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A Methodology for Evaluation of Boundary
Detection Algorithms on Medical Images

Vikram Chalana and Yongmin Kim,¥ellow, IEEE

Abstract—Image segmentation is the partition of an image Thus, there is a compelling need for validation and comparison
into a set of nonoverlapping regions whose union is the entire of medical image segmentation algorithms (as well as any
image. The image is decomposed into meaningful parts which oher medical imaging algorithms) using standardized proto-

are uniform with respect to certain characteristics, such as gray Is. In thi thodol f luati
level or texture. In this paper, we propose a methodology for eval- cols. In this paper, we propose a methodology for evajuation

uating medical image segmentation algorithms wherein the only and comparison of boundary detection algorithms for medical
information available is boundaries outlined by multiple expert image segmentation.

observers. In this case, the results of the segmentation algorithm |deally, if the expected result were known, we would
can be evaluated against the multiple observers’ outlines. We have the gold-standard segmentation and we may compare
have derived statistics to enable us to find whether the computer- h . f h ith thi Id
generated boundaries agree with the observers’ hand-outlined the Segmentgtlon OUtPUI rom the computer with this go
boundaries as much as the different observers agree with each Standard. This comparison would be done for a large number
other. We illustrate the use of this methodology by evaluating of clinical data sets to test the hypothesis that the segmentation
image segmentation algorithms on two different applications in  output from the computer is not statistically different from the

ultrasound imaging. In the first application, we attempt tofind the - 4,614 standard. The reasons that make such a medical image
epicardial and endocardial boundaries from cardiac ultrasound tati luation task difficult foll
images, and in the second application, our goal is to find the fetal segmentation evajuation task difncult are as 1ollows.

skull and abdomen boundaries from prenatal ultrasound images. ¢ Lack of a definitive gold standard. In medical image
Index Terms—Average polygon, boundary detection, evalua- segmeqtation, typically, the_only standards available for

tion, gold-standard, image segmentation, polygon metrics, vali- comparison are segmentations produced by expert ob-

dation. servers. Such segmentations cannot be considered as gold
standards because they may suffer from observer bias and
inter- and intraobserver variability.

« Difficultly in defining a metric. A well-defined metric is
ESEARCHERS in the area of medical image analysis needed to compare the computer-generated segmentation
have long sought to extract contours of different body results to the segmentation results produced by expert

organs and tissue types from medical images of various observers. Such metrics are difficult to define for image

modalities. We believe that objective evaluation of these Segmentation because of the Comp|ex multidimensional
medical image segmentation algorithms on a large set of nature of segmentation data.

clinical data is one of the important steps toward establishinge | ack of standardized statistical protocols. Summarizing

validity and clinical applicability of an algorithm. However,  the results and making conclusions about the algorithm

very few medical image segmentation researchers have carried performance require statistical ana|ysis using standard
out such an evaluation of their algorithms on a Iarge number protoco|s_ Due to the lack of a go|d standard and d|ﬁ|cu|ty

of clinical data sets, e.g., [1]-[6]. Many researchers have in defining metrics, defining such a standard statistical
compared their algorithms on phantoms [7]imvitro studies protocol is difficult.

(8], [9], which are typically idealistic representations of real « Tedious and time-consuming data collection. Collecting a

data. Predicting performance on real data, based on such |arge number of data sets with user-defined segmentation

results, may be difficult. Even those who have evaluated their results is a very difficult task. For the expert observers,

algorithms on real clinical data have used different criteria and  hand-segmenting the images is tedious and time consum-
different statistics [10]-[13], making it difficult to compare ing

the performance of their algorithms against other algorithms.oﬂ1er researchers have addressed some of the issues iden-

_ , , _ tified above for medical image segmentation evaluation, but
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an evaluation method based on a pixel-by-pixel comparisonddtabase of medical images of different modalities stored with

pixels enclosed by two different boundaries. the various hand-segmented images. This methodology may
For addressing the problem of interobserver variability, De&lso prove useful for systematic selection of algorithms or the

mer et al. [10] have independently evaluated the interobservparameters of one algorithm for a particular application.

variability of the hand-segmentation process, but they were

not able to use these results in their statistical evaluation [I. METHODS

procedure. Most other researchers who have validated their

segmentation techniques on relatively large clinical data se{s Error Metric

have ignored the intra- or interobserver variability by compar-,The first decision for image segmentation evaluation is to

ing the co_mputer-generated boundaries to only one observ%rh%ose a parameter to be compared. Parameters derived from
hand-outlined boundaries [11], [13]. th

: : . ...the boundaries, such as the area enclosed or the perimeter, ma
In this paper, we address the first three problems |dent|f|8ge P y

b f icul fi . bound compared or the boundaries themselves may be compared
above for a particular case of image segmentation—boun %riYectIy. The derived parameters are usually application de-
detection of a single object from an image. First, we propos a

i 1 the dist bet ; eﬂ}dent, and often the accuracy of measuring these parameters
metric to measure the distance between a computer-gener e functional goal of image segmentation. In our cardiac

boundary and a hand-ou_tlmed b_oundary. Next, we pTOPOS%&mdary detection application, for example, the derived pa-
method based on averaging multiple expert observers Ou“"}%%eters that need to be compared are the areas enclosed by
]EO gene.rat'e ? golﬁ-zta?dardllk;oqnda? Next, we Propos§ugd ang-diastolic (ED) and end-systolic (ES) boundaries. In
ew stat|_s tica m_et ods for vall atmg the Computer-generatggr fetal head detection application, two parameters of clinical
boundaries against boundaries outlined by expert obServefs, ot are the HC and the BPD of the skull. For comparing the
Fhlnally, tohp_r ovide concre_ltle exar_gples? of thel_apphca_tlon (Herived parameters, we use the absolute difference between the
these techniques, we will consider its application In tWQq ter-generated parameter value and the user-measured
different domains, both related to finding organ boundaries o meter value as our distance metric. We have found cases
from_ ultrasound images. _In the first appllcanon, we Willyhere these computer-generated parameters agreed well with
°°T‘S'de_r a computer algorithm f_or dete_ctmg endocard!al a’ﬂ‘f’e manually measured parameters, but the boundaries from
epicardial contours on short-axis cardiac ultrasound Imaggfich these measurements were derived did not agree as well.

[16]. In the second application, we will consider an algorithyence comparing the boundaries directly will provide a more
for detecting the boundaries of the fetal head and abdom&ﬂngent evaluation of the segmentation scheme.

from prenatal ultrasound images that generates automati§ye define a metric to measure the distaneed, B)
b) y

measurements of diagnostically important parameters, Sucrb@ﬁmeen the two given curves} and 5. When common bio-
the biparietal dlameter (BPD), the head circumference (H@gical landmarks are available on the two curves, establishing
and abdomen cwcumferencg (AC) [17]. correspondence between the curves is straightforward. How-

We believe that comparing the result of the cOMpUtRler i the absence of landmarks, we first have to establish
segmentation to only one observers outline may not Dgiidicial correspondence between points on the two curves
sufficient, because a single observer’s boundary may be subject ihon measure the distance between the corresponding
to the observer's bias and intra- and interobserver variabifsinis It the two curves are represented as sets of points
ity. The methodology that we propose here compares the {ar, a0, -, am} and B = {by, ba, ---, bn}, where

computer-generated boundaries to the multiple expert Qbscpa; andb, is an ordered pair of the andy coordinates

servers’ boundaries to check whether the computer-genergled, sint on the curve, we define the distance to the closest
boundaries differ from the manually outlined boundaries %%int (DCP) fora, to the curveB as

much as the manually outlined boundaries differ from one .
another. d(a;, B) = min IIb; — al|. (1)

The methodology proposed in this paper will not onl ) i .
be useful for evaluation of individual image segmentatio he Hausdorff distance between the two curves is defined as

algorithms, but will also be applicable for comparison of'€ maximum of the DCP’s between the two curves [18]

different boundary detection algorithms (or the same algorithm _ ‘ ’
with different parameters) for the same application. In muche(A’ B) = max tnax {d(ai, B}, mgax {d(b;, A} ). (2)

of the research in the field of medical image segmentatlo.Fhe closest point distance associates each point on both curves

performance of new algorithms is usually reported on data S?ct)sa point on the other curve, and the Hausdorff distance

_that are I|r.n|t.ed In size and scope, without .systemat|c COMP&ds the largest distance between the associated points. Fig. 1
ison to existing or commonly known algorithms, and withou

studies revealing the types of data on which proposed methc?cri]s? Ws two examples of the Hausdorf distance between two

. : urves.
are eﬁegtlve, €. [1.]_[6] and [10]-{13]. Establlshment N fA‘ distance between the two curves is a metric if it satisfies
standardized evaluation protocols along with a database . .

; . R ) the following three properties:

images for different applications may help alleviate some 0 _

these problems. The data collection problem is not addressed) ¢(A, A) =0 and 6(_“4’ B) 2 0;

in this research; however, we believe that this problem can b ) o(A, B) = e(B, A);

solved by a multicenter research initiative to set up a Iarge3) (A, €) < e(A, B) +e(B, C).
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It is easy to see that the Hausdorff distance satisfies the
first two properties. The third property, which is the triangle
inequality, is also satisfied as shown in the Appendix.

Other metrics can also be defined to measure distances
between boundaries. One such metric is the root mean squared
(rms) radial distance between boundaries. This distance is
defined by first choosing a common centroid of the two bound-
aries from which radial lines are drawn projecting outward.
The intersection of these radial lines with the two curves
define the corresponding points, and the metric is defined as
the rms distance between all such points. Such a measure has
been previously used for evaluation of ultrasound boundary
detection techniques [3], [10]. The deficiency of this method
is that the boundaries are assumed to be star shaped, i.e., each
point of the boundary is visible from the centroid. Whereas
this assumption is satisfied for simple-shaped boundaries, it
fails for more complex-shaped boundaries. Another metric
which can be used to measure the distance between two
boundaries is to do a pixel-by-pixel comparison of those pixels
enclosed by the two different boundaries. First, binary images
are constructed for each boundary, wherein a pixel is nhonzero
if it is inside a boundary and zero if it is outside. Next, a
pixel-wise XOR operation is performed on the two images amgly. 1. Two examples illustrating the Hausdorff distance between the two
the average number of nonzero pixels in the resulting imaguves. The Hausdorff distance is measured along the thick line. The Hausdorff
defines a metrc for the o botndaries, Hammoude [15] ke, So Smpes i« et 5 gl weras e mean G
this method for evaluating an ultrasound image segmentati®8 second example is about 30 pixels.
method. The only shortcoming of this metric is that it is
computationally intensive.

for each: = 1, 2, --., m. Next, from each point ory, a
normal to the curve at that point is drawn and the inter-
section of this normal with each of th& input curves is

We now define a procedure to evaluate an average curgetermined. These points of intersection define another set
given two or more curves. This procedure is based on estw-correspondence between thd input curves. This new
lishing one-to-one correspondence between the points congirrespondence is averaged again to give a new average curve.
tuting two or more curves using a modification of the methodghe process is iterated until the average curve does not change
for shape registration described by Sampsoral. [19] and  any more. Typical averaging procedures converge in less than
Besl and McKay [20]. In the absence of a gold-standakfle jterations. An example of the averaging procedure is
contour, the average of the multiple observers’ curves can &sown in Fig. 2. The normal to a point on a digital curve
used as a gold standard. Other researchers have used a S"F%"é‘émputed by an efficient procedure based on computing the

averaging procedure to establish a gold-standard contour [Zdhenvectors of a 2 2 scatter matrix described by Anderson
Their approach is based on a shape-based interpolation metQag gezdek [22].

which is very similar to our method proposed below, except

o . This averaging procedure establishes correspondence be-
that our method explicitly establishes correspondence betwqmen two curves. The average distance between the corre-

the curves to be average_:d. Suc_h point-wise correspondence%ding points may also be used to measure the difference
ma(13n_y advante:gef?\/[as will b;dls;‘(/:ussed Xbelow. h with between the two given curves. This distance is different from
.Z/Iert] atse'ci curvesd i f2dth M, €ach wi 6/7\7 the Hausdorff distance defined in the last section. Whereas the
equidistant points, we need 1o Tind the average cgv € Hausdorff distance measures the distance between points that
es;abhsh the initial smgle-pomt_cor_respond_ence by Choosm%ﬁfer the most, this distance finds the mean distance between
gﬁlggc(#citr\zl?d?vm ?-hxivan?/\jgggr?o?e?ﬁénsted%siﬁfst ;;11 the two curves. In Fig. 1, the Hausdorff distances for the two
223 7T M P 1" examples are approximately the same; however, the average

Xs1, -, Xp1. For the remainingn — 1 points on the curve, . oo inhe two examples are very different. Although the
the correspondence is established sequentially, i.e., the point

X1 ON curveX; corresponds to point&ss, X3z, - -+, Xps2 0N av?ragel%lstarlc_e p;at(;/veen tv;/o ctL.Jrvetsﬁ cct)r_npu'?ed_ this Vﬁy’ IS
curvesiy, As, - -+, Ay, respectively. A point on the averageno a valid metric (it does not satisfy the triangle inequality),

curve is given by the centroid of thi&/ corresponding points itis still a useful d|stapce measure that we will use.
Correspondence points between the two curves also allow

1 M us to analyze the regional difference between the two curves.
Yi= 31 Z Xji (3) For example, we can compute the signed distances between
j=1 two curves to estimate the bias of an algorithm. Establishing

B. Averaging Curves
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aims to compare observer 0 with the reference groum of
observers. In our case, the observers 1 throughe the expert
observers who manually outline the boundaries on each of the
N images and the observer 0 is the computer algorithm which
automatically produces a boundary on each of shémages.

First, the proportion of agreements for each pair of observers
4, j' is computed, wherg and ;' index the observers from 0
ton. Let us denote this proportion ky; ;.. The average level
of agreements between the observer 0 and the reference group
of observers is computed by

1
POZE ZPO,j (4)

and the average level of agreements betweemtheference
observers by

2
Po=—=3 5 P (5)
w1 TG

The index

P
=0

o) 7. (6)

Fig. 2. Averaging of the two curves. (a) Shows the initial correspondengs used for comparing the observer 0 to the groupnof

and the average curve (thick line) using this correspondence and (b) the figal s ! :
correspondence and the average curve (thick line) obtained after five iteratioqgservers' If the upper limit of the confidence interval (CI)

of this index is greater than the value one, we can conclude

d ints al " ¢ iah diff N that the measurement data are consistent with the hypothesis
correspondence points aiso aflows us o weigh difterent Ty yhe jndividual observer agrees with the group at least as
gions of the curves differently while computing the distan

) . Sell as the group members agree with each other (i.e., the
measure; e.g., some regions in the curve are detected

tel dh be ai | oht MRfvidual observer is a reliable member of the group).
accurately and hence may be given farger weights. To generalize the Williams index to numeric as well as to

multivariate data, we redefine the proportion of agreements
between two observers to be equal to the reciprocal of the

For our statistical evaluation, we assume that multipleverage disagreements®), ;/, between the two observers
expert observers’ hand-outlined boundaries are available fod j/
evaluating the computer-generated boundaries. Our method- 1
ology compares the computer-generated boundaries to the Py = D @)
multiple expert observers’ boundaries to check whether the 3J
computer-generated boundaries differ from the manually ond the average disagreement between the two observers is
lined boundaries as much as the manually outlined boundarigsgined
differ from one another. N

We used two kinds of statistics to compare the computer D; = % Z e(Xij, Xijr) ®)

=1

C. Statistical Evaluation

generated boundaries to the multiple hand-outlined boundaries.

The first method is a modified version of Williams Index [23]

which computes the ratio between the average computergierex;; is a vector observation on subjeccby an observer
observer agreement and the average interobserver agreenserY. i the number of subjects, and the functiefx, y) is a
The second method computes the percentage of observatidigtance metric between two observatiorsandy.

for which the computer-generated boundary lies within the Using this new definition of the proportion of agreements,

interobserver range. we define the modified Williams index
1) Williams Index: Williams [23] proposed a method to n
. . 1 1
compare the agreement of an observer with the joint agreement — Z Do
of other observers; thus, helping to answer the question: “Does 7= im0 )
the individual observer agree with the set of observers as often o 2 Z 1 -
as a member of the set agrees with another member of the set?” n(n—1) &~ . L D; j
3 3F

This index was originally defined only for nominal data. We
have extended the Williams index to numeric multivariate datévith this modification, we can now compute an index similar
If (n + 1) observers numbered from 0 tomake measure- to the Williams index for any kind of numeric multivariate

ments (or ratings) onV subjects (or images), this statisticdata where we can define a distance maetfic ).
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The CI for this index is estimated using a jackknife non-
parametric sampling technique [24]. This sampling procedure ol
works by leaving out one of théV observations at a time
and computing the Williams index faV — 1 observations.
Denote the data set with thith observation removed BX ;).

We have N such data setX(;), X, --+, X(v) and N
estimates of the modified Williams indek, ,, 1(,,, - -+, {{ -

The jackknife estimate of the standard error in the computation
of the modified Williams index is given by

. N 1/2
se= {ﬁ >l - Ig,)]Q} (10)
i=1

where 05

1 N Fig. 3. Five observers’ and two computer-generated boundaries (or mea-
Ié.) = — Z Iéi). (11) surements) collapsed onto a two-dimensional plane. The points O1, 02, O3,
N o1 04, and O5 represent the five observer-outlined boundaries and the points C1

and C2 represent the two computer-generated boundaries. The shaded area

Thus, the 95% CI for the estimate of the modified Williami the convex polygon which bounds all the observer-outlined boundaries.
index is The computer-generated boundary C1 lies inside this convex polygon and is

considered to be within the interobserver range, whereas C2 lies outside this
range.

IE) + Z20.95 S€ (12)

where zg95 = 1.96 is the 95th percentile of the standardbbserver-curves points, we can say that the computer-
normal distribution. generated curve lies within the interobserver range.

This modified Williams index may be used both for evalu- An approximate, but quick and easy, way to test whether a
ating the direct distances between the computer-generated poiht C lies in the convex hull of a set of pointg;, O, - - -
manually outlined boundaries and for evaluating the diffe,,, is to just check whether
ences between the parameters derived from the boundaries,
such as the area or the perimeter. max{e(C, O} < max {e(0;, O;)} (13)

2) Percent Statistic:Our second statistical technique i
computes the percentage of cases for which the computee:, whether the maximum computer-to-observer distance is
generated boundary (or measurement) lies within the interdbss than or equal to the maximum interobserver distance.
server range. For parameters derived from the boundaries, ti&ng such a test, we can compute the statistic of interest, the
percentage can be easily computed. For each observation,pgecentage of observations for which the computer-generated
just have to test whether the computer-generated measurenienindary lies within the interobserver range. Under the hy-
is less than the largest and greater than the smallest obserpethesis that the +1 observers produce boundaries which are
made measurement. For multidimensional measuremers@mples from the same distribution, the expected probability
such as the boundaries, establishing whether the computéeat one observer’'s boundary lies outside the range of the other
generated boundary lies within the interobserver range riobservers’ boundaries is Z41). Thus, under the hypothesis
not straightforward. The key question is how to define whé#ttat the computer-generated boundaries and the observer-
it means to be inside the interobserver range. We defineoatlined boundaries are samples from the same distribution,
computer-generated boundary to be within the interobsentbe expected percent of times that the computer-generated
range if it lies within a multidimensional convex polyhedrorboundaries lie within the interobserver range isA@Q0 + 1).
formed by the observer-outlined boundaries. Fig. 3 illustrat€®r three human observers, this expected percentage is 75%;
this concept in a simplified way. The manual outlines arfer four observers, it is 80%; and for five observers, it is 83%.
points in a 2n-dimensional Euclidean space which ardo test whether the data is consistent with the hypothesis, we
represented in the figure as points in a two-dimensionedmpute the 95% CI of the percentage statistic and check
space. If the convex hull of the points representing thehether it includes the expected value. If the data is not
manual outlines includes the point representing the computeonsistent with the hypothesis that the computer-generated
generated boundary, we say that the computer-generabedindaries and observer-outlined boundaries are samples from
boundary is within the interobserver range. There are othée same distribution, then the CI will not include the expected
possible ways to establish whether the computer-generatedue.
boundary lies within the interobserver range. One method isWhereas the Williams index gives information about av-
to first establish correspondence points between all observerages because it computes the ratio between the average
outlined curves and the computer-generated curve. Next, a@mputer-to-observer agreement and the average interobserver
can count the number of points on the computer-generategreement, the percentage statistic gives information about
curve lying between the corresponding observer-curve pointerresponding relationships between the computer measure-
If a majority of the computer-curve points are within thements and the observer measurements. The percent statistic is
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useful because it tells us the number of times that the algorittare considered significantly different at a levelf
is successful, i.e., the number of times it produces boundaries

which are within the interobserver range; however, the 95% B — Rir| > Za/nhes) NE(k +1)
Cl test for the percentage statistic is a very stringent test. - 6

3) Classical Techniqueslf we are to compare the parame-where z, 111y is the z-value corresponding to the standard
ters derived from the boundaries only, some classical statistigakrmal distribution.
techniques may be used as well. The most-commonly used
technique is the linear regression. The parameters derived frempata Used
the computer-generated boundaries are correlated with thos
derived from the hand-outlined boundaries.

Recently, Bland and Altman [25] have proposed the us
another technique to measure the agreement between two
ables. Their method plots the pair-wise differences between )
two variables versus the best estimate of their true value. IR actl\;]e contg.ur n;odelj [16]d’ [17]'. licati h
our case, the true value may be taken to be the average of tngor the cardiac boundary detection application, we have

parameter values derived from the hand-outlined boundari Sprt—aX|s echocardiogram sequences from 44 randomly se-

This method tests for any proportional error or bias in th(‘:?Ct.eOI patients coll_ected during routine sonog_raph|c exami-
measurements. nation. Four experienced observers hand-outlined the endo-

Statistics on interobserver variability were measured bé?rdmm (inner boundary) and the epicardium (outer boundary)

calculating the average of all absolute interobserver diffe the left ventricle on the ED and ES images in each

ences. To measure reliability, we calculated Cohen’s kap gauence. The computer algorithm generated the epicardium

[26], which is a coefficient of agreement between two o ind endocardium for the entire sequence [16]. This algorithm

servers, corrected for agreement by chance. This coeffici %9“"95 the userto d_rawgrough initial boundary representing
was originally developed for nominal data, but we used t e end-diastolic epicardial boundary. We showed that the

modifications described by Berry and Mielke [27] to evaluat%gorithm Is very robust to vari'ation's in this initial bpundary
reliability of multiple observers for numerical data. 6]. First, we compared the epicardial and endocardial bound-

aries directly to the hand-outlined boundaries using techniques
described above. Next, we compared the derived parameters,
the enclosed area within the epicardial and the endocardial
Often there is a need to compare the results of applyibgundaries.
two or more different algorithms on the same data set. WeFor the fetal head and abdomen detection application,
propose the use of the average of the observer boundaries (tlee have images of the fetal head and abdomen from 30
pseudo ground truth) as the basis for the comparison. Ti@domly selected patients going through routine sonographic
computer-generated boundaries from the different algorithragsamination. Four experienced observers outlined the fetal
are compared to these ground-truth boundaries resulting inskull and abdomen and measured the BPD, HC, and AC on
error measurement for each algorithm and for each image. T#ach image. The computer algorithm also generated the fetal
algorithm which results in a smaller overall error is preferregkull and the abdomen boundary and the BPD, HC and AC
over the other algorithms. The comparison of the errors figeasurements [17]. This algorithm requires the user to mark a
carried out using Friedman’'s two-way analysis of variangaoint near the center of the organ of interest. We showed that
by ranks [28]. This is a nonparametric procedure, involvintpe algorithm is very robust to variations in this initial point
ranking of the errors due to the different algorithms for eadd7]. First, we compared the computer-generated boundary
data set. The null hypothesis is that each algorithm performisectly to the hand-outlined ones. Next, we compared the HC,
identically and, thus, the average rank for each algorithm ov@PD, and AC measurements derived from the skull boundary.
the entire data set is the same. The test statistic is

(15)

$Ve illustrate the use of the methodology described above
e %} validate the results of boundary detection in two different

\%W_)Iications, both in ultrasound imaging. In both cases, the
&%undaries were detected using a computer algorithm based

D. Comparison of Algorithms

X Ill. RESULTS AND DISCUSSION
12
2 2
=2 STRI_3N(k+1)  (14)

M NE(k+1) ; ! A. Cardiac Boundary Detection
Fig. 4 shows two sample short-axis cardiac images at end
where . diastole along with the hand-outlined and computer-generated
N number of data sets (or images); epicardial and endocardial boundaries. Table | shows the Haus-
k number of algorithms; dorff distance and the average distance by directly comparing
R;  sum of ranks for the algorithr. the computer-generated boundaries to the four observers’

The statistic is compared to thg? distribution of & — 1 hand-outlined boundaries averaged over the 44 data sets. Table
degrees of freedom to determine whether the difference lialso shows the measured Williams index and the percentage
ranks can be attributed to chance. If the null hypothesssatistic and their CI's.

is rejected, i.e., a difference in the ranks is significant, the Table Il shows the computer-to-observer differences, the
different algorithms are compared using a multiple comparisamterobserver differences, Williams index, and the percent
procedure described by Daniel [28]. The algorithjnand j° statistics for the epicardial and endocardial areas. It also shows
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Fig. 4. (a) and (b) Two sample short-axis cardiac images with the hand-outlined epicardial and endocardial boundaries. (c) and (d) The same images

with computer-generated epicardial and endocardial boundaries.

the correlation coefficient between the computer-generatgenerated boundaries differ from the hand-outlined boundaries
measurements and the average observer measurements of ti@smuch as the hand-outlined boundaries differ from one
derived parameters. another. For endocardial boundaries, this is not the case,
From these results, we can clearly see why it is important kmwever. Table | also shows that although the upper limit
compare the computer’s measurements to multiple observast’the 95% Williams index ClI is greater than the expected
measurements. In Table |, we see that the mean computervtatue of 1.0 for the epicardial boundaries in both the Hausdorff
observer difference is almost the same for both the epicardiidtance and the average distance, the upper limit of the 95%
and endocardial boundaries; however, the Williams index asthtistic Cl for Hausdorff distance does not exceed its expected
the percent statistic are very different for epicardium andilue of 80%.
endocardium. This is because the interobserver variability forFrom Table Il, we can derive similar inferences. Here, the
outlining the epicardium is much larger than for outlining thenean computer-to-observer difference is smaller for endocar-
endocardium. The Williams index for epicardium boundargtial boundaries than for the epicardial boundaries. However,
detection is very close to one, indicating that the computahe upper limit of the Williams index CI does not exceed 1.0
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TABLE |
DIReCT COMPARISON OF THECOMPUTER-GENERATED BOUNDARIES TO THE FOUR OBSERVERS'
BOUNDARIES FORCARDIAC BOUNDARY DETECTION. THE EXPECTED VALUE OF WILLIAMS INDEX (WI)
Is 1.0 AND THE EXPECTED VALUE OF THE PERCENT STATISTIC IS 80%. COD= MEeAN COMPUTER
TO OBSERVER DIFFERENCE |OD = MEAN INTEROBSERVERDIFFERENCE P = PERCENT STATISTIC

COD (mm) | IOD {(mm) | WI 95% CI P(%) 95% CI
Hausdorff 8.79 8.31
Distance (Epi.) (0 =333)| (0 =2.62) | 095 | (0.88,1.01) | 61.4 | (52.7, 70.0)
Average 3.53 3.79
Distance (Epi.) | (o =1.33) | (o =1.53) | 1.07 | (1.06,1.08) | 77.3 | (69.8, 84.6)
Hausdorff 8.94 6.79
Distance (Endo.) | (¢ =2.93) | (¢ =2.11) | 0.75 | (0.71,0.81) | 32.9 | (24.7, 41.2)
Average 3.88 2.67
Distance (Endo.) | (¢ =1.53) | (¢ = 0.88) | 0.69 | (0.68,0.70) | 30.7 | (22.5, 38.8)

TABLE 1
COMPARISON OF THE COMPUTER-GENERATED EPICARDIAL AND ENDOCARDIAL AREAS TO THE FOUR
OBSERVERS' MEASUREMENTS FORCARDIAC BOUNDARY DETECTION. = CORRELATION COEFFICIENT

COD (C7rL2) 10D (Cm2) WI 95% CI P(%) 95% CI r
Epi. 3.26 4.27
area (¢ =3.23) | (o0 =4.54) | 1.30 | (1.29, 1.32) 85.2 | (78.9,91.5) | 0.95
Endo. 2.43 1.45
area (o =1.71) | (o =1.52) | 0.59 | (0.58, 0.60) 30.7 | (22.5,38.9) | 0.91

for the endocardium as it does for the epicardium because the
interobserver variability is much larger for epicardial areas.
We can see that the correlation coefficient is fairly high for —
both the endocardial and epicardial areas.

We can clearly see that using only the statistics like the mean
computer-to-observer difference and the correlation coefficient
are not indicative of how well an algorithm performs because
they do not establish a guideline for how good the statistics
have to be. Measurement of the interobserver variability estab-
lishes such a guideline and can be used as a clinically useful
standard to measure the performance of image segmentation
algorithms.

We used a method described in the last section to compare
the performance of different algorithms on the same task. o
We compared three different variations of the active con- e
tour algorithm for detection of the endocardial boundary by Algo. 1 Algo 2 Algo 3
computing the boundary distances of the computer-generated
boundaries to the pseudo ground-truth boundaries (eStagT 5. Boxplots of the average boundary distances from the com-
lished by averaging the four observers’ boundaries). The thngaeer-generated boundary to the pseudo ground-truth boundaries for three

i ot ; i ifferent algorithms for detecting the endocardial boundary. The box
different variations of the algonthm represent the dlﬁererﬁ’ﬂ resents the middle half of the data, the whiskers extend to the extreme

. . . ... TIe
preprocessing methods applied to the image before it is 'nF?/'eFﬁJes and the white line inside the box represents the median. Friedman'’s
to the active contour algorithm. In the first method, the imagenk sum test showed a significant difference between the three algorithms.

was prefiltered with a 5% 5 Gaussian kernel while the image{\]/lultiple comparison showed that the third algorithm performed consistently
] . . , better than the other two.

was filtered via a grayscale morphological opening operation
with a 5-pixel-diameter disk in the second method. In the third
method, no prefiltering was applied to the image. the others. We concluded that prefiltering the image, in this

We computed the average distance between the boundafi@ge: removed some low contrast information that is essential
instead of the Hausdorff distance, and boxplots of thef@ accurate segmentation of the boundaries.
distances for the three algorithms are shown in Fig. 5. The
Friedman’s rank sum test indicated a significant differend& Fetal Size Measurements
between the performance of the three algorithms: (0.001). Fig. 6 shows two of the 30 images and the automatically
Multiple comparison showed that the third algorithm condetected skull boundaries. The line used to measure the BPD
sistently outperformed the other two algorithms. The meds also shown. Table Il shows the Hausdorff distance and
boundary distances over all 44 images for the three algorithith&e average distance by directly comparing the computer-
were 3.87, 4.58, and 3.61 mm, respectively. Thus, in this cagenerated boundaries to the four observers’ hand-outlined
the third algorithm (with no prefiltering) was preferred oveboundaries. The upper limit of the 95% Williams index CI for

10

Average Distance (mm)
6

4
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TABLE 1l
DiRecT CoMPARISON OF THECOMPUTER GENERATED BOUNDARIES TO THE FIVE
OBSERVERS' BOUNDARIES FORFETAL SKULL AND ABDOMEN DETECTION. CO =
MEAN ComMPUTERTO-OBSERVER DISTANCE, |O = MEAN INTEROBSERVER
Distance, WI = WiLLIAMS INDEX, Cl = CONFIDENCE INTERVAL

OO dmm) | 10 (mm) | W | %5 Ol
| ©O(mm) | 0 (mm] )| Wi] 9%
Fekal
Hesd
Hausdarll 16T TR

e | o= 206 | e 1.5} | B | {000, 5G]
Tim 1.93
{or = 0.08] | o= 082] | 0.02 | {081, 1.

LT ]

“Hanisd BRs | OAE e
[rstance | L 6.20] | {o = 6.2} | 0.61 | {049, 0.73)
A verage 405 LR
|E'|'\-'||-. e |fr=3 14] | o = d.d5] | 0.68 :_'l.'_ll 1.Ed]

TABLE IV

COMPARISON OF COMPUTER-GENERATED MEASUREMENTS TO THE
GoLD-STANDARD (MEAN OF THE FOUR OBSERVERS' MEASUREMENTY
UsING ABSOLUTE DIFFERENCES = CORRELATION COEFFICIENT

[ CO (mm) [ CO (%) [ IO (mm) 10 (%) | T
0.71 T.19 0.83 133

BPD | (o = 0.61) | (o0 = 0.85) | (¢ = 0.66) | (¢ = 0.82) | 0.999
572 207 846 354

HC | (¢ =5.27) | (o = 1.67) | (¢ = 3.28) | (0 = 0.99) | 0.996
176 6.35 1162 5.65

AC | (0 =9.48) | (0 = 5.26) | (6 = 10.6) | (o = 6.53) | 0.974

TABLE V
WILLIAMS INDEX AND PERCENT STATISTIC FOR BPD, HC,
AND AC MEASUREMENT. WI = WiLLIAMS INDEX, P
= PERCENT StATISTIC, Cl = CONFIDENCE INTERVAL

®) WI 95% CI P 95% CI
BPD | 1.07 | (1.02,1.11) | 48.5 | (33.9, 63.1)
Fig. 6. Two images where the algorithm detected the skull boundary and HC | 1.12 | (1.09,1.41) | 66.7 | (56.3, 83.1)
measured the BPD and HC. AC }0.82} (0.61,1.03) | 51.4 | (37.3, 65.5)

the average distance measure for the head is greater thanGhdor BPD, HC, and AC includes are all greater than 1.0.
value 1.0, thus, indicating that the computer-generated bouridie computer-generated BPD measurements differ from the
aries agree as much with the observer-outlined boundarépert observers’ measurements by 0.71 mm, whereas the AC
as the observer-outlined boundaries agree with one anotheeasurements differ by 12.6 mm. Both measurements were
However, the upper limit of the Hausdorff distance Cl is lefound to be comparable to the interobserver differences as
than one. As shown in Fig. 1, the Hausdorff distance and tias illustrated in the computation of Williams index. Thus, the
average distance measure two different quantities. The fas¢asured interobserver variability provides the answer to the
that the Hausdorff distance between the computer-generatgeestion posed in the beginning; “How close to the observers’
boundaries and the hand-outlined boundaries is larger thapasurements do the computer measurements have to be?”
the average distance shows that even though the boundaBash an evaluation is not possible if only one observer’s data
lie generally close to each other, there are outliers on thee available.
boundaries (as in Fig. 1) on some images. The choice of theAs before, we compared three different variations of the
measure to use depends on the application and type of ermetive contour algorithm for detection of the fetal skull by
allowed. In our case, the functional goal is to measure tlieemputing the boundary distances of the computer-generated
head circumference and the biparietal diameter. Outliers baundaries to the pseudo ground-truth boundaries. Fig. 7
the boundaries do not affect the HC and the BPD much ssows boxplots of the average boundary distances for the
will be seen from the following results. three different algorithms. As is clear from the boxplots,
Tables IV and V show the computer-to-observer differencethie Friedman rank sum test did not indicate any significant
the interobserver differences, the Williams index, and ttdifference between the performance of the three algorithms.
percentage statistic for BPD, HC, and AC. It also showBhe mean boundary distances over all 30 images for the
the correlation coefficient between the computer-generatimlee algorithms were 2.09, 1.98, and 2.06 mm, respectively.
measurements and the average observer measurement¥hos, in this case, any of the three algorithms can be chosen
BPD, HC, and AC. The upper limits of the Williams indexwithout any significant difference in the performance. In
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3

Average Distance (mm)

2

variation in this human input is also important. Udugiaal.

[29] recently proposed methods to characterize this human
input with respect to the reduction in interobserver variability

and the reduction in overall time required for segmentation.
Future work may involve attempts to integrate these ideas into
the statistical framework proposed in this paper.

APPENDIX

In this appendix, we attempt to establish the triangle inequal-
ity for Hausdorff distances. Hausdorff distance is redefined
here. If the two curves are represented as sets of points

A = {a11 az, * arn}v andB = {bly b21 R} b'rn}v Where
eacha; andb; is an ordered pair of the andy coordinates of
a point on the curve, we define DCP far to the curvel5 as

Algo. 1 Algo 2 Algo 3

d(a;, B) = min|/b; — a;. (16)
J

Fig. 7. Boxplots of the average boundary distances from the com-

puter-generated boundary to the pseudo ground-truth boundaries for thidee Hausdorff distance between the two curves is defined as

different algorithms for detecting the fetal skull. Friedman’s rank sum teghe maximum of the DCP’s between the two curves [18]
showed no significant difference in performance between the algorithms.

e(A, B) = max {max[d(ai, B)], max[d(b;, .A)]} a7
this case, since the contrast in the image was high to begin ‘ !
with, prefiltering of the image did not adversely affect the By the triangle inequality for Euclidean distances

segmentation performance.
llai — <l < |lai = || + [[bx — <5l (18)

IV. CONCLUSIONS for any point by on curve B. By definition, d(a;, C) <

In this paper, we have proposed a protocol for evaludta; — c;|| for all j; thus
ing medical image segmentation algorithms where the only ‘ o o
information available is multiple observers’ hand-outlined d(ai, €) < lJai = byl +[[bx — ;] (19)
boundaries. We have applied this methodology and foundtd any pointc; on curveC andb;, on curves. This equation
useful in evaluating image segmentation algorithms for twoyn also be written as
different ultrasound imaging applications. With this methodol-
ogy of using multiple observers’ outlines, we found new pieces d(a;, C) < d(a;, B) + d(by,, C) (20)
of information about the performance of the algorithms which ] ) o
would not be possible with conventional evaluation techniquid'ereby; is the closest point ta; on curves5. Considering
using only one observer. We have also developed a met{B§ Mmaximum distances we can write

for comparing the performance of two or more different dlas. OV < d(a.. B d(bw. . C 21
algorithms. We believe that the objective and quantitative evalI-n;LX{ (2, )} < max{d(ai, B)} + max{d(bu,, C)}- (21)

uation and comparison of various medical image segmentati,qBW, it can be seen by the definition of maximum distance

algorithms using such a methodology on a standard large dg{g; maxy{d(br, C)} > max;{d(by,, C)}; thus, (21) can be
set is an important step toward their acceptance and clini¢g| ritten as - !

use.
The segmentation evaluation methodology proposed in thismax{d(a;, C)} < max{d(a;, B)} + max{d(by, C)}. (22)

paper has several limitations which need to be addressed in" ! b

the future. One of the limitations is that this methodolog®imilarly, we can show that

does not take the bias of the individual observers into con-

sideration. The method only considers the variance betweéﬁ?x{d(civ A< mflx{d(civ B)} + m,?x{d(bkv A} (23)

observers. Without an independent ground truth, consistent | .

observer bias is difficult to quantify. However, observer bias®MpPining (22) and (23), and rearranging terms, we get

on individual images dependent on quantifiable measures of

image quality or shading can be computed by considering max (meX{d(ai’ i miax{d(ci’ A)})

statistical models. Future work may involve formulating such

models, including building quantitative measures for image < max <miax{d(ai’ B)}’mﬂx{d(bk’ A)}>
quality. Another limitation of our method is that it does not

consider variability in the computer measurements. Typically, + max <m’§xx {d(by, O)}, mle{d(Ci, B)}) (24)

segmentation algorithms involve human input for initialization.
Characterizing the algorithm performance with respect to thehich is the triangle inequality for the Hausdorff distance.



652 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 5, OCTOBER 1997

ACKNOWLEDGMENT

the University of Washington for their valuable input.

[15]

REFERENCES

[1] L. H. Staib and J. S. Duncan, “Left ventricular analysis from cardiac

images using deformable model$£EE Comput. in Cardiol., Magpp.
427-430, 1989.

[2] D. Adam, O. Hareuveni, and S. Sideman, “Semiautomated border

tracking of cine echocardiographic ventricular image§EE Trans.
Med. Imag.,vol. MI-6, pp. 266-271, 1987.
[3] N. Friedland and D. Adam, “Automatic ventricular cavity boundary

detection from sequential ultrasound images using simulated annealing,”

IEEE Trans. Med. Imaguyvol. 8, pp. 344-353, 1989.

[1
[4] J. Feng, W.-C. Lin, and C.-T. Chen, “Epicardial boundary detection

using fuzzy reasoning,JEEE Trans. Med. Imagyol. 10, pp. 187-199,
1991.
[5] J. W. Klinger, C. L. Vaughan, T. D. Fraker, and L. T. Andrews,

“Segmentation of echocardiographic images using mathematical mgp(]

phology,” IEEE Trans. Biomed. Engvol. 35, pp. 925-934, 1988.

[6] I. L. Herlin and N. Ayache, “Feature extraction and analysis methodg1]

for sequences of ultrasound imagekyiage and Vision Computingpl.
10, pp. 673-682, 1992.
[7] E. R. Wolfe, E. J. Delp, C. R. Meyer, F. L. Bookstein, and A. J.

Buda, “Accuracy of automatically determined borders in digital two{22]

dimensional echocardiography using a cardiac phantéBEE Trans.
Med. Imag.,vol. MI-6, pp. 292-296, 1987.

[8] W. Zwehl, R. Levy, E. Garcia, R. Haendchen, W. Childs, S. Corday, S.
Meerbaum, and E. Corday, “Validation of a computerized edge detecti¢pg]

algorithm for quantitative two-dimensional echocardiograph@itc.,
vol. 68, pp. 1127-1135, 1983.

[
[9] C. H. Chu, E. J. Delp, and A. J. Buda, “Detecting left ventricu-
lar endocardial and epicardial boundaries by digital two-dimension{25s]

echocardiography,lEEE Trans. Med. Imagyol. 7, pp. 81-90, 1988.

[10] P. R. Detmer, G. Bashein, and R. W. Martin, “Matched filter identifica-
tion of left-ventricular endocardial borders in transesophageal echoc§e6]

diograms,”IEEE Trans. Med. Imagyol. 9, pp. 396-404, 1990.

[11] E. A. Geiser, D. A. Conetta, M. C. Limacher, V. O. Stockton, L.[27]
H. Olivier, and B. Jones, “A second-generation computer-based edge
detection algorithm for short-axis two-dimensional echocardiographic

[28]

images: Accuracy and improvement in interobserver variability,”
Amer. Soc. Echocardiolyol. 3, pp. 79-90, 1990.

[12] J. E. Perez, A. D. Waggoner, B. Barzilai, H. E. Melton, J. G. Miller[29]
and B. E. Sobel, “On-line assessment of ventricular function by auto-

matic boundary detection and ultrasonic backscatter imagihg¥mer.
College Cardiol.,vol. 19, pp. 313-320, 1992.

(23]

The authors would like to thank Dr. P. Sampson of the
Department of Statistics, Dr. D. Haynor of the Department of
Radiology, and Dr. P. Detmer of Department of Surgery ot

B. F. Vandenberg, L. S. Ruth, P. Stuhimuller, H. E. Melton, and D.
J. Skorton, “Estimation of left ventricular cavity area with an on-line,
semi-automated echocardiographic edge detection systeig., vol.

86, pp. 159-166, 1992.

4] C. deGraaf, A. Koster, K. Vincken, and M. Viergever, “A methodology

for the validation of image segmentation algorithms,”Rroc. IEEE
Symp. Computer-Based Medical Systeb®92, pp. 17-24.

A. Hammoude, “Computer-assisted endocardial border identification
from a sequence of two-dimensional echocardiographic images,” Ph.D.
thesis, Univ. Washington, Seattle, WA, 1988.

V. Chalana, D. T. Linker, D. R. Haynor, and Y. Kim, “A multiple active
contour model for cardiac boundary detection in echocardiographic
sequences,[EEE Trans. Med. Imagyol. 15, pp. 290-298, 1996.

1 V. Chalana, T. C. Winter, D. R. Cyr, D. R. Haynor, and Y. Kim,

“Automatic fetal size measurements from ultrasound imagésgtemic
Radiol., vol. 3, pp. 628-635, 1996.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Compar-
ing images using the Hausdorff distancéEE Trans. Pattern Anal.
Machine Intell.,vol. 15, pp. 850-863, 1993.

] P. D. Sampson, F. L. Bookstein, F. H. Sheehan, and E. L. Bolson,

“Eigenshape analysis of left ventricular outlines from contrast ven-
triculograms,” in Advances in Morphometrics, Proceedings of NATO
Advanced Study Instituteé, Marcus, M. Corti, A. Loy, G. Naylor, and

D. Slice, Eds. New York: Plenum, 1995.

P. Besl and N. McKay, “A method for registration of 3-D shapéEEE
Trans. Pattern Anal. Machine Intellvol. 14, pp. 239-256, 1992.

C. Bouma, W. Niessen, K. Zuiderveld, E. Gussenhoven, and M. Vierg-
erver, “Evaluation of segmentation algorithms for intravascular ultra-
sound images,Visualization and Biomed. Computingp. 203-212,
1996.

I. M. Anderson and J. C. Bezdek, “Curvature and tangential deflection
of discrete arcs: A theory based on the commutator of scatter matrix
pairs and its application to vertex detection in planar shape d&gE
Trans. Pattern Anal. Machine Intellvol. PAMI-6, pp. 27-40, 1984.

G. W. Williams, “Comparing the joint agreement of several raters with
another rater,’Biometrics,vol. 32, pp. 619-627, 1976.

B. Efron and R. J. Tibshiranén Introduction to the Bootstrap.Lon-
don, U.K.: Chapman and Hall, 1993.

J. Bland and D. Altman, “Statistical methods for assessing the agreement
between two methods of clinical measuremeritgncet, vol. 1, pp.
307-310, 1986.

J. Cohen, “A coefficient of agreement for nominal scal&dtcational,
Psychological Measwyol. 20, pp. 37-46, 1960.

K. J. Berry and P. W. Mielke, “A generalization of Cohen’s kappa agree-
ment measure to interval measurement and multiple ratédstational,
Psychological Measyol. 48, pp. 921-933, 1988.

W. W. Daniel, Applied Nonparametric Statistics.Boston, MA:
Houghton Mifflin, 1978.

J. K. Udupa, D. Odhner, J. Tian, G. Holland, and L. Axel, “Automatic
clutter-free volume rendering for MR angiography using fuzzy connect-
edness,” inProc. SPIE Conf. Medical Imagingl997, vol. 3034, pp.
114-119.



