC and the BPD of the skull. For comparing the
derived parameters, we use the absolute difference between the
computer-generated parameter value and the user-measured
parameter value as our distance metric. We have found cases
where these computer-generated parameters agreed well with
the manually measured parameters, but the boundaries from
which these measurements were derived did not agree as well.
Hence, comparing the boundaries directly will provide a more
stringent evaluation of the segmentation scheme.

We define a metric to measure the distance, ,
between the two given curves, and . When common bio-
logical landmarks are available on the two curves, establishing
correspondence between the curves is straightforward. How-
ever, in the absence of landmarks, we first have to establish
artificial correspondence between points on the two curves
and then measure the distance between the corresponding
points. If the two curves are represented as sets of points

and , where
each and is an ordered pair of the and coordinates
of a point on the curve, we define the distance to the closest
point (DCP) for to the curve as

(1)

The Hausdorff distance between the two curves is defined as
the maximum of the DCP’s between the two curves [18]

(2)

The closest point distance associates each point on both curves
to a point on the other curve, and the Hausdorff distance
finds the largest distance between the associated points. Fig. 1
shows two examples of the Hausdorff distance between two
curves.

A distance between the two curves is a metric if it satisfies
the following three properties:

1) and ;
2) ;
3) .
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It is easy to see that the Hausdorff distance satisfies the
first two properties. The third property, which is the triangle
inequality, is also satisfied as shown in the Appendix.

Other metrics can also be defined to measure distances
between boundaries. One such metric is the root mean squared
(rms) radial distance between boundaries. This distance is
defined by first choosing a common centroid of the two bound-
aries from which radial lines are drawn projecting outward.
The intersection of these radial lines with the two curves
define the corresponding points, and the metric is defined as
the rms distance between all such points. Such a measure has
been previously used for evaluation of ultrasound boundary
detection techniques [3], [10]. The deficiency of this method
is that the boundaries are assumed to be star shaped, i.e., each
point of the boundary is visible from the centroid. Whereas
this assumption is satisfied for simple-shaped boundaries, it
fails for more complex-shaped boundaries. Another metric
which can be used to measure the distance between two
boundaries is to do a pixel-by-pixel comparison of those pixels
enclosed by the two different boundaries. First, binary images
are constructed for each boundary, wherein a pixel is nonzero
if it is inside a boundary and zero if it is outside. Next, a
pixel-wise XOR operation is performed on the two images and
the average number of nonzero pixels in the resulting image
defines a metric for the two boundaries. Hammoude [15] used
this method for evaluating an ultrasound image segmentation
method. The only shortcoming of this metric is that it is
computationally intensive.

B. Averaging Curves

We now define a procedure to evaluate an average curve,
given two or more curves. This procedure is based on estab-
lishing one-to-one correspondence between the points consti-
tuting two or more curves using a modification of the methods
for shape registration described by Sampsonet al. [19] and
Besl and McKay [20]. In the absence of a gold-standard
contour, the average of the multiple observers’ curves can be
used as a gold standard. Other researchers have used a similar
averaging procedure to establish a gold-standard contour [21].
Their approach is based on a shape-based interpolation method
which is very similar to our method proposed below, except
that our method explicitly establishes correspondence between
the curves to be averaged. Such point-wise correspondence has
many advantages as will be discussed below.

Given a set of curves , , , , each with
equidistant points, we need to find the average curve. We
establish the initial single-point correspondence by choosing a
point at random on and finding a point closest to
on each curve , , , . We denote these points by ,

, , . For the remaining points on the curve,
the correspondence is established sequentially, i.e., the point

on curve corresponds to points , , , on
curves , , , , respectively. A point on the average
curve is given by the centroid of the corresponding points

(3)

Fig. 1. Two examples illustrating the Hausdorff distance between the two
curves. The Hausdorff distance is measured along the thick line. The Hausdorff
distance in both examples is about 35 pixels, whereas the mean distance
between corresponding points in the first example is about ten pixels and in
the second example is about 30 pixels.

for each . Next, from each point on , a
normal to the curve at that point is drawn and the inter-
section of this normal with each of the input curves is
determined. These points of intersection define another set
of correspondence between the input curves. This new
correspondence is averaged again to give a new average curve.
The process is iterated until the average curve does not change
any more. Typical averaging procedures converge in less than
five iterations. An example of the averaging procedure is
shown in Fig. 2. The normal to a point on a digital curve
is computed by an efficient procedure based on computing the
eigenvectors of a 2 2 scatter matrix described by Anderson
and Bezdek [22].

This averaging procedure establishes correspondence be-
tween two curves. The average distance between the corre-
sponding points may also be used to measure the difference
between the two given curves. This distance is different from
the Hausdorff distance defined in the last section. Whereas the
Hausdorff distance measures the distance between points that
differ the most, this distance finds the mean distance between
the two curves. In Fig. 1, the Hausdorff distances for the two
examples are approximately the same; however, the average
distances in the two examples are very different. Although the
average distance between two curves, computed this way, is
not a valid metric (it does not satisfy the triangle inequality),
it is still a useful distance measure that we will use.

Correspondence points between the two curves also allow
us to analyze the regional difference between the two curves.
For example, we can compute the signed distances between
two curves to estimate the bias of an algorithm. Establishing
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(a)

(b)

Fig. 2. Averaging of the two curves. (a) Shows the initial correspondence
and the average curve (thick line) using this correspondence and (b) the final
correspondence and the average curve (thick line) obtained after five iterations.

correspondence points also allows us to weigh different re-
gions of the curves differently while computing the distance
measure; e.g., some regions in the curve are detected more
accurately and hence may be given larger weights.

C. Statistical Evaluation

For our statistical evaluation, we assume that multiple
expert observers’ hand-outlined boundaries are available for
evaluating the computer-generated boundaries. Our method-
ology compares the computer-generated boundaries to the
multiple expert observers’ boundaries to check whether the
computer-generated boundaries differ from the manually out-
lined boundaries as much as the manually outlined boundaries
differ from one another.

We used two kinds of statistics to compare the computer-
generated boundaries to the multiple hand-outlined boundaries.
The first method is a modified version of Williams Index [23]
which computes the ratio between the average computer-to-
observer agreement and the average interobserver agreement.
The second method computes the percentage of observations
for which the computer-generated boundary lies within the
interobserver range.

1) Williams Index: Williams [23] proposed a method to
compare the agreement of an observer with the joint agreement
of other observers; thus, helping to answer the question: “Does
the individual observer agree with the set of observers as often
as a member of the set agrees with another member of the set?”
This index was originally defined only for nominal data. We
have extended the Williams index to numeric multivariate data.

If ( ) observers numbered from 0 tomake measure-
ments (or ratings) on subjects (or images), this statistic

aims to compare observer 0 with the reference group of
observers. In our case, the observers 1 throughare the expert
observers who manually outline the boundaries on each of the

images and the observer 0 is the computer algorithm which
automatically produces a boundary on each of theimages.

First, the proportion of agreements for each pair of observers
, is computed, where and index the observers from 0

to . Let us denote this proportion by . The average level
of agreements between the observer 0 and the reference group
of observers is computed by

(4)

and the average level of agreements between thereference
observers by

(5)

The index

(6)

is used for comparing the observer 0 to the group of
observers. If the upper limit of the confidence interval (CI)
of this index is greater than the value one, we can conclude
that the measurement data are consistent with the hypothesis
that the individual observer agrees with the group at least as
well as the group members agree with each other (i.e., the
individual observer is a reliable member of the group).

To generalize the Williams index to numeric as well as to
multivariate data, we redefine the proportion of agreements
between two observers to be equal to the reciprocal of the
average disagreements, , between the two observers
and

(7)

and the average disagreement between the two observers is
defined

(8)

where is a vector observation on subjectby an observer
, is the number of subjects, and the function is a

distance metric between two observations,and .
Using this new definition of the proportion of agreements,

we define the modified Williams index

(9)

With this modification, we can now compute an index similar
to the Williams index for any kind of numeric multivariate
data where we can define a distance metric .
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The CI for this index is estimated using a jackknife non-
parametric sampling technique [24]. This sampling procedure
works by leaving out one of the observations at a time
and computing the Williams index for observations.
Denote the data set with theth observation removed by .
We have such data sets , , , and
estimates of the modified Williams index, , , , .
The jackknife estimate of the standard error in the computation
of the modified Williams index is given by

(10)

where

(11)

Thus, the 95% CI for the estimate of the modified Williams
index is

(12)

where is the 95th percentile of the standard
normal distribution.

This modified Williams index may be used both for evalu-
ating the direct distances between the computer-generated and
manually outlined boundaries and for evaluating the differ-
ences between the parameters derived from the boundaries,
such as the area or the perimeter.

2) Percent Statistic:Our second statistical technique
computes the percentage of cases for which the computer-
generated boundary (or measurement) lies within the interob-
server range. For parameters derived from the boundaries, this
percentage can be easily computed. For each observation, we
just have to test whether the computer-generated measurement
is less than the largest and greater than the smallest observer-
made measurement. For multidimensional measurements,
such as the boundaries, establishing whether the computer-
generated boundary lies within the interobserver range is
not straightforward. The key question is how to define what
it means to be inside the interobserver range. We define a
computer-generated boundary to be within the interobserver
range if it lies within a multidimensional convex polyhedron
formed by the observer-outlined boundaries. Fig. 3 illustrates
this concept in a simplified way. The manual outlines are
points in a 2 -dimensional Euclidean space which are
represented in the figure as points in a two-dimensional
space. If the convex hull of the points representing the
manual outlines includes the point representing the computer-
generated boundary, we say that the computer-generated
boundary is within the interobserver range. There are other
possible ways to establish whether the computer-generated
boundary lies within the interobserver range. One method is
to first establish correspondence points between all observer-
outlined curves and the computer-generated curve. Next, we
can count the number of points on the computer-generated
curve lying between the corresponding observer-curve points.
If a majority of the computer-curve points are within the

Fig. 3. Five observers’ and two computer-generated boundaries (or mea-
surements) collapsed onto a two-dimensional plane. The points O1, O2, O3,
O4, and O5 represent the five observer-outlined boundaries and the points C1
and C2 represent the two computer-generated boundaries. The shaded area
is the convex polygon which bounds all the observer-outlined boundaries.
The computer-generated boundary C1 lies inside this convex polygon and is
considered to be within the interobserver range, whereas C2 lies outside this
range.

observer-curves points, we can say that the computer-
generated curve lies within the interobserver range.

An approximate, but quick and easy, way to test whether a
point lies in the convex hull of a set of points , , ,

, is to just check whether

(13)

i.e., whether the maximum computer-to-observer distance is
less than or equal to the maximum interobserver distance.
Using such a test, we can compute the statistic of interest, the
percentage of observations for which the computer-generated
boundary lies within the interobserver range. Under the hy-
pothesis that the observers produce boundaries which are
samples from the same distribution, the expected probability
that one observer’s boundary lies outside the range of the other

observers’ boundaries is 1/( ). Thus, under the hypothesis
that the computer-generated boundaries and the observer-
outlined boundaries are samples from the same distribution,
the expected percent of times that the computer-generated
boundaries lie within the interobserver range is 100/( ).
For three human observers, this expected percentage is 75%;
for four observers, it is 80%; and for five observers, it is 83%.
To test whether the data is consistent with the hypothesis, we
compute the 95% CI of the percentage statistic and check
whether it includes the expected value. If the data is not
consistent with the hypothesis that the computer-generated
boundaries and observer-outlined boundaries are samples from
the same distribution, then the CI will not include the expected
value.

Whereas the Williams index gives information about av-
erages because it computes the ratio between the average
computer-to-observer agreement and the average interobserver
agreement, the percentage statistic gives information about
corresponding relationships between the computer measure-
ments and the observer measurements. The percent statistic is
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useful because it tells us the number of times that the algorithm
is successful, i.e., the number of times it produces boundaries
which are within the interobserver range; however, the 95%
CI test for the percentage statistic is a very stringent test.

3) Classical Techniques:If we are to compare the parame-
ters derived from the boundaries only, some classical statistical
techniques may be used as well. The most-commonly used
technique is the linear regression. The parameters derived from
the computer-generated boundaries are correlated with those
derived from the hand-outlined boundaries.

Recently, Bland and Altman [25] have proposed the use of
another technique to measure the agreement between two vari-
ables. Their method plots the pair-wise differences between the
two variables versus the best estimate of their true value. In
our case, the true value may be taken to be the average of the
parameter values derived from the hand-outlined boundaries.
This method tests for any proportional error or bias in the
measurements.

Statistics on interobserver variability were measured by
calculating the average of all absolute interobserver differ-
ences. To measure reliability, we calculated Cohen’s kappa
[26], which is a coefficient of agreement between two ob-
servers, corrected for agreement by chance. This coefficient
was originally developed for nominal data, but we used the
modifications described by Berry and Mielke [27] to evaluate
reliability of multiple observers for numerical data.

D. Comparison of Algorithms

Often there is a need to compare the results of applying
two or more different algorithms on the same data set. We
propose the use of the average of the observer boundaries (the
pseudo ground truth) as the basis for the comparison. The
computer-generated boundaries from the different algorithms
are compared to these ground-truth boundaries resulting in an
error measurement for each algorithm and for each image. The
algorithm which results in a smaller overall error is preferred
over the other algorithms. The comparison of the errors is
carried out using Friedman’s two-way analysis of variance
by ranks [28]. This is a nonparametric procedure, involving
ranking of the errors due to the different algorithms for each
data set. The null hypothesis is that each algorithm performs
identically and, thus, the average rank for each algorithm over
the entire data set is the same. The test statistic is

(14)

where

number of data sets (or images);
number of algorithms;
sum of ranks for the algorithm.

The statistic is compared to the distribution of
degrees of freedom to determine whether the difference in
ranks can be attributed to chance. If the null hypothesis
is rejected, i.e., a difference in the ranks is significant, the
different algorithms are compared using a multiple comparison
procedure described by Daniel [28]. The algorithmsand

are considered significantly different at a levelif

(15)

where is the -value corresponding to the standard
normal distribution.

E. Data Used

We illustrate the use of the methodology described above
to validate the results of boundary detection in two different
applications, both in ultrasound imaging. In both cases, the
boundaries were detected using a computer algorithm based
on active contour models [16], [17].

For the cardiac boundary detection application, we have
short-axis echocardiogram sequences from 44 randomly se-
lected patients collected during routine sonographic exami-
nation. Four experienced observers hand-outlined the endo-
cardium (inner boundary) and the epicardium (outer boundary)
of the left ventricle on the ED and ES images in each
sequence. The computer algorithm generated the epicardium
and endocardium for the entire sequence [16]. This algorithm
requires the user to draw a rough initial boundary representing
the end-diastolic epicardial boundary. We showed that the
algorithm is very robust to variations in this initial boundary
[16]. First, we compared the epicardial and endocardial bound-
aries directly to the hand-outlined boundaries using techniques
described above. Next, we compared the derived parameters,
the enclosed area within the epicardial and the endocardial
boundaries.

For the fetal head and abdomen detection application,
we have images of the fetal head and abdomen from 30
randomly selected patients going through routine sonographic
examination. Four experienced observers outlined the fetal
skull and abdomen and measured the BPD, HC, and AC on
each image. The computer algorithm also generated the fetal
skull and the abdomen boundary and the BPD, HC and AC
measurements [17]. This algorithm requires the user to mark a
point near the center of the organ of interest. We showed that
the algorithm is very robust to variations in this initial point
[17]. First, we compared the computer-generated boundary
directly to the hand-outlined ones. Next, we compared the HC,
BPD, and AC measurements derived from the skull boundary.

III. RESULTS AND DISCUSSION

A. Cardiac Boundary Detection

Fig. 4 shows two sample short-axis cardiac images at end
diastole along with the hand-outlined and computer-generated
epicardial and endocardial boundaries. Table I shows the Haus-
dorff distance and the average distance by directly comparing
the computer-generated boundaries to the four observers’
hand-outlined boundaries averaged over the 44 data sets. Table
I also shows the measured Williams index and the percentage
statistic and their CI’s.

Table II shows the computer-to-observer differences, the
interobserver differences, Williams index, and the percent
statistics for the epicardial and endocardial areas. It also shows
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(a) (b)

(c) (d)

Fig. 4. (a) and (b) Two sample short-axis cardiac images with the hand-outlined epicardial and endocardial boundaries. (c) and (d) The same images
with computer-generated epicardial and endocardial boundaries.

the correlation coefficient between the computer-generated
measurements and the average observer measurements of these
derived parameters.

From these results, we can clearly see why it is important to
compare the computer’s measurements to multiple observers’
measurements. In Table I, we see that the mean computer-to-
observer difference is almost the same for both the epicardial
and endocardial boundaries; however, the Williams index and
the percent statistic are very different for epicardium and
endocardium. This is because the interobserver variability for
outlining the epicardium is much larger than for outlining the
endocardium. The Williams index for epicardium boundary
detection is very close to one, indicating that the computer-

generated boundaries differ from the hand-outlined boundaries
as much as the hand-outlined boundaries differ from one
another. For endocardial boundaries, this is not the case,
however. Table I also shows that although the upper limit
of the 95% Williams index CI is greater than the expected
value of 1.0 for the epicardial boundaries in both the Hausdorff
distance and the average distance, the upper limit of the 95%
statistic CI for Hausdorff distance does not exceed its expected
value of 80%.

From Table II, we can derive similar inferences. Here, the
mean computer-to-observer difference is smaller for endocar-
dial boundaries than for the epicardial boundaries. However,
the upper limit of the Williams index CI does not exceed 1.0
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TABLE I
DIRECT COMPARISON OF THECOMPUTER-GENERATED BOUNDARIES TO THE FOUR OBSERVERS’

BOUNDARIES FORCARDIAC BOUNDARY DETECTION. THE EXPECTEDVALUE OF WILLIAMS INDEX (WI)
IS 1.0 AND THE EXPECTED VALUE OF THE PERCENT STATISTIC IS 80%. COD= MEAN COMPUTER

TO OBSERVER DIFFERENCE. IOD = MEAN INTEROBSERVERDIFFERENCE. P= PERCENT STATISTIC

TABLE II
COMPARISON OF THECOMPUTER-GENERATED EPICARDIAL AND ENDOCARDIAL AREAS TO THE FOUR

OBSERVERS’ MEASUREMENTS FORCARDIAC BOUNDARY DETECTION. r = CORRELATION COEFFICIENT

for the endocardium as it does for the epicardium because the
interobserver variability is much larger for epicardial areas.
We can see that the correlation coefficient is fairly high for
both the endocardial and epicardial areas.

We can clearly see that using only the statistics like the mean
computer-to-observer difference and the correlation coefficient
are not indicative of how well an algorithm performs because
they do not establish a guideline for how good the statistics
have to be. Measurement of the interobserver variability estab-
lishes such a guideline and can be used as a clinically useful
standard to measure the performance of image segmentation
algorithms.

We used a method described in the last section to compare
the performance of different algorithms on the same task.
We compared three different variations of the active con-
tour algorithm for detection of the endocardial boundary by
computing the boundary distances of the computer-generated
boundaries to the pseudo ground-truth boundaries (estab-
lished by averaging the four observers’ boundaries). The three
different variations of the algorithm represent the different
preprocessing methods applied to the image before it is input
to the active contour algorithm. In the first method, the image
was prefiltered with a 5 5 Gaussian kernel while the image
was filtered via a grayscale morphological opening operation
with a 5-pixel-diameter disk in the second method. In the third
method, no prefiltering was applied to the image.

We computed the average distance between the boundaries
instead of the Hausdorff distance, and boxplots of these
distances for the three algorithms are shown in Fig. 5. The
Friedman’s rank sum test indicated a significant difference
between the performance of the three algorithms (0.001).
Multiple comparison showed that the third algorithm con-
sistently outperformed the other two algorithms. The mean
boundary distances over all 44 images for the three algorithms
were 3.87, 4.58, and 3.61 mm, respectively. Thus, in this case,
the third algorithm (with no prefiltering) was preferred over

Fig. 5. Boxplots of the average boundary distances from the com-
puter-generated boundary to the pseudo ground-truth boundaries for three
different algorithms for detecting the endocardial boundary. The box
represents the middle half of the data, the whiskers extend to the extreme
values and the white line inside the box represents the median. Friedman’s
rank sum test showed a significant difference between the three algorithms.
Multiple comparison showed that the third algorithm performed consistently
better than the other two.

the others. We concluded that prefiltering the image, in this
case, removed some low contrast information that is essential
for accurate segmentation of the boundaries.

B. Fetal Size Measurements

Fig. 6 shows two of the 30 images and the automatically
detected skull boundaries. The line used to measure the BPD
is also shown. Table III shows the Hausdorff distance and
the average distance by directly comparing the computer-
generated boundaries to the four observers’ hand-outlined
boundaries. The upper limit of the 95% Williams index CI for
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(a)

(b)

Fig. 6. Two images where the algorithm detected the skull boundary and
measured the BPD and HC.

the average distance measure for the head is greater than the
value 1.0, thus, indicating that the computer-generated bound-
aries agree as much with the observer-outlined boundaries
as the observer-outlined boundaries agree with one another.
However, the upper limit of the Hausdorff distance CI is less
than one. As shown in Fig. 1, the Hausdorff distance and the
average distance measure two different quantities. The fact
that the Hausdorff distance between the computer-generated
boundaries and the hand-outlined boundaries is larger than
the average distance shows that even though the boundaries
lie generally close to each other, there are outliers on the
boundaries (as in Fig. 1) on some images. The choice of the
measure to use depends on the application and type of errors
allowed. In our case, the functional goal is to measure the
head circumference and the biparietal diameter. Outliers on
the boundaries do not affect the HC and the BPD much as
will be seen from the following results.

Tables IV and V show the computer-to-observer differences,
the interobserver differences, the Williams index, and the
percentage statistic for BPD, HC, and AC. It also shows
the correlation coefficient between the computer-generated
measurements and the average observer measurements of
BPD, HC, and AC. The upper limits of the Williams index

TABLE III
DIRECT COMPARISON OF THECOMPUTER-GENERATED BOUNDARIES TO THE FIVE

OBSERVERS’ BOUNDARIES FORFETAL SKULL AND ABDOMEN DETECTION. CO=
MEAN COMPUTER-TO-OBSERVER DISTANCE, IO = MEAN INTEROBSERVER

DISTANCE, WI = WILLIAMS INDEX, CI = CONFIDENCE INTERVAL

TABLE IV
COMPARISON OFCOMPUTER-GENERATED MEASUREMENTS TO THE

GOLD-STANDARD (MEAN OF THE FOUR OBSERVERS’ MEASUREMENTS)
USING ABSOLUTE DIFFERENCES. r = CORRELATION COEFFICIENT

TABLE V
WILLIAMS INDEX AND PERCENT STATISTIC FOR BPD, HC,

AND AC MEASUREMENT. WI = WILLIAMS INDEX, P
= PERCENT STATISTIC, CI = CONFIDENCE INTERVAL

CI for BPD, HC, and AC includes are all greater than 1.0.
The computer-generated BPD measurements differ from the
expert observers’ measurements by 0.71 mm, whereas the AC
measurements differ by 12.6 mm. Both measurements were
found to be comparable to the interobserver differences as
was illustrated in the computation of Williams index. Thus, the
measured interobserver variability provides the answer to the
question posed in the beginning; “How close to the observers’
measurements do the computer measurements have to be?”
Such an evaluation is not possible if only one observer’s data
are available.

As before, we compared three different variations of the
active contour algorithm for detection of the fetal skull by
computing the boundary distances of the computer-generated
boundaries to the pseudo ground-truth boundaries. Fig. 7
shows boxplots of the average boundary distances for the
three different algorithms. As is clear from the boxplots,
the Friedman rank sum test did not indicate any significant
difference between the performance of the three algorithms.
The mean boundary distances over all 30 images for the
three algorithms were 2.09, 1.98, and 2.06 mm, respectively.
Thus, in this case, any of the three algorithms can be chosen
without any significant difference in the performance. In
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Fig. 7. Boxplots of the average boundary distances from the com-
puter-generated boundary to the pseudo ground-truth boundaries for three
different algorithms for detecting the fetal skull. Friedman’s rank sum test
showed no significant difference in performance between the algorithms.

this case, since the contrast in the image was high to begin
with, prefiltering of the image did not adversely affect the
segmentation performance.

IV. CONCLUSIONS

In this paper, we have proposed a protocol for evaluat-
ing medical image segmentation algorithms where the only
information available is multiple observers’ hand-outlined
boundaries. We have applied this methodology and found it
useful in evaluating image segmentation algorithms for two
different ultrasound imaging applications. With this methodol-
ogy of using multiple observers’ outlines, we found new pieces
of information about the performance of the algorithms which
would not be possible with conventional evaluation techniques
using only one observer. We have also developed a method
for comparing the performance of two or more different
algorithms. We believe that the objective and quantitative eval-
uation and comparison of various medical image segmentation
algorithms using such a methodology on a standard large data
set is an important step toward their acceptance and clinical
use.

The segmentation evaluation methodology proposed in this
paper has several limitations which need to be addressed in
the future. One of the limitations is that this methodology
does not take the bias of the individual observers into con-
sideration. The method only considers the variance between
observers. Without an independent ground truth, consistent
observer bias is difficult to quantify. However, observer bias
on individual images dependent on quantifiable measures of
image quality or shading can be computed by considering
statistical models. Future work may involve formulating such
models, including building quantitative measures for image
quality. Another limitation of our method is that it does not
consider variability in the computer measurements. Typically,
segmentation algorithms involve human input for initialization.
Characterizing the algorithm performance with respect to the

variation in this human input is also important. Udupaet al.
[29] recently proposed methods to characterize this human
input with respect to the reduction in interobserver variability
and the reduction in overall time required for segmentation.
Future work may involve attempts to integrate these ideas into
the statistical framework proposed in this paper.

APPENDIX

In this appendix, we attempt to establish the triangle inequal-
ity for Hausdorff distances. Hausdorff distance is redefined
here. If the two curves are represented as sets of points

, , , , and , , , , where
each and is an ordered pair of the and coordinates of
a point on the curve, we define DCP for to the curve as

(16)

The Hausdorff distance between the two curves is defined as
the maximum of the DCP’s between the two curves [18]

(17)

By the triangle inequality for Euclidean distances

(18)

for any point on curve . By definition,
for all ; thus

(19)

for any point on curve and on curve . This equation
can also be written as

(20)

where is the closest point to on curve . Considering
the maximum distances we can write

(21)

Now, it can be seen by the definition of maximum distance
that ; thus, (21) can be
rewritten as

(22)

Similarly, we can show that

(23)

Combining (22) and (23), and rearranging terms, we get

(24)

which is the triangle inequality for the Hausdorff distance.



652 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 5, OCTOBER 1997

ACKNOWLEDGMENT

The authors would like to thank Dr. P. Sampson of the
Department of Statistics, Dr. D. Haynor of the Department of
Radiology, and Dr. P. Detmer of Department of Surgery of
the University of Washington for their valuable input.

REFERENCES

[1] L. H. Staib and J. S. Duncan, “Left ventricular analysis from cardiac
images using deformable models,”IEEE Comput. in Cardiol., Mag.,pp.
427–430, 1989.

[2] D. Adam, O. Hareuveni, and S. Sideman, “Semiautomated border
tracking of cine echocardiographic ventricular images,”IEEE Trans.
Med. Imag.,vol. MI-6, pp. 266–271, 1987.

[3] N. Friedland and D. Adam, “Automatic ventricular cavity boundary
detection from sequential ultrasound images using simulated annealing,”
IEEE Trans. Med. Imag.,vol. 8, pp. 344–353, 1989.

[4] J. Feng, W.-C. Lin, and C.-T. Chen, “Epicardial boundary detection
using fuzzy reasoning,”IEEE Trans. Med. Imag.,vol. 10, pp. 187–199,
1991.

[5] J. W. Klinger, C. L. Vaughan, T. D. Fraker, and L. T. Andrews,
“Segmentation of echocardiographic images using mathematical mor-
phology,” IEEE Trans. Biomed. Eng.,vol. 35, pp. 925–934, 1988.

[6] I. L. Herlin and N. Ayache, “Feature extraction and analysis methods
for sequences of ultrasound images,”Image and Vision Computing,vol.
10, pp. 673–682, 1992.

[7] E. R. Wolfe, E. J. Delp, C. R. Meyer, F. L. Bookstein, and A. J.
Buda, “Accuracy of automatically determined borders in digital two-
dimensional echocardiography using a cardiac phantom,”IEEE Trans.
Med. Imag.,vol. MI-6, pp. 292–296, 1987.

[8] W. Zwehl, R. Levy, E. Garcia, R. Haendchen, W. Childs, S. Corday, S.
Meerbaum, and E. Corday, “Validation of a computerized edge detection
algorithm for quantitative two-dimensional echocardiography,”Circ.,
vol. 68, pp. 1127–1135, 1983.

[9] C. H. Chu, E. J. Delp, and A. J. Buda, “Detecting left ventricu-
lar endocardial and epicardial boundaries by digital two-dimensional
echocardiography,”IEEE Trans. Med. Imag.,vol. 7, pp. 81–90, 1988.

[10] P. R. Detmer, G. Bashein, and R. W. Martin, “Matched filter identifica-
tion of left-ventricular endocardial borders in transesophageal echocar-
diograms,”IEEE Trans. Med. Imag.,vol. 9, pp. 396–404, 1990.

[11] E. A. Geiser, D. A. Conetta, M. C. Limacher, V. O. Stockton, L.
H. Olivier, and B. Jones, “A second-generation computer-based edge
detection algorithm for short-axis two-dimensional echocardiographic
images: Accuracy and improvement in interobserver variability,”J.
Amer. Soc. Echocardiol.,vol. 3, pp. 79–90, 1990.

[12] J. E. Perez, A. D. Waggoner, B. Barzilai, H. E. Melton, J. G. Miller,
and B. E. Sobel, “On-line assessment of ventricular function by auto-
matic boundary detection and ultrasonic backscatter imaging,”J. Amer.
College Cardiol.,vol. 19, pp. 313–320, 1992.

[13] B. F. Vandenberg, L. S. Ruth, P. Stuhlmuller, H. E. Melton, and D.
J. Skorton, “Estimation of left ventricular cavity area with an on-line,
semi-automated echocardiographic edge detection system,”Circ., vol.
86, pp. 159–166, 1992.

[14] C. deGraaf, A. Koster, K. Vincken, and M. Viergever, “A methodology
for the validation of image segmentation algorithms,” inProc. IEEE
Symp. Computer-Based Medical Systems,1992, pp. 17–24.

[15] A. Hammoude, “Computer-assisted endocardial border identification
from a sequence of two-dimensional echocardiographic images,” Ph.D.
thesis, Univ. Washington, Seattle, WA, 1988.

[16] V. Chalana, D. T. Linker, D. R. Haynor, and Y. Kim, “A multiple active
contour model for cardiac boundary detection in echocardiographic
sequences,”IEEE Trans. Med. Imag.,vol. 15, pp. 290–298, 1996.

[17] V. Chalana, T. C. Winter, D. R. Cyr, D. R. Haynor, and Y. Kim,
“Automatic fetal size measurements from ultrasound images,”Academic
Radiol., vol. 3, pp. 628–635, 1996.

[18] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Compar-
ing images using the Hausdorff distance,”IEEE Trans. Pattern Anal.
Machine Intell.,vol. 15, pp. 850–863, 1993.

[19] P. D. Sampson, F. L. Bookstein, F. H. Sheehan, and E. L. Bolson,
“Eigenshape analysis of left ventricular outlines from contrast ven-
triculograms,” in Advances in Morphometrics, Proceedings of NATO
Advanced Study Institute,L. Marcus, M. Corti, A. Loy, G. Naylor, and
D. Slice, Eds. New York: Plenum, 1995.

[20] P. Besl and N. McKay, “A method for registration of 3-D shapes,”IEEE
Trans. Pattern Anal. Machine Intell.,vol. 14, pp. 239–256, 1992.

[21] C. Bouma, W. Niessen, K. Zuiderveld, E. Gussenhoven, and M. Vierg-
erver, “Evaluation of segmentation algorithms for intravascular ultra-
sound images,”Visualization and Biomed. Computing,pp. 203–212,
1996.

[22] I. M. Anderson and J. C. Bezdek, “Curvature and tangential deflection
of discrete arcs: A theory based on the commutator of scatter matrix
pairs and its application to vertex detection in planar shape data,”IEEE
Trans. Pattern Anal. Machine Intell.,vol. PAMI-6, pp. 27–40, 1984.

[23] G. W. Williams, “Comparing the joint agreement of several raters with
another rater,”Biometrics,vol. 32, pp. 619–627, 1976.

[24] B. Efron and R. J. Tibshirani,An Introduction to the Bootstrap.Lon-
don, U.K.: Chapman and Hall, 1993.

[25] J. Bland and D. Altman, “Statistical methods for assessing the agreement
between two methods of clinical measurement,”Lancet, vol. 1, pp.
307–310, 1986.

[26] J. Cohen, “A coefficient of agreement for nominal scales,”Educational,
Psychological Meas.,vol. 20, pp. 37–46, 1960.

[27] K. J. Berry and P. W. Mielke, “A generalization of Cohen’s kappa agree-
ment measure to interval measurement and multiple raters,”Educational,
Psychological Meas.,vol. 48, pp. 921–933, 1988.

[28] W. W. Daniel, Applied Nonparametric Statistics.Boston, MA:
Houghton Mifflin, 1978.

[29] J. K. Udupa, D. Odhner, J. Tian, G. Holland, and L. Axel, “Automatic
clutter-free volume rendering for MR angiography using fuzzy connect-
edness,” inProc. SPIE Conf. Medical Imaging, 1997, vol. 3034, pp.
114-119.


