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Abstract—Unsupervised image segmentation is an important component in many image understanding algorithms and practical
vision systems. However, evaluation of segmentation algorithms thus far has been largely subjective, leaving a system designer to
judge the effectiveness of a technique based only on intuition and results in the form of a few example segmented images. This is
largely due to image segmentation being an ill-defined problem—there is no unique ground-truth segmentation of an image against
which the output of an algorithm may be compared. This paper demonstrates how a recently proposed measure of similarity, the
Normalized Probabilistic Rand (NPR) index, can be used to perform a quantitative comparison between image segmentation
algorithms using a hand-labeled set of ground-truth segmentations. We show that the measure allows principled comparisons between
segmentations created by different algorithms, as well as segmentations on different images. We outline a procedure for algorithm
evaluation through an example evaluation of some familiar algorithms—the mean-shift-based algorithm, an efficient graph-based
segmentation algorithm, a hybrid algorithm that combines the strengths of both methods, and expectation maximization. Results are
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presented on the 300 images in the publicly available Berkeley Segmentation Data Set.

Index Terms—Computer vision, image segmentation, performance evaluation of algorithms.

1 INTRODUCTION

MAGE segmentation is the problem of partitioning an image

into its constituent components. In wisely choosing a
partition that highlights the role and salient properties of each
component, we obtain a compact representation of an image
in terms of its useful parts. Depending on the end application,
the problem of segmentation can be subjective or objective.
For example, the problem of processing an MRI image to
separate pixels lying on the ventricle from everything else has
a unique solution and is well-defined. This paper focuses on
the more general problem of dividing an image into salient
regions or “distinguished things” [1], a task which is far more
subjective. Since there are as many valid solutions as
interpretations of the image, it is an ill-defined problem.

The ill-defined nature of the segmentation problem
makes the evaluation of a candidate algorithm difficult. It
is tempting to treat segmentation as part of a proposed
solution to a larger vision problem (e.g., tracking, recogni-
tion, image reconstruction, etc.), and evaluate the segmen-
tation algorithm based on the performance of the larger
system. However, this strategy for comparison can quickly
become unfair and, more seriously, inconsistent when
evaluating algorithms that are tailored to different applica-
tions. Furthermore, there are several properties intrinsic to
an algorithm that are independent of an end-application.
One example of a particularly important such property is an
algorithm’s stability with respect to input image data as well
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as across its operational parameters. Such properties need
to be measured separately to be meaningful.

In the search for an independent ground-truth required
by any reliable measure of performance, an attractive
strategy is to associate the segmentation problem with
perceptual grouping. Much work has gone into amassing
hand-labeled segmentations of natural images [1] to
compare the results of current segmentation algorithms to
human perceptual grouping, as well as understand the
cognitive processes that govern grouping of visual elements
in images. Yet, there are still multiple acceptable solutions
corresponding to the many human interpretations of an
image. Hence, in the absence of a unique ground-truth
segmentation, the comparison must be made against the set
of all possible perceptually consistent interpretations of an
image, of which only a minuscule fraction is usually
available. In this paper, we propose to perform this
comparison using a measure that quantifies the agreement
of an automatic segmentation with the variation in a set of
available manual segmentations.

We consider the task where one must choose from
among a set of segmentation algorithms based on their
performance on a database of natural images. The output of
each algorithm is a label assigned to each pixel of the
images. We assume the labels to be nonsemantic and
permutable, and make no assumptions about the under-
lying assignment procedure. The algorithms are to be
evaluated by objective comparison of their segmentation
results with several manual segmentations.

We caution the reader that our choice of human-provided
segmentations to form a ground-truth setis not to be confused
with an attempt to model human perceptual grouping.
Rather the focus is to correctly account for the variation in a
set of acceptable solutions, when measuring their agreement
with a candidate result, regardless of the cause of the
variability. In the described scenario, the variability happens
tobe generally caused by differences in the attention and level

Published by the IEEE Computer Society



930 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.6, JUNE 2007

of detail at which an image is perceived. Hence, future
references to “human subjects” are to be interpreted only as
observed instances of this variability.

In the context of the above task, a reasonable set of
requirements for a measure of segmentation correctness is:

1. Nondegeneracy: The measure does not have degen-
erate cases where input instances that are not well
represented by the ground-truth segmentations give
abnormally high values of similarity.

2. No assumptions about data generation: The mea-
sure does not assume equal cardinality of the labels
or region sizes in the segmentations.

3. Adaptive accommodation of refinement: We use
the term label refinement to denote differences in the
pixel-level granularity of label assignments in the
segmentation of a given image. Of particular interest
are the differences in granularity that are correlated
with differences in the level of detail in the human
segmentations. A meaningful measure of similarity
should accommodate label refinement only in re-
gions that humans find ambiguous and penalize
differences in refinement elsewhere.

4. Comparable scores: The measure gives scores that
permit meaningful comparison between segmenta-
tions of different images and between different
segmentations of the same image.

In Section 2, we review several previously proposed
measures and discuss their merits and drawbacks as
performance metrics in light of the above requirements.
Section 3 outlines the Probabilistic Rand (PR) index [2], a
generalization of a classical nonparametric test called the
Rand index [3] and illustrates its properties. Section 4 then
describes a scaled version of the measure, termed the
Normalized Probabilistic Rand (NPR) index [4], that is
adjusted with respect to a baseline common to all of the
images in the test set—a step crucial for allowing compar-
ison of segmentation results between images and algo-
rithms. In contrast to previous work, this paper outlines the
procedure for quantitative comparison through an exten-
sive example evaluation in Section 5 of some popular
unsupervised segmentation algorithms. The results in this
paper use the Berkeley Segmentation Data Set [1] which
consists of 300 natural images and multiple associated
hand-labeled segmentations for each image.

2 REeLATED WORK

In this section, we review measures that have been
proposed in the literature to address variants of the
segmentation evaluation task, while paying attention to
the requirements described in Section 1.

We can broadly categorize previously proposed mea-
sures as follows:

1. Region Differencing: Several measures operate by
computing the degree of overlap of the cluster
associated with each pixel in one segmentation and
its “closest” approximation in the other segmenta-
tion. Some of them are deliberately intolerant of label
refinement [5]. It is widely agreed, however, that
humans differ in the level of detail at which they
perceive images. To compensate for the difference in

granularity, many measures allow label refinement
uniformly through the image.

Martinetal. [1],[6] proposed several error measures
to quantify the consistency between image segmenta-
tions of differing granularities, and used them to
compare the results of normalized-cut algorithms to a
database of manually segmented images. The follow-
ing describes two of the measures more formally.

Let S and S’ be two segmentations of an image
X ={x,...,zy} consisting of N pixels. For a given
pixel z;, consider the classes (segments) that contain
z; in S and 5. We denote these sets of pixels by
C(S,z;) and C(S',x;), respectively. Following [1],
the local refinement error (LRE) is then defined at
point z; as:

C(S, ) \ C(5', i)
‘C(SamL” ’

LRE(S, S, z;) =

where \ denotes the set differencing operator.

This error measure is not symmetric and encodes
a measure of refinement in one direction only. There
are two natural ways to combine the LRE at each
point into a measure for the entire image. Global
Consistency Error (GCE) forces all local refinements
to be in the same direction and is defined as:

GCE(S, §) =

1.
7 min { Z LRE(S, S, z;), Z LRE(S, S, x)}

Local Consistency Error (LCE) allows for different
directions of refinement in different parts of the
image:

1
LCE(S, ") :NZ min{LRE(S, S', z;), LRE(S', S, z;)}.

For both the LCE and GCE, a value of 0 indicates no
error and a value of 1 indicates maximum deviation
between the two segmentations being compared. As
LCE < GCE, it is clear that GCE is a tougher
measure than LCE.

To ease comparison with measures introduced
later in the paper that quantify similarity between
segmentations rather than error, we define the
quantities LCI = 1 — LCE and GCI =1 — GCE. The
“1” in the abbreviations stands for “Index,” complying
with the popular usage of the term in statistics when
quantifying similarity. By implication, both LCI and
GClliein therange [0, 1] with avalue of 0 indicating no
similarity and a value of 1 indicating a perfect match.

Measures based on region differencing suffer
from one or both of the following drawbacks:

a. Degeneracy: As observed by the authors of [1],
[6], there are two segmentations that give zero
error for GCE and LCE—one pixel per segment,
and one segment for the whole image. This
adversely limits the use of the error functions to
comparing segmentations that have similar car-
dinality of labels.

Work in [6] proposed an alternative measure
termed the Bidirectional Consistency Error
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(BCE) that replaced the pixelwise minimum
operation in the LCE with a maximum. This
results in a measure that penalizes dissimilarity
between segmentations in proportion to the
degree of overap and, hence, does not suffer
from degeneracy. But, as also noted by the
Martin [6], it does not tolerate refinement at all.

An extension of the BCE to the leave-one-out
regime, termed BCE", attempted to compensate
for this when using a set of manual segmenta-
tions. Consider a set of available ground-truth
segmentations {51, S2,..., Sk} of an image. The
BCE" measure matches the segment for each
pixel in a test segmentation Si.y to the mini-
mally overlapping segment containing that pixel
in any of the ground-truth segmentations.

. I~
BCE (Stest7 {Sk}) = NZ m}n
i=1 k

{ max {LRE(Siest, Sk, 1), LRE(Sk, Stest, 1) }}.

However, by using a hard “minimum” operation
to compute the measure, the BCE" ignores the
frequency with which pixel labeling refinements
in the test image are reflected in the manual
segmentations. As before, to ease comparison of
BCE" with measures that quantify similarity, we
will define and refer to the equivalent index
BCI" =1 — BCE" taking values in [0, 1] with a
value of 1 indicating a perfect match.

b. Uniform penalty: Region-based measures that
the authors are aware of in the literature, with the
exception of BCE", compare one test segmenta-
tion to only one manually labeled image and
penalize refinement uniformly over the image.

2. Boundary matching: Several measures work by
matching boundaries between the segmentations,
and computing some summary statistic of match
quality [7], [8]. Work in [6] proposed solving an
approximation to a bipartite graph matching pro-
blem for matching segmentation boundaries, com-
puting the percentage of matched edge elements, and
using the harmonic mean of precision and recall,
termed the F-measure as the statistic. However, since
these measures are not tolerant of refinement, it is
possible for two segmentations that are perfect
mutual refinements of each other to have very low
precision and recall scores. Furthermore, for a given
matching of edge elements between two images, it is
possible to change the locations of the unmatched
edges almost arbitrarily and retain the same preci-
sion and recall score.

3. Information-based: Work in [6], [9] proposes to
formulate the problem as that of evaluating an affinity
function that gives the probability of two pixels
belonging to the same segment. They compute the
mutual information score between the classifier out-
putonatestimage and the ground-truth data, and use
the score as the measure of segmentation quality. Its
application in [6], [9] is however restricted to
considering pixel pairs only if they are in complete
agreement in all the training images.

Work in [10] computes a measure of information
content in each of the segmentations and how much
information one segmentation gives about the other.
The proposed measure, termed the variation of
information (VI), is a metric and is related to the
conditional entropies between the class label dis-
tribution of the segmentations. The measure has
several promising properties [11] but its potential for
evaluating results on natural images where there is
more than one ground-truth clustering is unclear.

Several measures work by recasting the problem as
the evaluation of a binary classifier [6], [12] through
false-positive and false-negative rates or precision
and recall, similarly assuming the existence of only
one ground-truth segmentation. Due to the loss of
spatial knowledge when computing such aggregates,
the label assignments to pixels may be permuted in a
combinatorial number of ways to maintain the same
proportion of labels and keep the score unchanged.

4. Nonparametric tests: Popular nonparametric mea-
sures in statistics literature include Cohen’s Kappa
[13], Jaccard’s index, Fowlkes and Mallow’s index,
[14] among others. The latter two are variants of the
Rand index [3] and work by counting pairs of pixels
that have compatible label relationships in the two
segmentations to be compared.

More formally, consider two valid label assign-
ments S and S’ of N points X = {z;} withi=1...n
thatassignlabels {/;} and {/;}, respectively, to point ;.
The Rand index R can be computed as the ratio of the
number of pairs of points having the same label
relationship in S and &', i.e.,

R(S,8)=

1
@Z (n(t=uat=0)+m(n A0t £0) ] O
it
where Il is the identity function and the denominator
is the number of possible unique pairs among
N data points. Note that the number of unique
labels in S and S’ is not restricted to be equal.

Nearly all the relevant measures known to the authors
deal with the case of comparing two segmentations, one of
which is treated as the singular ground truth. Hence, they
are not directly applicable for evaluating image segmenta-
tions in our framework. In Section 3, we describe modifica-
tions to the basic Rand index that address these concerns.

3 ProBaBILISTIC RAND (PR) INDEX

We first outline a generalization to the Rand Index, termed
the Probabilistic Rand (PR) index, which we previously
introduced in [2]. The PR index allows comparison of a test
segmentation with multiple ground-truth images through
soft nonuniform weighting of pixel pairs as a function of the
variability in the ground-truth set [2]. In Section 3.1, we will
discuss its properties in more detail.

Consider a set of manual segmentations (ground-truth)
{51, 5s,...,Sk} of an image X = {z1,...,zy} consisting of
N pixels. Let Si.t be the segmentation that is to be
compared with the manually labeled set. We denote the
label of point z; by I7* in segmentation Si. and by I’ in
the manually segmented image 5. It is assumed that each
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label I7* can take values in a discrete set of size L; and
correspondingly I takes one of L. values.

We chose to model label relationships for each pixel pair
by an unknown underlying distribution. One may visualize
this as a scenario where each human segmenter provides
information about the segmentation S, of the image in the
form of binary numbers ]I(lf b= lf") for each pair of pixels
(xi,z;). The set of all perceptually correct segmentations
defines a Bernoulli distribution over this number, giving a
random variable with expected value denoted as p;;. The
set {p;;} for all unordered pairs (i, j) defines our generative

model [4] of correct segmentations for the image X.
The Probabilistic Rand (PR) index [2] is then defined as:

PR(Ste, {51 = e S [epiy + (1 —e)(1 = pi)], (2)

(3)

where c;; denotes the event of a pair of pixels i and j having
the same label in the test image Sicg:

Cl] — H(lfﬁest — lf‘ﬁb() .

This measure takes valuesin [0, 1], where 0 means S;.; and
{51, S, ..., Sk} have no similarities (i.e., when S consists of a
single cluster and each segmentation in {Si,Ss,...,Sk}
consists only of clusters containing single points, or vice
versa) and 1 means all segmentations are identical.

Since ¢;; € {0,1}, (2) can be equivalently written as

ij
i<j

PR(Siee, (81) = 7 S [0/ —p) ] ()

(3) %

i<j

Note that the quantity in square brackets in (3) is the
likelihood that labels of pixels z; and z; take values [P and
lf““‘, respectively, under the pairwise distribution defined
by {pi;}.

Although the summation in (2) is over all possible pairs
of N pixels, we show in the Appendix that the computa-
tional complexity of the PR index is O(KN + >, L), which
is only linear in /N, when p;; is estimated with the sample
mean estimator. For other choices of estimator (see
Section 4.1), we have observed in practice that a simple
Monte Carlo estimator using random samples of pixel pairs
gives very accurate estimates.

3.1 Properties of the PR Index

We analyze the properties of the PR index in the subsections
that follow.

3.1.1 Data Set Dependent Upper Bound
We illustrate the dependence of the upper bound of the PR
index on the data set Sy, with a toy example. Consider an
image X consisting of N pixels. Let two manually labeled
segmentations S; and S; (as shown in Fig. 1) be made
available to us. Let S| consist of the entire image having one
label. Let S, consist of the image segmented into left and right
halves, each half with a different label. Let the left half be
denoted region R1 and the right half as region R2.

The pairwise empirical probabilities for each pixel pair
can be straightforwardly obtained by inspection as:

VOL. 29, NO. 6, JUNE 2007

R2 R3
R4
S S,

Ss

Fig. 1. A toy example of the PR index computed over a manually labeled
set of segmentations. See text for details.

1 if (l‘i,fL‘j) € R1V (lii,l‘j) € R2
p(l; = ZJ) =< 05 if (1‘1 € R1A Tj € RQ)
0.5 if ($16R2A$J€R1)

The above relation encodes that given no information
other than the ground-truth set {Si,S,}, it is equally
ambiguous as to whether the image is a single segment or
two equally sized segments. It can be shown that this
defines an upper bound on PR(S, S 2) over all possible test
segmentations Siest, and that this bound is attained' when
the test segmentation Si. is identical to S; or S,. The value
of the bound is obtained by substituting the above values
for p;; into (2), and is given by:

max PR(S, 51.2) = (zN) { g (g _ 1)

pairs with same label in S} and Sy

N N
+ — X —= X 0.5
2 2
empirical probability
pairs with different labels
1 {?,N2 N}
= ™| = "5
G)Ls 2

Taking limits on the size of the image:

. 3
1\}1—120 msax PR(S, S12) = 1
Note that this limit value is less than the maximum
possible value of the PR index (equal to 1) under all possible
test inputs Siy and ground-truth sets {5y }.

Consider a different Siet (not shown) consisting of the
image splitinto tworegions, the left region occupying % of the
image size and the other occupying the remaining 2.Itcanbe
shown that the modified measure takes the value:

1 [3N?2 N
PR(Stcst7 SLQ) = |: j|

SR
with limit § as N — oc.

It may seem unusual that the Probabilistic Rand index
takes a maximum value of 1 only under stringent cases.
However, we claim that it is a more conservative measure
as it is nonsensical for an algorithm to be given the
maximum score possible when computed on an inherently
ambiguous image. Conversely, if the PR index is aggregated
over several sets {S;._ i}, one for each image, the choice of
one algorithm over another should be less influenced by an
image that human segmenters find ambiguous.

1. The proof proceeds by first showing that d(S,S") =1 —PR(S,S")
is a metric,c and by then showing that if the PR score of a
segmentation S exceeds PR(Si,S12), it will violate the triangle
inequality d(S,S1) +d(S,S2) > d(Si,55).
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I=

N
—>

—

1

Zone of boundary
ambiguity

Fig. 2. A toy example of the PR index adapting to pixel-level labeling
errors near segment boundaries. The region in the image between the
two vertical dashed lines indicates the zone of ambiguity. See text for
details.

PR index vs image size (N)

=N =400
-©-N =200}
-B-N =100

0 50 100 150 200 250 300 350 400
Horiz. boundary position (x)

0 .

Fig. 3. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed w = 20 and varying image size N. Note that the function profile is
maintained while the maximum attainable PR index increases with V.

3.1.2 Region-Sensitive Refinement Accommodation

Another desirable property of a meaningful measure is that it
only penalizes fragmentation in regions that are unsupported
by the ground-truth images, and allows refinement without
penalty if it is consistently reflected in the ground-truth set.
Consider now a set of two manually labeled segmentations
consisting of S, and S3 (Fig. 1). As seen in Fig. 1, the two
human segmenters are in “agreement” on region R1, but
region R2 in S, is split into two equal halves R3 and R4.
Following the procedure in Section 3.1.1, it can be shown
that PR(S, s523) — 12 in upper bound as N — oo for both
S =5, and S = S5. However, if a candidate S contained
{]egi)?\n R1 fragmented into (say) two regions of size % and
SN

== for a € [0, 1], it is straightforward to show that the PR

index decreases in proportion to (1 — «) as desired.

3.1.3 Accommodating Boundary Ambiguity

It is widely agreed that human segmenters differ in the level
of detail at which they perceive images. However, differences
exist even among segmentations of an image having equal
number of segments [1]. In many images, pixel label assign-
ments are ambiguous near segment boundaries. Hence, one
desirable property of a good comparison measure is robust-
ness to small shifts in the location of the boundaries between
segments, if those shifts are represented in the manually
labeled training set, even when the “true” locations of those
boundaries are unknown.

To illustrate this property in the PR index, we will
construct an example scenario exhibiting this near-boundary

PR index vs width of ambiguous region (w)
1 ‘ ‘ - ‘

==w =10
-©-w=30p
-B-w =60

0 20 40 60 80 100
Horiz. boundary position (x)

Fig. 4. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed image size (N =100) and varying w. Note that the function is
everywhere continuous, concave in the zone of ambiguity, and convex
elsewhere.

ambiguity and observe the quantitative behavior of the PR
index as a function of the variables of interest. Consider an
example of the segmentation shown in Fig. 2, where all the
human segmenters agree on splitting a NV x N pixel image
into two regions (red and white) but differ on the precise
location of the boundary. For mathematical clarity, let us
adopt a simplified model of the shape of the boundary
separating the two segments. We assume theboundary tobea
straight vertical line whose horizontal position in the set of
available manual segmentations is uniformly distributed in a
region of width w pixels.

Let the candidate segmentation consist of a vertical split
at distance = pixels from the left edge of the image. For a
given boundary position x, we can analytically compute, for
each pixel pair, the probability p;; of their label relationship
existing in the manually labeled images under the pre-
viously described boundary model. This essentially in-
volves a slightly tedious counting procedure that we will
not elaborate here to preserve clarity. The key result of this
procedure for our example scenario in Fig. 2 is an analytical
expression of the PR index as a function of x given by:

A11’2 + Cl
—As2? 4 Box + Cy
Ay (]\7—18)2 + 4

if z € [1,545Y]

€ (5
ifx e [%,N],
(4)

where the coefficients A;, By, and C;(i = 1,2) are positive
valued functions of N and w.

Figs. 3 and 4 plot the expression in (4) for varying values
of N and w, respectively. It can be seen that the function is
symmetric and concave in the region of boundary ambi-
guity, and convex elsewhere. Thus, the PR index for the
example of Fig. 2 essentially has the profile of a piecewise
quadratic inverted M-estimator, making it robust to small
local changes in the boundary locations when they are
reflected in the manual segmentation set.

Figs. 5 and 6 show (from left to right) images from the
Berkeley segmentation database [1], segmentations of those
images, and the ground-truth hand segmentations of those

PR(S(x),{5'}) =
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(©)

()

(9 (h)

Fig. 5. Example of oversegmentation: (a) Image from the Berkeley segmentation database [1], (b) its mean shift [15] segmentation (using h, = 15
(spatial bandwidth), h, = 10 (color bandwidth)), and (c), (d), (e), (f), (g), and (h) its ground-truth hand segmentations. Average LCI = 0.9370,

BCI" = 0.7461, PR = 0.3731, and NPR = —0.7349.

(@)

(b) © ()

©) ()

(h) ()

Fig. 6. Example of undersegmentation: (a) Image from the Berkeley segmentation database 1], (b) its mean shift [15] segmentation (using h, = 15,
h, =10), and (c), (d), (e), (f), (g), (h), and (i) its ground-truth hand segmentations. Average LCI = 0.9497, BCI* = 0.7233, PR = 0.4420, and

NPR = —0.5932.

images. The segmentation method we use is mean shift
segmentation [15], described briefly in Section 5.1.1. Notice
that Fig. 5 is an oversegmentation and Fig. 6 is an under-
segmentation. We compare the PR scores to the LCI scores [6]
described in Section 2. The LCI measure is tolerant to
refinement regardless of the ground truth and, hence, gives
high similarity scores of 0.9370 and 0.9497, respectively. On
the other hand, the PR does not allow refinement or
coarsening that is not inspired by one of the human
segmentations. This is correctly reflected in the low PR index
(low similarity) scores of 0.3731 and 0.4420, respectively.

At this point, we have successfully addressed Require-
ments 1 (nondegeneracy), 2 (no assumptions about data
generation), and 3 (adaptive accommodation of refinement)
for a useful measure, as stated in Section 1.

We have observed in practice, however, that the PR
index suffers from lack of variation in its value over images.
This is likely due to the smaller effective range of the PR
index combined with the variation in maximum value of the
PR index across images. Furthermore, it is unclear how to
interpret the value of the index across images or algorithms
and what a low or high number is. To remedy this, Section 4
will present the Normalized Probabilistic Rand (NPR) index
[4], and describe its crucial improvements over the PR and
other segmentation measures. It will expand on Require-
ment 2 and address Requirement 4 (permitting score
comparison between images and segmentations).

4 NoRMALIZED PROBABILISTIC RAND (NPR) INDEX

The significance of a measure of similarity has much to do
with the baseline with respect to which it is expressed. One
may draw an analogy between the baseline and a null
hypothesis in significance testing. For image segmentation,
the baseline may be interpreted as the expected value of the
index under some appropriate model of randomness in the
input images. A popular strategy [14], [16] is to normalize
the index with respect to its baseline as

Index — E ted ind
Normalized index = neex xpected naex

(5)

This causes the expected value of the normalized index to
be zero and the modified index to have a larger range and
hence be more sensitive. There is little agreement in the
statistics community [17] regarding whether the value of
“Maximum Index” should be estimated from the data or set
constant. We choose to set the value to be 1, the maximum
possible value of the PR index and avoid the practical
difficulty of estimating this quantity for complex data sets.

Hubert and Arabie [16] normalize the Rand index using a
baseline that assumes that the segmentations are generated
from a hypergeometric distribution. This implies that 1) the
segmentations are independent and 2) the number of pixels
having a particular label (i.e., the class label probabilities) is
kept constant. The same model is adopted for the measure
proposed in [14] with an additional, although unnecessary,
assumption of equal cardinality of labels. However, as also
observed in [10], [17], the equivalent null model does not
represent anything plausible in terms of realistic images and
both of the above assumptions are usually violated in
practice. We would like to normalize the PR index in a way
that avoids these pitfalls.

To normalize the PR index in (2) as per (5), we need to
compute the expected value of the index:

e =),

irj
i<j

I £ )| (1 -y }

- é: [Pﬁjpij + (1 =Py _pij)]'

Maximum index — Expected index

I [PR (S, {SD)] =

(6)

The question now is: What is a meaningful way to
compute p; ; = IB[I([5= :lf‘“‘)]? We propose that for a
baseline in image segmentation to be useful, it must be
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Fig. 7. Example of changing scores for different segmentation
granularities: (a) Original image, (b), (c), (d), (e), (f), (g), and (h) mean
shift segmentations [15] using scale bandwidth (h,) 7 and color
bandwidths (h,) 3, 7, 11, 15, 19, 23, and 27, respectively. The plot
shows the LCI, BCI*, PR, and the NPR similarity scores for each
segmentation. Note that only the NPR index reflects the intuitive
accuracy of each segmentation of the image. The NPR index correctly
shows that segmentation (f) is the best one, segmentations (d), (e), and
(f) are reasonable, and segmentations (g) and (h) are horrible.

representative of perceptually consistent groupings of
random but realistic images. This translates to estimating
p;; from segmentations of all images for all unordered
pairs (i, j). Let ® be the number of images in a data set and
K, the number of ground-truth segmentations of image ¢.
Then, p|; can be expressed as:

p/ _lzi K, ]I(ls;f _lS,f> (7)
ij o - K¢ s i 7

Note that using this formulation for p; implies that
IE[PR(Stest, {Sk})] is just a (weighted) sum of PR(S,f, {Sk})-
Although PR(SY, {S).}) canbe computed efficiently, perform-
ing this computation for every segmentation S,‘f is expensive,
so, in practice, we uniformly sample 5 x 10° pixel pairs for an
image size of 321 x 481(N = 1.5 x 10°) instead of computing
it exhaustively over all pixel pairs. Experiments performed
using a subset of the images indicated that the loss in
precision in comparison with exhaustive evaluation was not
significant for the above number of samples.

The philosophy that the baseline should depend on the
empirical evidence from all of the images in a ground-truth
training set differs from the philosophy used to normalize
the Rand Index [3]. In the Adjusted Rand Index [16], the
expected value is computed over all theoretically possible

Fig. 8. Examples of segmentations with NPR indices near 0.

segmentations with constant cluster proportions, regardless
of how probable those segmentations are in reality. In
comparison, the approach taken by the Normalized Prob-
abilistic Rand index (NPR) has two important benefits.

First, since p}; and p;; are modeled from the ground-truth
data, the number and size of the clusters in the images do not
need to be held constant. Thus, the error produced by two
segmentations with differing cluster sizes can be compared.
In terms of evaluating a segmentation algorithm, this allows
the comparison of the algorithm’s performance with different
parameters. Fig. 7 demonstrates this behavior. The top two
rows show an image from the segmentation database [1] and
segmentations of different granularity. Note that the LCI
similarity is high for all of the images since it is not sensitive to
refinement; hence, it cannot determine which segmentation is
the most desirable. The BCI* measure sensibly reports lower
scores for the oversegmented images, but is unable to
appreciably penalize the similarity score for the under-
segmented images in comparison with the more favorable
segmentations. The PR index reflects the correct relationship
among the segmentations. However, its range is small and the
expected value is unknown, hence it is difficult to make a
judgment as to what a “good” segmentation is.

The NPR index fixes these problems. It reflects the desired
relationships among the segmentations with no degenerate
cases, and any segmentation which gives a score significantly
above 0 is known to be useful. As intuition, Fig. 8 shows two
segmentations with NPR indices close to zero.

Second, since p); is modeled using all of the ground-truth
data, not just the data for the particular image in question, it
is possible to compare the segmentation errors for different
images to their respective ground truths. This facilitates the
comparison of an algorithm’s performance on different
images. Fig. 9 shows the scores of segmentations of different
images. The first row contains the original images and the
second row contains the segmentations. Once again, note
that the NPR is the only index which both shows the
desired relationship among the segmentations and whose
output is easily interpreted.

The images in Fig. 10 and Fig. 11 demonstrate the
consistency of the NPR. In Fig. 10b, both mean shift [15]
segmentations are perceptually equally “good” (given the
ground-truth segmentations), and correspondingly their
NPR indices are high and similar. The segmentations in
Fig. 11b are both perceptually “bad” (oversegmented), and
correspondingly both of their NPR indices are very low.
Note that the NPR indices of the segmentations in Fig. 6b
and Fig. 11b are comparable, although the former is an
undersegmentation and the latter are oversegmentations.

The normalization step has addressed Requirement 4,
facilitating meaningful comparison of scores between
different images and segmentations. Note also that the
NPR still does not make assumptions about data generation
(Requirement 2). Hence, we have met all of the require-
ments set out at the beginning of the paper.
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Fig. 9. Example of comparing segmentations of differentimages: (1), (2),
(3), (4), and (5) Top row: Original images, Second row: corresponding
segmentations. The plot shows the LCI, BCI*, PR, and the NPR similarity
scores for each segmentation as numbered. Note that only the NPR index
reflects the intuitive accuracy of each segmentation across images.

In moving from the first-order problem of comparing
pixel labels to the second-order problem of comparing
compatibilities of pairs of labels, the Rand index introduces
a bias by penalizing the fragmentation of large segments

more than that of small segments, in proportion to the
segment size. To our knowledge, this bias has not deterred
the broad adoption of the Rand index in its adjusted form
by the statistics community. We have also not observed any
practical impact of this in our extensive experimental
comparison of algorithms in Section 5.

One way of explicitly tolerating the bias, if required, is to
use a spatial prior so as to discount the contribution of pairs
of distant pixels in unusually large segments. Another
method is to simply give more weight to pixels in small
regions that are considered salient for the chosen task. We
describe these and other modifications in what follows.

4.1 Extensions

There are several natural extensions that can be made to the
NPR index to take advantage of additional information or
priors when they are available:

1. Weighted data points: Some applications may require
the measure of algorithm performance to depend
more on certain parts of the image than others. For
example, one may wish to penalize unsupported
fragmentation of specific regions of interest in the test
image more heavily than of other regions. It is
straightforward to weight the contribution of points
nonuniformly and maintain exact computation when
the sample mean estimator is used for p;;.

For example, let the image pixels X = {x1,...,2n}
be assigned weights W = {wy, ..., wn}, respectively,
such that 0 <w; <1 for all < and ), w; = N. The
Appendix describes a procedure for the unweighted
case that first constructs a contingency table for the
label assignments and then computes the NPR index
exactly with linear complexity in N using the values

N N A
(b) (d) ) (h)

() (e) )
Fig. 10. Examples of “good” segmentations: (a) Images from the Berkeley segmentation database [1], (b) mean shift segmentations [15] (using i, = 15,
and h, = 10), and (c), (d), (e), (f), (9), and (h) their ground-truth hand segmentations. Top image: NPR = 0.8938 and bottom image: NPR = 0.8495.

o L]
(c) (d) (e) ® (9)

Fig. 11. Examples of “bad” segmentations: (a) Images from the Berkeley segmentation database [1], (b) mean shift segmentations [15] (using i, = 15,
and h, = 10), and (c), (d), (e), (f), and (g) their ground-truth hand segmentations. Top image: NPR = —0.7333 and bottom image: NPR = —0.6207.

(@)

(@) (b)
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in the table. For the weighted case, the contingency
table can be simply modified by replacing unit counts
of pixels in the table by their weights. The remainder
of the computation proceeds just as for the unmodi-
fied PRindexin O(K'N + ), Lj) total time, where L,
is the number of labels in the kth image.

2. Soft segmentation: In applications where one
wishes to avoid committing to a hard segmentation,
each pixel z; may be associated with a probability
p:’ *(1) of having label [ in the kth segmentation, such
that S,p7*(l) = 1. The contingency table can be
modified in a similar manner as for weighted data
points by spreading the contribution of a point
across a row and column of the table. For example,
the contribution of point z; to the entry n(l,!') for
segmentation pairs S and Sy, is e (D (Ih).

3. Priors from ecological statistics: Experiments in [1]
showed that the probability of two pixels belonging
to the same perceptual group in natural imagery
seems to follow an exponential distribution as a
function of distance between the pixels. In present-
ing the use of the sample mean estimator for p;;, this
work assumed the existence of a large enough
number of hand-segmented images to sufficiently
represent the set of valid segmentations of the
image. If this is not feasible, a MAP estimator of
the probability parameterized in terms of distance
between pixels would be a sensible choice.

5 EXPERIMENTS

The purpose of creating the NPR index was to facilitate
objective evaluations of segmentation algorithms, with the
hope that the results of such evaluations can aid system
designers in choosing an appropriate algorithm. As an
exercise in using the NPR index, we present a possible
evaluation framework and give one such comparison. We
consider four segmentation techniques: mean shift segmen-
tation [15], the efficient graph-based segmentation algorithm
presented in [18], a hybrid variant that combines these
algorithms, and expectation maximization [19] as a baseline.
For each algorithm, we examine three characteristics which
we believe are crucial for an image segmentation algorithm
to possess:

1. Correctness: The ability to produce segmentations
which agree with ground truth. That is, segmenta-
tions which correctly identify structures in the image
at neither too fine nor too coarse a level of detail.
This is measured by the value of the NPR index.

2. Stability with respect to parameter choice: The
ability to produce segmentations of consistent
correctness for a range of parameter choices.

3. Stability with respect to image choice: The ability to
produce segmentations of consistent correctness
using the same parameter choice on different images.

If a segmentation scheme satisfies these three require-

ments, then it will give useful and predictable results which
can be reliably incorporated into a larger system without
excessive parameter tuning. Note that every characteristic
of the NPR index is required to perform such a comparison.
It has been argued that the correctness of a segmentation
algorithm is only relevant when measured in the context of

the larger system into which it will be incorporated.
However, there is value in weeding out algorithms which
give nonsensical results, as well as limiting the list of
possibilities to well-behaved algorithms even if the compo-
nents of the rest of the system are unknown.

Our data set for this evaluation is the Berkeley Segmenta-
tion Data Set [1]. To ensure a valid comparison between
algorithms, we compute the same features (pixel location and
color) for every image and every segmentation algorithm. We
begin this section by presenting each of the segmentation
algorithms and the hybrid variant we considered, and then
present our results.

5.1 The Segmentation Algorithms

As mentioned, we will compare four different segmentation
techniques, the mean shift-based segmentation algorithm
[15], an efficient graph-based segmentation algorithm [18], a
hybrid of the previous two, and expectation maximization
[19]. We have chosen to look at mean shift-based segmenta-
tion as it is generally effective and has become widely-used
in the vision community. The efficient graph-based seg-
mentation algorithm was chosen as an interesting compar-
ison to the mean shift in that its general approach is similar,
however, it excludes the mean shift filtering step itself, thus
partially addressing the question of whether the filtering
step is useful. The hybrid of the two algorithms is shown as
an attempt at improved performance and stability. Finally,
the EM algorithm is presented as a baseline. The following
describes each algorithm.

5.1.1 Mean Shift Segmentation

The mean shift-based segmentation technique was intro-
duced in [15] and is one of many techniques under the
heading of “feature space analysis.” The technique is
comprised of two basic steps: a mean shift filtering of the
original image data (in feature space), and a subsequent
clustering of the filtered data points.

Filtering. The filtering step of the mean shift segmenta-
tion algorithm consists of analyzing the probability density
function underlying the image data in feature space. In our
case, the feature space consists of the (x, y) image location of
each pixel, plus the pixel color in L*u*v* space (L*,u*,v").
The modes of the pdf underlying the data in this space will
correspond to the locations with highest data density, and
data points close to these modes can be clustered together to
form a segmentation. The mean shift filtering step consists
of finding these modes through the iterative use of kernel
density estimation of the gradient of the pdf and associating
with them any points in their basin of attraction. Details
may be found in [15].

We use a uniform kernel for gradient estimation with
radius vector h = [hg, hs, hy, by, hy], with b, the radius of the
spatial dimensions and h, the radius of the color dimen-
sions. For every data point (pixel in the original image), the
gradient estimate is computed and the center of the kernel,
x, is moved in that direction, iterating until the gradient is
below a threshold. This change in position is the mean shift
vector. The resulting points have gradient approximately
equal to zero and, hence, are the modes of the density
estimate. Each datapoint is then replaced by its correspond-
ing mode estimate.

Finding the mode associated with each data point helps
to smooth the image while preserving discontinuities. Let
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Sx;h.h, b€ the sphere in feature space, centered at point x
and with spatial radius h, and color radius h,. The
uniform kernel has nonzero values only on this sphere.
Intuitively, if two points x; and x; are far from each other
in feature space, then x; ¢ Sy 5, », and, hence, x; does not
contribute to the mean shift vector and the trajectory of x;
will move it away from x;. Hence, pixels on either side of
a strong discontinuity will not attract each other. However,
filtering alone does not provide a segmentation as the
modes found are noisy. This “noise” stems from two
sources. First, the mode estimation is an iterative process,
hence it only converges to within the threshold provided
(and with some numerical error). Second, consider an area
in feature space larger than Sk, 5, and where the color
features are uniform or have a gradient of one in each
dimension. Since the pixel coordinates are uniform by
design, the mean shift vector will be a O-vector in this
region, and the data points in this region will not move
and, hence, not converge to a single mode. Intuitively,
however, we would like all of these data points to belong
to the same cluster in the final segmentation. For these
reasons, mean shift filtering is only a preprocessing step
and a second step is required in the segmentation process:
clustering of the filtered data points {x'}.

Clustering. After mean shift filtering, each data point in
the feature space has been replaced by its corresponding
mode. As described above, some points may have collapsed
to the same mode, but many have not despite the fact that
they may be less than one kernel radius apart. In the
original mean shift segmentation paper [15], clustering is
described as a simple postprocessing step in which any
modes that are less than one kernel radius apart are
grouped together and their basins of attraction are merged.
This suggests using single linkage clustering to convert the
filtered points into a segmentation.

The only other paper using mean shift segmentation that
speaks directly to the clustering is [20]. In this approach, a
region adjacency graph (RAG) is created to hierarchically
cluster the modes. Also, edge information from an edge
detector is combined with the color information to better
guide the clustering. This is the method used in the publicly
available EDISON system, also described in [20]. The
EDISON system is the implementation we use here as our
mean shift segmentation system.

Discussion. Mean shift filtering using either single linkage
clustering or edge-directed clustering produces segmenta-
tions that correspond well to human perception. However, as
we discuss in the following sections, this algorithm is quite
sensitive to its parameters. Slight variations in the color
bandwidth h, can cause large changes in the granularity of
the segmentation, as shown in Fig. 7. By adjusting the color
bandwidth, we can produce oversegmentations as in Fig. 7b,
to reasonably intuitive segmentations as in Fig. 7f, to
undersegmentations as in Fig. 7g. This instability is a major
stumbling block with respect to using mean shift segmenta-
tion as areliable preprocessing step for other algorithms, such
as object recognition. In an attempt to improve stability and
ease the burden of parameter tuning, we consider a second
algorithm.

5.2 Efficient Graph-Based Segmentation

Efficient graph-based image segmentation, introduced in
[18], is another method of performing clustering in feature
space. This method works directly on the data points in
feature space, without first performing a filtering step, and

uses a variation on single linkage clustering. The key to the
success of this method is adaptive thresholding. To perform
traditional single linkage clustering, a minimum spanning
tree of the data points is first generated (using Kruskal’s
algorithm), from which any edges with length greater than
a given hard threshold are removed. The connected
components become the clusters in the segmentation. The
method in [18] eliminates the need for a hard threshold,
instead replacing it with a data-dependent term.

More specifically, let G = (V, E) be a (fully connected)
graph, with m edges {e;} and n vertices. Each vertex is a
pixel, x, represented in the feature space. The final
segmentation will be S = (C}, ..., C,), where C; is a cluster
of data points. The algorithm is:

1. Sort E = (ey,...,en) such that |e;| < |es|VE < ¢'.

2. LetS"= ({x1},...,{x,}), in other words each initial
cluster contains exactly one vertex.

3. Fort=1,....m

a. Let x; and x; be the vertices connected by e;.

b. Let C. ' be the connected component containing
point x; on iteration ¢ — 1 and /; = maxy Cy, !
be the longest edge in the minimum spanning
tree of C . Likewise for ;.

c. Merge C" "and O if

le:] < ming I; +

where £ is a constant.

4. S=.5"

In contrast to single linkage clustering which uses a
constant K to set the threshold on edge length for merging
two components, efficient graph-based segmentation uses
the variable threshold in (8). This threshold effectively
allows two components to be merged if the minimum edge
connecting them does not have length greater than the
maximum edge in either of the components’ minimum
spanning trees, plus a term 7 = ‘C, T As defined here, 7 is
dependent on a constant k and the size of the component.
Note that on the first iteration, {; = 0 and [; = 0, and ‘Cg ] =
1and ]Cﬂ}| =1, so k represents the longest edge which will
be added to any cluster at any time, k£ = [,,,,,. As the number
of points in a component increases, the tolerance on added
edge length for new edges becomes tighter and fewer
mergers are performed, thus indirectly controlling region
size. However, it is possible to use any nonnegative
function for 7 which reflects the goals of the segmentation
system. Intuitively, in the function used here, k controls the
final cluster sizes.

The merging criterion in (8) allows efficient graph-based
clustering to be sensitive to edges in areas of low variability,
and less sensitive to them in areas of high variability.
However, the results it gives do not have the same degree of
correctness with respect to the ground truth as mean shift-
based segmentation, as demonstrated in Fig. 12. This
algorithm also suffers somewhat from sensitivity to its
parameter, k.
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Fig. 12. Example of changing scores for different parameters using
efficient graph-based segmentation: (a) Original image, (b), (c), and
(d) efficient graph-based segmentations using spatial normalizing factor
hs =7, color normalizing factor h, =7, and k values 5, 25, and 125,
respectively.

(9)

Fig. 13. Example of changing scores for different parameters using a
hybrid segmentation algorithm which first performs mean shift filtering
and then efficient graph-based segmentation: (a) Original image, (b), (c),
(d), (e), (f), and (g) segmentations using spatial bandwidth h, = 7, and
color bandwidth (k,) and k value combinations (3, 5), (3, 25), (3, 125),
(15, 5), (15, 25), and (15, 125), respectively.

5.3 Hybrid Segmentation Algorithm

An obvious question emerges when describing the mean
shift-based segmentation method [15] and the efficient
graph-based clustering method [18]: Can we combine the
two methods to give better results than either method
alone? More specifically, can we combine the two methods
to create more stable segmentations that are less sensitive to
parameter changes and for which the same parameters give
reasonable segmentations across multiple images? In an
attempt to answer these questions, the third algorithm we
consider is a combination of the previous two algorithms:
First, we apply mean shift filtering and then we use efficient
graph-based clustering to give the final segmentation. The
result of applying this algorithm with different parameters
can be seen in Fig. 13. Notice that for h, = 15, the quality of
the segmentation is high. Also, notice that the rate of
granularity change is slower than either of the previous two
algorithms, even though the parameters cover a wide range.

5.4 EM Segmentation Algorithm

Our final algorithm is the classic Expectation Maximization
(EM) algorithm [19], with the Bayesian Information Criter-
ion (BIC) used to select the number of Gaussians in the
model. By minimizing the BIC, we attempt to minimize
model complexity while maintaining low error. The BIC is
formulated as follows:

BIC =nln (RTSS) + gln(n),

where n is the sample size, g is the number of parameters,
and RSS is the residual sum of squares. We present
graphical results for the EM algorithm as a baseline for each
relevant experiment, however, we omit it in the detailed
performance discussion.

Fig. 14. Examples of images from the Berkeley image segmentation
database [1].

5.5 Experiments

Each of the issues raised in the introduction to this section:
correctness, stability with respect to parameters, and
stability of parameters with respect to different images, is
explored in the following experiments and resulting plots.
Note that the axes for each plot type are kept constant so
plots can be easily compared. In each experiment, the label
“EDISON” refers to the publicly available EDISON system
for mean shift segmentation [20], the label “FH” refers to
the efficient graph-based segmentation method by Fel-
zenszwalb and Huttenlocher [18], the label “MS+FH” refers
to our hybrid algorithm of mean shift filtering followed by
efficient graph-based segmentation, and the label “EM”
refers to the EM algorithm [19]. All of the experiments were
performed on the publicly available Berkeley image
segmentation database [1], which contains 300 images of
natural scenes with approximately five to seven ground-
truth hand segmentations of each image. Examples of the
images are shown in Fig. 14.

In all of the following plots, we have fixed the spatial
bandwidth hy = 7 since it seems to be the least sensitive
parameter and removing it makes the comparison more
approachable. Also, although the FH algorithm as defined
previously only had one parameter, k, we need to add two
more. In order to properly compute distance in our feature
space {z,y, L*, u*,v*}, we rescale the data by dividing each
dimension by the corresponding {hs, h,}. The same proce-
dure is applied to the EM algorithm. So, each algorithm was
run with a parameter combination from the sets: h, =7,
h, = {3,7,11,15,19,23}, and k = {5, 25,50, 75,100, 125}. We
mildly abuse notation by using h, and h, to denote
parameters for both mean-shift and FH/EM algorithms to
avoid introducing extra terms.

5.5.1 Maximum Performance

The first set of experiments examines the correctness of the
segmentations produced by the three algorithms with a
reasonable set of parameters. Fig. 15a shows the maximum
NPR index on each image for each algorithm. The indices
are plotted in increasing order for each algorithm, hence
image 190 refers to the images with the 190th lowest index
for each algorithm, and may not represent the same image
across algorithms. Fig. 15b is a histogram of the same
information, showing the number of images per maximum
NPR index bin.
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Fig. 15. Maximum NPR indices achieved on individual images with the
set of parameters used for each algorithm. Plot (a) shows the indices
achieved on each image individually, ordered by increasing index.
Plot (b) shows the same information in the form of a histogram. Recall
that the NPR index has an expected value of 0 and a maximum of 1.

All of the algorithms, except EM, produce similar
maximum NPR indices, demonstrating that they have
roughly equal ability to produce correct segmentations with
the parameter set chosen. Note that there are very few images
which have below-zero maximum NPR index, hence all of
the algorithms almost always have the potential to produce
useful results. These graphs also demonstrate that our
parameter choices for each algorithm are reasonable.

5.5.2 Average Performance per Image

The nextset of plots in Figs. 16,17, and 18 examine correctness
through the mean index achieved on each image. The first
plot in each row shows the mean NPR index on each image
achieved over the set of parameters used (in increasing order
of the mean), along with one standard deviation. The second
plot in each row is a histogram of the mean information,
showing the number of images per mean NPR index bin. An
algorithm which creates good segmentations will have a
histogram skewed to the right. The third plot in each row is a
histogram of the standard deviations.

These plots partially addresses the issue of stability with
respect to parameters. A standard deviation histogram that is
skewed to the left indicates that the algorithm in question is
less sensitive to changes in its parameters. Using the means as
a measure certainly makes us more dependent on our choice
of parameters for each algorithm. Although we cannot
guarantee that we have found the best or worst parameters
for any individual algorithm, we can compare the perfor-
mance of the algorithms with identical parameters.
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Average performance over different values of the color
bandwidth h,. We compare the NPR indices averaged over
values of h,, with kheld constant. The plots showing this data
for the EDISON method are in Fig. 16. Fig. 17 gives the plots
for the efficient graph-based segmentation system (FH) and
the hybrid algorithm (MS + FH) for k = {5, 25,125}. We only
show three out of the six values of k in order to keep the
amount of data presented reasonable. The most interesting
comparison here is between the EDISON system and the
hybrid system, which reflects the impact the addition of the
efficient graph-based clustering has had on the segmenta-
tions produced.

Notice that for k=5, the performance of the hybrid
(MS+FH) system is slightly better and certainly more
stable than that of the mean shift-based (EDISON) system.
For k = 25, the performance is more comparable, but the
standard deviation is still somewhat lower. Finally, for
k=125, the hybrid system performs comparably to the
mean-shift based system. Thus, the change to using the
efficient graph-based clustering after the mean shift filtering
has maintained the correctness of the mean shift-based
system while improving its stability.

Looking at the graphs for the efficient graph-based
segmentation system alone in Fig. 17, we can see that
although for k=5 the mean performance and standard
deviation are promising, they quickly degrade for larger
values of k. This decline is much more gradual in the hybrid
algorithm.

Average performance over different values of k. The
mean NPR indices as k is varied through k = {5, 25, 50, 75,
100,125} and h, is held constant are displayed in figure
Fig. 18. Once again, we only look at a representative three
out of the six possible h, values, h, = {3,7,23}. Since the
mean shift-based system does not use k, this comparison is
between the efficient graph-based segmentation system and
the hybrid system.

The results show that the mean indices of the hybrid
system are both higher and more stable (with respect to
changing values of k) than those of the efficient graph-based
segmentation system. Hence, adding a mean shift filtering
preprocessing step to the efficient graph-based segmenta-
tion system is an improvement.

5.5.3 Average Performance per Parameter Choice

The final set of experiments look at the stability of a
particular parameter combination across images. In each
experiment, results are shown with respect to a particular
parameter with averages and standard deviations taken over
segmentations of each image in the entire image database.
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Fig. 16. Mean NPR indices achieved on individual images over the parameter set of all combinations of h, = {3,7,11,15,19,23}. Results for the
mean shift-based system (EDISON) are given in plots (a), (b), and (c), and results for EM are given in (d), (e), and (f). Plots (a) and (d) show the
mean indices achieved on each image individually, ordered by increasing index, along with one standard deviation. Plots (b) and (e) show
histograms of the means. Plots (c) and (f) show histograms of the standard deviations.
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Fig. 17. Mean NPR indices achieved on individual images over the parameter set h, = {3, 7,11, 15,19, 23} with a constant k. Results for the efficient
graph-based segmentation system (FH) are shown in columns (a), (b), and (c), and results for the hybrid segmentation system (MS+FH) are shown
in columns (d), (e), and (f). Columns (a) and (d) show the mean indices achieved on each image individually, ordered by increasing index, along with
one standard deviation. Columns (b) and (e) show histograms of the means. Columns (c) and (f) show histograms of the standard deviations.
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Fig. 18. Mean NPR indices achieved on individual images over the parameter set k£ = {5, 25,50, 75,100, 125} with a constant &,. Results for the
efficient graph-based segmentation system (FH) are shown in columns (a), (b), and (c), and results for the hybrid segmentation system (MS+FH) are
shown in columns (d), (e), and (f). Columns (a) and (d) show the mean indices achieved on each image individually, ordered by increasing index,
along with one standard deviation. Columns (b) and (e) show histograms of the means. Columns (c) and (f) show histograms of the standard
deviations.
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Fig. 19. Mean NPR indices achieved on each color bandwidth (h,.) over
the set of images, with one standard deviation. (a) Shows results for the
EDISON segmentation system and (b) shows results for EM.

Average performance over all images for different
values of h,. The first three sets of graphs show the
results of keeping k constant and choosing from the set
h, ={3,7,11,15,19,23}. Fig. 19 shows the results of
running the EDISON system with these parameters,
averaged over the image set and with one standard
deviation. Fig. 20 shows the same information for the
efficient graph-based segmentation (FH) and the hybrid
(MS+FH) system on a representative three of the six
possible values of k. For completeness, the graphs for the
remaining values of k£ can be found in [21].

As before, we can see that the hybrid algorithm gives
slight improvements in stability over the mean shift-based
system, but only for smaller values of k. We can also see
that, except for k = 5, both the mean shift-based system and
the hybrid system are more stable across images than the
efficient graph-based segmentation system.

Average performance over all images for different
values of k. The last two sets of graphs, in Fig. 21, examine
the stability of k over a set of images. Each graph shows the
average algorithm performance taken over the set of images
with a particular h, and each point shows a particular k.

The graphs show a representative subset of the choices for
h, and the remaining graphs can be found in [21]. Once
again, we see that combining the two algorithms has
improved performance and stability. The hybrid algorithm
has higher means and lower standard deviations than the
efficient graph-based segmentation over the image set for
each k, and especially for lower values of h,..

5.6 Experiment Conclusions

In this section, we have proposed a framework for comparing
image segmentation algorithms using the NPR index, and
performed one such comparison. Our framework consists of
comparing the performance of segmentation algorithms
based on three important characteristics: correctness, stability
with respect to parameter choice, and stability with respect to
image choice. We chose to compare four segmentation
algorithms: mean shift-based segmentation [15], [20], a
graph-based segmentation scheme [18], a proposed hybrid
algorithm, and expectation maximization [19] as a baseline.

The first three algorithms had the potential to perform
equally well on the data set given the correct parameter
choice. However, examining the results from the experi-
ments which averaged over parameter sets, the hybrid
algorithm performed slightly better than the mean shift
algorithm, and both performed significantly better than the
graph-based segmentation. We can conclude that the mean
shift filtering step is indeed useful, and that the most
promising algorithms are the mean shift segmentation and
the hybrid algorithm. As expected, EM performed worse
than any of the other algorithms both in terms of maximum
and average performance.

In terms of stability with respect to parameters, the
hybrid algorithm showed less variability when its para-
meters were changed than the mean shift segmentation
algorithm. Although the amount of improvement did
decline with increasing values of £, the rate of decline was
very slow and any choice of £ within our parameter set gave
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reasonable results. Although the graph-based segmentation
did show very low variability with k=5, changing the
value of k decreased its stability drastically.

Finally, in terms of stability of a particular parameter
choice over the set of images, we see that the graph-based
algorithm has low variability when k=5, however, its
performance and stability decrease rapidly with changing
values of k. The difference between the mean shift
segmentation and the hybrid method is negligible.

We conclude that both the mean shift segmentation and
hybrid segmentation algorithms can create realistic seg-
mentations with a wide variety of parameters, however, the
hybrid algorithm has slightly improved stability.

6 CONCLUSIONS

In this paper, we have presented a measure for comparing
the quality of image segmentation algorithms and pre-
sented a framework in which to use it. Additionally, we
have provided an example of such a comparison.

The proposed measure, the Normalized Probabilistic
Rand (NPR) index, is appropriate for segmentation algo-
rithm comparison because it possesses four necessary
characteristics: it does not degenerate with respect to
special segmentation cases, it does not make any assump-
tions about the data, it allows adaptive accommodation of
refinement, and it is normalized to give scores which are
comparable between algorithms and images. We have also
demonstrated that the NPR index can be computed in an
efficient manner, making it applicable to large experiments.

To demonstrate the utility of the NPR index, we
performed a detailed comparison between three segmenta-
tion algorithms: mean shift-based segmentation [15], an
efficient graph-based clustering method [18], and a hybrid
of the other two. We also compared them with a baseline
segmentation algorithm based on EM. The algorithms were
compared with respect to correctness as measured by the
value of the NPR index. Also, two variations of stability
were considered: stability with respect to parameters, and
stability with respect to different images for a given
parameter set. We argue that an algorithm which possesses
these three characteristics will be practical and useful as
part of a larger vision system. Of course, there is generally a
trade-off between these characteristics; however, it is still
possible to measure which algorithm gives the best
performance. In our experiments, we found that the hybrid
algorithm performed slightly better than the mean shift-
based algorithm [15] alone, with the efficient graph-based
clustering method [18] falling behind the other two.

For future work, it would be interesting to compare other
widely used segmentation algorithms such as normalized
cuts [22] with the ones presented here. However, many
segmentation algorithms have a parameter that explicitly
encodes the number of clusters and, yet, do not have well
accepted schemes for its selection. Thus, such a comparison
would have to be carefully constructed so as not to unfairly
bias algorithms either with or without such a parameter.

APPENDIX
RepucTION USING SAMPLE MEAN ESTIMATOR

We show how to reduce the PR index to be computationally
tractable. A straightforward choice of estimator for p;;, the
probability of the pixels i and j having the same label, is the
sample mean of the corresponding Bernoulli distribution as
given by

K
by —%;H(lfk = 15). (9)

For this choice, it can be shown that the resulting PR index
assumes a trivial reduction and can be estimated efficiently
in time linear in N.

The PR index can be written as:

PR(Sise, {54)) = o0 Sl + (1 - )1 = B))- (10)

(3)

Substituting (9) in (10) and moving the summation over k&
outward yields

PR(Shest, {Sk}) = %kZK: {%Z |:CijI[(l;-9k = l“/s‘)

& (11)
+u—mdﬁ#ﬁﬂ}

which is simply the mean of the Rand index [3] computed
between each pair (Siest,Si). We can compute the terms
within the square parentheses in O(N + Ly Ly) in the
following manner.

Construct a Lt X Ly contingency table with entries
n%(1,1') containing the number of pixels that have label [ in
Stest and label I in Sy. This can be done in O(N) steps for
each S;.

The first term in (11) is the number of pairs having the
same label in Si. and Sy, and is given by

Sen(r ) -3 ("),
i N

which is simply the number of possible pairs of points
chosen from sets of points belonging to the same class, and
is computable in O(LiestLi) operations.

The second term in (11) is the number of pairs having
different labels in S, and in S,. To derive this, let us
define two more terms for notational convenience. We
denote the number of points having label [ in the test
segmentation Si. as:

n(l,) =>_ n¥(0)
7

ij
i<j

(12)

and, similarly, the number of points having label I in the
second partition .S, as:

n(- 1) =Y n (1)
l

The number of pairs of points in the same class in Sy but
different classes in S; can be written as
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=)

l

3 Z (nsk(2l, l/)>.

i
Similarly, the number of pairs of points in the same class in

S but different classes in S;.; can be written as

S(4)-5(8)

v i
Since all of the possible pixel pairs must sum to (1;7 ), the
number of pairs having different labels in Sie: and Sj is
given by

l

0S-S5 )

l/
which is computable in O(N + Ly Lj;) time. Hence, the
overall computation for all K images is O(KN + >, Ly,).
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