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The sensitive detection of protein interactions in living cells is an important first step toward

understanding each of the multitude of cellular processes that are regulated by such interactions.

Spatial image cross-correlation spectroscopy (ICCS) is one method used to measure

protein–protein interactions from the analysis of two-channel fluorescence microscopy images. In

spatial ICCS, cross-correlation of fluctuations in fluorescence intensity recorded as images from

two independent wavelength detection channels in a fluorescence microscope is used to determine

the average number of interacting particles in the imaged region. Even in situations where the

particle number density is relatively high, ICCS provides an accurate measure of molecular

interactions. However, it was shown previously that the method suffers from relatively high

detection limits of interacting particles (B20%) and can be perturbed by heterogeneous spatial

distributions of the fluorescent particles within the images. Here, we demonstrate new approaches

to circumvent some of the limitations of ICCS. Spatial scrambling of pixel blocks within

fluorescence images was investigated as a way of extending the detection of spatial ICCS to

measure lower interaction fractions as well as colocalization within cells. We also show that

‘mean-intensity-padding’ of regions of interest within fluorescence images is a feasible method of

applying ICCS to arbitrarily selected areas of the cell with boundaries or edge morphologies that

would be impossible to analyze with conventional ICCS. Using these newly developed strategies

we were able to measure the fraction of actin that interacts with a-actinin in the leading edge of a

migrating cell.

1. Introduction

The measurement of the entire set of protein–protein interac-

tions that drive most cellular functions is a daunting task that

has only started to be achieved in last fifteen years with the

development of high-throughput techniques such as two-hy-

brid screening.1,2 These methods have provided the necessary

tools to measure the complete interaction map of signaling

networks, such as the integrin receptor ‘adhesome’ (Fig. 1),3 as

well as the entire interactome of the budding yeast,

Saccharomyces cerevisiae.4,5 Understanding the effect that

the interconnected relationships between these proteins have

on the overall functions of the cell itself is quickly emerging as

a new paradigm in cell and systems biology. Although high-

throughput screening approaches offer a wealth of informa-

tion, the degree of specificity and sensitivity of these methods

is a common concern,6,7 as is the loss of spatial and temporal

information with respect to the individual protein interactions

in situ. These limitations necessitate the continued develop-

ment and application of new techniques that are capable of

fully characterizing the interaction between single protein

complexes, especially with respect to membrane-associated

protein interactions, which cannot be reliably measured using

most high-throughput methods (see ref. 8 for a review).

A molecular binding event (covalent, electrostatic, etc.)

inside a cell results in a number of measurable effects, which

can be used to monitor the presence of such interactions.

Changes in binding affinities,9 secondary structural changes,10

or reduced diffusion coefficients11 are just some of the effects

that have been observed following such binding events. Per-

haps this is the reason why so many different techniques can be

tailored to fit the particular detection needs of a given system.

For example, surface plasmon resonance,12 isothermal titra-

tion calorimetry,13 mass spectrometry,14 Raman spectro-

scopy,15,16 and atomic force microscopy17 have all been

successful in measuring, and in some cases quantifying, the

interaction between two proteins. None of these methods,

however, has found as widespread application as fluorescence

spectroscopy and microscopy, which are readily applicable to

live cell measurements unlike some of the techniques men-

tioned above.

Most approaches for measuring the interaction of cellular

constituents based on fluorescence microscopy require the

labeling of two species with different fluorophores and imaging

the emissions in two detection channels, which is then followed

by an appropriate method of analyzing the collected images.
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Montréal, Québec, Canada H3A 2T8.
E-mail: paul.wiseman@mcgill.ca

w This article is part of a Molecular BioSystems ‘Emerging Investiga-
tors’ issue highlighting the work of outstanding young scientists at the
chemical- and systems-biology interfaces.

672 | Mol. BioSyst., 2008, 4, 672–685 This journal is �c The Royal Society of Chemistry 2008

PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems



One such method uses two fluorophores (donor and acceptor)

with the appropriate spectroscopic properties such that För-

ster resonance energy transfer (FRET) will occur between the

two labelled interacting species. FRET is often used as a direct

measure of molecular interactions due to the extremely high

sensitivity of the FRET efficiency on the separation distance

(o10 nm) between the donor and acceptor-labelled macro-

molecules.18 However, interpretation of FRET data in the

presence of multiple donors and acceptors is often quite

difficult and the reason why most FRET experiments are

performed at low density labeling or on single donor–acceptor

pairs. Another common image analysis technique involves

statistical analysis of the two detection channel images for

the presence of spatially overlapping signals, i.e. colocalization

within pixels. This is typically accomplished by determination

of an intensity threshold value which is subsequently used to

classify all the pixels above this threshold as colocalized. The

measurement of a high degree of colocalization indicates close

proximity of the two labelled species, and therefore suggests a

nonrandom interaction between the two labelled molecules of

interest. This approach, pioneered by Manders’ and co-work-

ers, and similar variants, have been applied to numerous

biological systems to establish the presence of colocalization,

and therefore interaction, within fluorescence microscopy

images.19 Finally, we have shown that spatial correlation

analysis of intensity fluctuations in fluorescence images col-

lected via laser scanning microscopy (LSM) provides an

accurate measure of the number (and fraction) of interacting

particles within two-channel fluorescence microscopy

images.20 This technique, called image cross-correlation spec-

troscopy (ICCS), is particularly well suited for detecting and

quantifying molecular interactions when the total particle

number density of the system of interest is large.21 In fact,

the accuracy of ICCS was shown to be much greater than the

common statistical colocalization analyses based on

Manders’19 or Pearson’s correlation coefficients.22

Image cross-correlation spectroscopy was developed as a

spatial variant of fluorescence cross-correlation spectroscopy

Fig. 1 Integrin membrane receptor proteins mediate cellular adhesion and signal transduction in many different cell types by direct and indirect

association and recruitment of a vast array of proteins. Recently, the complete interaction network of integrin receptors was derived from

previously published data and is an excellent illustration of the complexity involved in a just a small subset of the complete interactome of

eukaryotic cells. Each line represents one of the 690 interactions between the 156 components. Reprinted by permission fromMacmillan Publishers

Ltd, Nat. Cell Biol. 9(8) 858–867, copyright 2007.
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(FCCS),23–25 which can measure the dynamic properties of

interacting fluorescently tagged macromolecules in solu-

tion,26,27 or in live cells.28,29 Fluorescence intensity fluctua-

tions that are recorded simultaneously in two spectrally-

separated detection channels, and arise from changes in the

fluorophore concentrations within a small observation volume

defined by the beam focus of an excitation laser(s), are cross-

correlated in time to reveal transport properties and number

densities of any interacting and non-interacting species. In

contrast, ICCS utilizes cross-correlation analysis of spatial

(and temporal) intensity fluctuations in images collected via

various fluorescence microscopy techniques, which allows for

the measurement of the number densities and transport dy-

namics of molecules moving at much slower timescales (e.g.

D = 0–0.1 mm2 s�1) than those accessible through FCCS. The

slower timescales accessible by ICCS analysis are appropriate

for measurements on fluorescently labelled membrane pro-

teins,30 or for quantifying the number of interacting immobi-

lized proteins within fixed cells.31 By demonstrating the ability

of ICCS to accurately measure interacting particle number

densities in single images at relatively high surface densities of

the fluorophore, we have shown that the technique is a viable

and important new tool for detecting protein colocalization in

cells. For a fluorescence cross-correlation measurement, inter-

acting species are those that are correlated in time or space

within the diffraction-limited beam focal volume. Hence,

molecular binding partners that are in direct contact and those

that are not in direct contact, but are part of a common

multimolecular complex, are by definition interacting. In most

cases it is only the fraction of interacting species that is

measured using these techniques, although equilibrium bind-

ing constants between directly associated proteins have been

measured using both FCCS and ICCS.21,32

Although ICCS outperforms other statistical fluorescence

colocalization methods, especially when the two labelled pro-

tein expression levels are different, the technique suffers from

relatively high detection limits (i.e. the minimum fraction of

interacting particles that can be measured).21 As we will show,

these detection limits depend strongly on the size of the area of

analysis. In addition, large perturbations of the spatial corre-

lation functions that are used to determine the number of

interacting particles are introduced by nonuniform particle

distributions, which can be the case in nuclear regions of the

cell, or when observing elements of the cytoskeleton, or for

confined morphologies such as filopodial extensions. In this

work, we present new strategies for overcoming aspects of

these limitations that significantly increase the range of applic-

ability of ICCS for measuring intermolecular interactions

within two-channel fluorescence microscopy images. Utilizing

computer simulated two-color images, we were able to control

the particle densities and interaction fractions, thus enabling a

complete characterization of the ICCS interaction fraction

detection limits. We show that spatially rearranging, or scram-

bling, the image prior to ICCS analysis significantly improves

the dynamic range of the technique by increasing the reliability

of the nonlinear fitting of the spatial correlation functions that

is required in ICCS. By imaging a focal adhesion associated

protein important in integrin activation, YFP-labelled talin,

we demonstrate the implication of nonuniform particle

distributions on spatial ICCS measurements and propose

alternative solutions to the problem. Finally, we use these

new strategies to measure the interaction fraction between

actin–mRFP and a-actinin–GFP at the leading edge of a

migrating cell using spatial ICCS.

2. Theory

In principle, ICCS can be applied to molecules that are free to

move in three dimensions, but is typically performed on

systems that are restricted to two dimensions (2D), such as

proteins that are embedded in the planar cell membrane. The

image collection is typically achieved by employing a confocal

or two-photon laser scanning microscope (LSM), but practi-

cally any fluorescence imaging system would suffice. For two-

channel confocal LSM imaging, two separate laser lines are

rapidly scanned across the sample to excite two spectrally

distinct fluorophores and the fluorescence emission is detected

separately and recorded in 2D image pixel arrays. The scan-

ning can also be repeated in time to generate an image time

series.30 With ICCS, therefore, two distinct types of fluores-

cence intensity fluctuations are recorded: spatial fluctuations

as a function of pixel position within a given image (i.e., a

single time sample), and fluctuations in time defined for each

pixel position through the entire image time series. This study

deals with the analysis of single, two-channel images, and we

will therefore only consider the spatial intensity fluctuations,

dik(x, y), within a given image in the discussion that follows.

The spatial fluctuations recorded in channel k, dik(x, y), are
defined as the difference between the fluorescence intensity

recorded at pixel position, (x, y), and the mean intensity of the

image, hiki:

dik(x,y) = ik(x,y) � hiki. (1)

It should be noted that in this definition all the pixels in a given

image are assumed to be recorded simultaneously, even

though a typical 256 � 256 pixels image may take B0.5 s to

be acquired on a laser scanning microscope. This assumption

is not problematic as long as the dynamics of the system of

interest are slower than the image acquisition rate while

correlations for those species that move faster than the ima-

ging rate will be lost. It should be noted, however, that ICCS

analysis of temporal image series will lead to determination of

the transport properties and average number density of inter-

acting fluorescently labelled molecules within the system. A

thorough description of the theory detailing several image

correlation methods that include temporal fluctuation analysis

can be found in the original papers30,33 and in a comprehensive

review of image correlation techniques.34

The reciprocal of the number of particles per beam area

(BA, defined by the spot area of the diffraction limited

excitation laser focus) in channel k, including both interacting

and noninteracting species, hNik, is equal to the square relative

fluctuation provided the fluctuations in fluorescence intensity

are due only to particle concentration fluctuations and that the

system is linear (e.g., two fluorophores are twice as bright

as one):
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hNi�1k ¼
hðdikÞ2i
hiki2

: ð2Þ

In practice, however, white noise sources contributing to every

pixel intensity within the image prevent a direct calculation of

the square relative fluctuation, thus necessitating its indirect

evaluation via extrapolation of the best fit function to the zero-

lags amplitude of the normalized spatial intensity fluctuation

correlation function:

rðx; ZÞkl ¼
hdikðx; yÞdilðxþ x; yþ ZÞi

hikihili
; ð3Þ

where x and Z are spatial lag variables, and the subscripts k

and l represent two distinct image detection channels. Eqn (3)

is an autocorrelation function when k = l and a cross-

correlation function when k a l. In order to estimate the

amplitude of the correlation functions, r(0,0)kl, the auto- or

cross-correlation functions are fit to a 2D Gaussian without

weighting the zero spatial-lags point:

rðx; ZÞkl ¼ rð0; 0Þkl exp �
ðx� uÞ2 þ ðZ� nÞ2

o2
0

" #
þ r1; ð4Þ

where the fit parameters are shown in bold and are the zero-

lags amplitude, r(0,0)kl, the e�2 laser beam radius, o0, the

position of the peak maximum, (u,n), and an offset parameter,

rN, to account for long-range spatial correlations. The num-

ber of interacting particles, hNikl, can then be determined from

the ratio of the cross-correlation amplitude to that of the

autocorrelation amplitudes, provided there is no fluorescence

quenching or enhancement upon binding of the fluorophores:

hNikl ¼
rð0; 0Þkl

rð0; 0Þkkrð0; 0Þll
Al

Ak
: ð5Þ

The ratio of the effective areas defined by the focal spots of the

two lasers (Al 4 Ak = po2
k) is included in eqn (5) when the two

excitation and detection volumes differ by a small amount,35

and can be measured directly from the fitted beam radii for

each detection channel. Finally, using eqn (5), we can define

the ICCS interaction fractions (IFs), MICCS, as the ratio of the

number of interacting particles to that of the total number of

fluorescently labelled particles in each detection channel,

M1ICCS ¼
rð0; 0Þkl
rð0; 0Þll

¼ hNiklhNikk

M2ICCS ¼
rð0; 0Þkl
rð0; 0Þkk

¼ hNiklhNill
:

ð6Þ

We refer to M1ICCS and M2ICCS as the ICCS colocalization

coefficients because, similar to Manders’ colocalization coeffi-

cients,19 they provide a measure of the observed colocalization

within the image regions analyzed. They also have the added

advantage of direct determination of the absolute number

densities of all interacting and non-interacting species.

3. Results and discussion

3.1 Improving the detection limits in ICCS

Due to the statistical nature of ICCS it is imperative that a

sufficient number of independent spatial samples, i.e. fluctua-

tions, be recorded to obtain meaningful results. As a measure

of the number of samples present in a given image, we

introduce a parameter called the number of independent

fluctuations (NIF). The NIF is defined as the ratio of the total

image area to the area of the beam focal spot (or Gaussian

convolution function in computer simulated images), since the

latter represents one fluctuation area sampled. It was deter-

mined previously that at NIF values of B1000, which corre-

sponds to 256 � 256 pixel images at typical pixel resolutions of

0.1 mm per pixel (o E 0.4 mm), the zero spatial-lags amplitude

of the cross-correlation function becomes indistinguishable

from the background correlation peaks at all higher spatial

lag values when the interaction fraction is o15%. Thus, when

B1000 independent fluctuations are sampled within both of

the images, the ICCS IF detection limit was determined to be

15%. Moreover, this detection limit was found to be indepen-

dent of the total particle density.21 In most experimental

situations 15% would be an acceptable interaction fraction

detection limit. The difference between 0, 2% or 5% interac-

tion, for instance, is typically not significant in the context of

biological systems due to the large cell-to-cell variability often

encountered when measuring any parameter in cells. Of great-

er concern is the relatively large amount of sampling that is

required to obtain such IF detection limits. Low sampling is a

common obstacle encountered for ICCS measurements on

various types of cells. For example, elongated fibroblast cells

can easily spread out over areas 41000 mm2, which corre-

sponds to B2000 independent fluctuations. A problem arises,

however, because in most cases, ICCS analysis over the entire

cell is not an option, either because the particle distribution is

nonuniform throughout the entire cell (to be discussed in

detail later), or it is of interest to measure the amount of

interaction in a particular subregion within the cell. In addi-

tion, other cell-types, such as cytotoxic T-cells for instance, are

nearly 10 times smaller (o100 mm2) than fibroblasts, which

will significantly reduce the spatial fluctuation sampling across

the cell (NIF B200).

In order to investigate the effect of spatial sampling on the

minimum IF that can be detected using ICCS, sets of 20 image

pairs were simulated with successively decreasing interaction

fractions, but with the total particle densities in channels 1 and

2 held constant and equal at 8 particles/BA. The minimum

interaction fraction was determined when more than half of

the 20 trials returned failed fits of the two-dimensional Gaus-

sian fit of the cross-correlation function. A failed fit was

defined as a fitted e�2 beam radius outside a range of �50%
of the simulation input value, or when the fitted peak position,

(u,n), was shifted by more than 2 pixels from the center, (x,Z).
This second criterion was included because it was found that in

some instances, large off-center peaks would appear as well-

defined Gaussian functions that would perturb the fitting of

the central peak. This procedure was repeated for varying

sample sizes (i.e. image areas) in order to determine the

dependence of the IF detection limit on the NIF sampled.

As the size of the image (NIF value) decreases, the ICCS

detection limit increases significantly (Fig. 2). The analysis of

small image areas (NIF o50) is not possible unless the IF is

very high (440% in the case of a 64 � 64 pixel region). The

analysis of such regions, which is often desired for the reasons
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mentioned above, could easily give false-negative results when

the true IF is quite large. One way to circumvent this problem

is to increase the NIF by acquiring multiple images as a

function of time and then performing spatial ICCS on each

of the resulting two-channel image pairs. The total NIF

sampled in the time series will increase provided the fluores-

cently labelled particles move (e.g., diffusion or flow) between

each successive image acquisition such that different spatial

distributions of the particles can be sampled. For example,

averaging three of the resulting spatial cross-correlation func-

tions calculated between images that were acquired at three

different points in time is equivalent to performing the cross-

correlation analysis on a single image pair that is three times as

large in area as the original images. Since the NIF is increased

3-fold in this case, the zero spatial-lags peak of the cross-

correlation function will be better resolved. This averaging

significantly facilitates the fitting procedure, thereby lowering

the IF detection limit (Fig. 3).

If however, acquiring multiple images in time is simply not

an option due to the nature of the sample (e.g. fixed cell, slow

moving particles, rapid photobleaching, etc.), then we propose

an alternate approach to actually reduce the IF detection

limits for a given NIF sampled. This will be described in the

following section. As alluded to above, ICCS analysis fails to

detect interaction fractions below the detection limits plotted

in Fig. 2 because of the difficulty in fitting the cross-correlation

function for such limited sampling. The zero spatial-lags

amplitude of the cross-correlation function is not well resolved

from the background correlation peaks at nonzero spatial

lags, which significantly perturbs the fitting routine. An im-

portant observation, however, is that the value of the zero

spatial-lags amplitude is still representative of the number of

interacting particles even at several IFs values below the

reported detection limits, it is just extremely difficult to extract

this value from the 2D Gaussian fit. Thus it is worthwhile to

investigate alternative methods for obtaining the cross-corre-

lation zero spatial-lags amplitude.

Recall that the reason for fitting of the spatial autocorrela-

tion function is the presence of the correlated white noise peak

that is present at spatial lags of zero. In principle, however, the

zero spatial-lags amplitude of the cross-correlation function

could be calculated directly from the spatial intensity fluctua-

tion data as there should be no cross-correlated white noise

(by definition of this noise) present between the two detection

channels:

rð0; 0Þkl ¼
hdikðx; yÞdilðx; yÞi

hikihili
: ð7Þ

There are some other factors, however, that must be consid-

ered before deciding to abandon the spatial cross-correlation

function fitting routine altogether. First, it is not uncommon

that the peak of the spatial cross-correlation function occurs at

spatial lags greater than zero, and the Gaussian fitting func-

tion allows for shifts in the cross-correlation peak. These pixel

shifts can be due to small misalignments between the two

detection channels.36 These pixel shifts would introduce error

into the direct calculation of the zero spatial-lags cross-corre-

lation amplitude from the image pixels. Since this is the case,

we could also determine the cross-correlation amplitude by

searching for a local maximum at small spatial lag values to

account for these small pixel shifts, although, due to the fact

that multiple peaks are commonly observed at small spatial

lags in low IF situations due to sampling noise, this method

would be difficult. Secondly, the zero spatial-lags amplitude of

the spatial cross-correlation function fails to be a good esti-

mator of the average number of interacting particles at low

enough IFs for a given NIF sampled. There will simply not be

enough cross-correlated fluctuations to precisely measure

these interactions. Therefore, fitting has the added advantage

of providing a built-in check of the quality of the measure-

ment, which the simple calculation directly from the pixel data

of the zero-lags cross-correlation does not provide.

Fig. 2 The minimum interaction fraction that could be detected using

ICCS analysis as a function of the number of independent fluctuations

(NIF) in the simulated images for both unaltered and the correspond-

ing scrambled image. Both channel particle densities were held con-

stant and equal (8 particles/BA) as the number of interacting particles

was decreased. The detection limit was defined as the IF at which more

than half of the 20 trials returned a fitted e�2 beam radius outside a

range of �50% of the simulation input value, or a fitted peak position,

(u,n), that was shifted more than 2 pixels from the center, (x,y). Shown

below is an overlay image of a 256 � 256 pixel image (NIF B 800)

with 10% interaction (below the detection limit) and the correspond-

ing spatial cross-correlation function. The 4 � 4 pixel block scrambled

image is also shown with the corresponding spatial cross-correlation

function to demonstrate the much better 2D Gaussian fit when the

image is randomly scrambled prior to ICCS analysis.
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3.2 Image scrambling for spatial ICCS

All information regarding the locations of the particles within

an image is lost when a spatial correlation function is calcu-

lated from that particular image due to the averaging per-

formed over all spatial lags. This implies that spatial

rearrangement of all the pixels, or blocks of pixels, within an

image, and subsequent spatial correlation, will result in an

identical zero spatial-lags value as that of the unaltered image

(see eqn (7)). Fig. 4 shows a schematic diagram of the image

scrambling procedure. The only difference between the spatial

auto- and cross-correlation functions calculated for a parti-

cular image and a spatially scrambled variant of that image, is

the width of the correlation function decay, which in turn

depends on the size of the scrambled motif. For example,

scrambling all of the individual pixels in an image by randomly

assigning each one of them a new location will destroy the

inherent spatial correlation that was present prior to the

rearrangement procedure (i.e. the particles were correlated

with themselves over several pixels due to the fact that the

diffraction-limited diameter of the focussed laser beam used to

excite them was larger than the pixel size). In this case, the

spatial correlation (at nonzero spatial lags) of the particles

within the image was destroyed by the pixel scrambling. The

spatial autocorrelation will have one peak at zero spatial lags

(identical to the maximum of the peak that would result from

correlation of the unscrambled image), and will effectively be a

delta function. We can, however, preserve some of the spatial

correlation of the particles within the image if instead of

scrambling individual pixels, we divide the image into 2 � 2

pixel blocks, and then perform the random assignment of these

blocks to new locations within the image. This time, the spatial

autocorrelation function will only decay to zero after two

spatial lags because the 2 � 2 pixel blocks are still spatially

correlated after a shift of only one pixel (Fig. 5). The same will

be true of the spatial cross-correlation function calculated

between two images that were randomly scrambled in an

identical fashion. Again, the zero spatial-lags value of the

autocorrelation function for the scrambled image is identical

to that of the unscrambled image, although the value at a

spatial lag of one is lower for the autocorrelation of the

scrambled image. By dividing the image into 2 � 2 pixel

sections, and changing the position of these blocks, we have

effectively thrown away several of the spatial lag = 1 values

Fig. 3 A two-channel image time series of diffusing particles was simulated with total number densities of 8 particles/BA and an IF of 20%. (A)

ICCS analysis of the first pair of images in the time series results in a poor fit of the spatial cross-correlation function due to a lack of spatial

sampling (NIF = 13). By averaging the spatial cross-correlation functions calculated between the first 10 pairs of images (B) (NIF = 130), or the

entire 100 pairs of images (C) (NIF = 1300), the central peak of the cross-correlation function is increasingly well-resolved due to the greater

number of spatial samples.
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that would normally be included in the overall spatial average

used to calculate this point in the correlation function. There-

fore, the overall effect on the correlation function of spatially

rearranging the image in this manner is to artificially increase

the rate at which the function decays to zero, while leaving the

zero spatial-lags amplitude unaffected. The degree to which

this rate of decay to zero is increased by scrambling depends

solely on the size of the pixel scrambling blocks used to create

the rearranged image.

Artificially increasing the rate at which the spatial cross-

correlation function (and autocorrelation functions) decays to

zero aids significantly in resolving its central zero spatial-lags

peak from background noise correlation at longer lags. This

becomes a considerable advantage when attempting to fit this

function in a low spatial sampling situation. For this reason,

computer simulation experiments identical to those performed

to determine the IF detection limits in ICCS were carried out,

except this time, the images were randomly scrambled prior to

ICCS analysis in order to see to what extent the effect of

scrambling had on lowering the IF detection limit. The results

are plotted in Fig. 2 along with the results obtained by simply

fitting the spatial correlation functions calculated for the

unaltered images as described above.

We can see from Fig. 2 that performing random spatial

scrambling of 4 � 4 pixel blocks within the images prior to

ICCS analysis significantly lowered the measured IF detection

limits. This observed reduction is entirely due to the increased

probability of obtaining a successful fit of the spatial cross-

correlation function, calculated after image scrambling. How-

ever, there still exists a fundamental detection limit that cannot

be overcome by image scrambling. It was found that the

measured IF detection limit using the spatial scrambling

method was minimized as long as the scrambled block dia-

meter was less than the number of pixels in the e�2 radius of

the Gaussian convolution function (simulating the laser beam

focus radius, o0). The 4 � 4 pixel block size was chosen to

provide the maximum advantage in fitting of the reduced-

width cross-correlation function, while maintaining a reason-

able number of points in the decay of the spatial correlation

function to permit fitting.

3.3 Particle distribution

In addition to the NIF sampled within a given image, an

equally important parameter that should be considered care-

fully before applying ICCS to measure interactions is the

spatial distribution of the particles themselves. In all of the

ICCS measurements presented thus far, it was assumed that

the positions of the particles within a given image are ran-

domly distributed from a uniform distribution. The validity of

this assumption is most readily assessed through visual in-

spection of the resulting images. If the spatial distribution of

particles in uniform, then the number of particles within each

of the small subregions defined by the excitation laser beam

area (i.e. a single independent spatial fluctuation) will obey

Poisson statistics. The amplitude of the 2D spatial auto- and

cross-correlation functions calculated for these types of images

will be related to the particle density, and the functions will

decay to zero over the spatial scale defined by the beam focus

(assuming the particles are smaller than the focus size). If,

however, the positions of the particles within a given image are

not distributed in a random, uniform fashion, then an addi-

tional spatial correlation due to this nonuniform particle

distribution will result. The spatial autocorrelation function

calculated for these images will then consist of contributions

from the spatial correlation of this additional, nonuniform

particle distribution, and from the underlying spatial correla-

tion of the individual particles that is related to the desired

particle densities (see Fig. 6). These additional contributions to

the spatial correlation function will, in certain cases, greatly

affect its shape, and perturb the subsequent nonlinear least

squares fitting. These contributions also influence the relation-

ship between the zero spatial-lags amplitude and the particle

number density in a non-trivial way. Not surprisingly, pertur-

bations in either of the two autocorrelation functions due to

Fig. 4 Image scrambling procedure. Overview of the process leading

to the randomization of Sx � Sy pixel blocks within an Nx � Ny pixel

image. First, the images are evenly divided into Sx � Sy pixel blocks.

In this example there are 64, 32 � 32 pixel blocks. The first block of

both images (highlighted) is randomly assigned a new position within

the 8� 8 block array. This process is repeated for the remaining blocks

within the images until the resulting scrambled images are obtained.
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Fig. 5 The effect of random spatial scrambling of individual pixel blocks within a 256 � 256 pixel image on the spatial cross-correlation function

calculated for the resulting scrambled images. The IF was set to 0.5 for the simulation. A one-dimensional section of the 2D spatial autocorrelation

function through the maximum is shown for clarity. Scrambling does not alter the zero spatial-lags value, r (0, 0)11, but reduces the value of the

function at each successive non-zero spatial lag. Smaller pixel block sizes used for spatial scrambling will increase the rate at which the spatial

cross-correlation and autocorrelation functions decay to zero.

Fig. 6 The effect of uniform and nonuniform spatial distributions of particles on the autocorrelation function. (A) The probability distribution

function from which the particle x (and y) coordinates were randomly chosen to create the simulated images shown in (B). The spatial

autocorrelation functions calculated for the images are plotted in (C). Background white noise was added to the images, which manifests itself in

the autocorrelation functions as a sharp peak augmenting the zero spatial-lags value.
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nonuniform particle distributions will also be manifested in

the calculated cross-correlation function between the two

images.

Nonuniform distributions of fluorescently labelled proteins

and other biomolecules in cells are very common, and hence,

this presents a difficult challenge for spatial ICS and ICCS

analysis of such systems. Typical manifestations of nonuni-

form particle distributions in cells include large concentration

gradients within the imaging region, as well as the formation

of large clusters of particles arranged in elongated structures

when incorporated into macromolecular complexes (simulated

in Fig. 6B).

3.4 ICCS analysis of focal adhesion proteins

Cellular adhesion and migration is largely regulated by a class

of heterodimeric transmembrane proteins called integrins.

Integrin proteins provide a direct structural link between the

extracellular matrix and elements of the cytoskeleton thereby

providing ‘anchorage’ points for attachment and subsequent

migration across surfaces. Many different proteins are re-

cruited to these sites of attachment, in addition to integrins,

forming large multi-protein complexes, which are collectively

referred to as focal adhesions (FAs, see Fig. 1). Integrin

proteins act as signaling molecules, by relaying signals that

are initiated at the exterior of the cell by the binding of

extracellular matrix ligands to the integrins in the membrane,

and ultimately passing the signal to the interior of the cell.

Integrin receptor proteins have been shown to be involved in

the signaling pathways leading to cell growth and differentia-

tion, as well as cell survival and apoptosis.37

A complete understanding of the spatial and temporal

relationships between the multitude of proteins (e.g. talin,

a-actinin, paxillin) that comprise FAs is the goal of many

current studies. To this end, the study of integrin and integrin-

associated proteins is particularly well suited to ICCS analysis

because of the fact that the protein is restricted to a planar

membrane surface, and because of the relatively slow dy-

namics of these cell migration proteins that allow for the

process to be adequately sampled in time. One major draw-

back of using spatial ICCS analysis to measure interactions

between FA proteins, however, is the spatially nonuniform

particle distribution that so often results from the heteroge-

neous distribution of these complexes in the membrane. As

shown in Fig. 6, any deviation from a uniform particle

distribution can make the fitting of the autocorrelation and

cross-correlation function amplitudes problematic, and hence

determination of the interaction fractions, M1ICCS and

M2ICCS, virtually impossible.

Fig. 7A shows an LSM image of YFP–talin fusion protein

in a CHO cell plated on a glass coverslip coated with fibro-

nectin, which is the extracellular binding ligand of a5-integrin
proteins. Talin is a protein that is known to bind to the

cytosolic tail of the majority of the eight mammalian integrin

b subunits, and acts as an intermediary protein that provides a

link between the integrin and the cytoskeleton.38 Recent

studies have shown that the binding of talin to the integrin b

Fig. 7 (A) A confocal LSM image of YFP–talin fusion protein in a CHO–K1 cell. (B) A 256 � 256 pixel region of the cell was selected for spatial

correlation analysis. 8 � 8 pixel blocks of the selected subregion were randomly scrambled. The spatial autocorrelation functions calculated for

both the image and the scrambled image are shown in (C) along with 2D Gaussian fit functions (mesh). Note the problems with the fit to the

correlation function for the unscrambled image due to large focal adhesion structures in the original image.
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subunit causes a conformational change in the transmembrane

receptor that leads to its activation (i.e., an increase in its

affinity for extracellular ligands).39 It is this integrin activation

process that initiates most of the cell signal transduction

pathways regulated by integrin proteins.40

We can see in Fig. 7A that talin is localized in distinct

elongated structures, which are the FAs. It is also clear from

the figure that the spatial autocorrelation of the YFP-labelled

talin image is not well fit by the 2D Gaussian function and the

fit amplitude is underestimated. It was shown that randomly

scrambling blocks of pixels within an image can significantly

enhance the ability to fit the corresponding cross-correlation

function and extract accurate amplitude information in low

sampling situations. Similarly, in cases where a nonuniform

spatial distribution of particles leads to large perturbations in

the Gaussian fitting of the autocorrelation function, spatially

scrambling the images prior to correlation analysis will allow

for a more reliable estimation of the autocorrelation function

amplitude from the fit. This is demonstrated in Fig. 7B where

the region of analysis has been divided into 8 � 8 pixel blocks,

the positions of which have been randomly permuted. The

corresponding autocorrelation function is shown in solid color

and its nonlinear least squares fit (mesh) provides a much

better estimate of the correlation function amplitude than the

identical analysis on the non-scrambled image. The actual zero

spatial-lags point was not weighted in the 2D fit due to the

presence of white noise, and is omitted from the plot.

Although the amplitude of the spatial autocorrelation func-

tion determined after applying spatial scrambling is a better

estimate of the true zero spatial-lags amplitude, it is still

difficult to interpret. Due to the fact that the adhesions in this

case are B10 times larger than the excitation laser beam area,

conversion of the autocorrelation function amplitude into a

more meaningful number density is challenging.41 In this case,

the large spatial intensity fluctuations arising from the pre-

sence of the adhesions dominate the cross-correlation func-

tion. Image scrambling does in fact aid in extracting the auto-

and cross-correlation function amplitudes, but the calculated

IFs represent a measure of the cross-correlation between the

macroscopic adhesion structures (data not shown). In certain

situations the measurement of the IF between large structures

as opposed to smaller molecular complexes might be desired.

However, if this is not the case, then practical considerations

presented in the following section may aid in the measurement

of the molecular IF inside the larger multicomponent

complexes.

3.5 ICCS analysis of arbitrary regions within images

ICCS analysis is typically performed on small subregions of

the acquired two channel images, due in part to nonuniform

particle distributions that were discussed in the previous

section. In some cases, the actual region of interest may only

be a small, or oddly shaped subregion of the cell itself (e.g. the

leading edge of a migrating cell, Fig. 10). Due to the perturba-

tions of the spatial correlation functions caused by the pre-

sence of any ‘edges’ (spatial fluorescence discontinuities) in the

images to be analyzed, it is not always possible to select a

completely arbitrary square or rectangular subregion of the

image for analysis. These constraints restrict the use of ICCS

in a number different situations. Consider the confocal LSM

image of a CHO–K1 cell with GFP-labelled a5-integrin as

shown in Fig. 8. Spatial correlation analysis of a rectangular

region within the center of the cell will significantly reduce the

NIF sampled within the image compared to the case where the

entire, circular-shaped cell is selected. Therefore, by selecting

the rectangular region on which to apply ICCS, we are

effectively throwing away valuable spatial fluctuation infor-

mation. As we have demonstrated, in many cases it is im-

perative to perform ICCS analysis on images containing a

large NIF, and it is therefore of the utmost importance to

retain as many independent spatial fluctuations from the

original image as possible.

In ICCS, spatial intensity fluctuations, di(x,y)k = i(x,y)k �
hiik, recorded at each pixel position are cross-correlated. The

fluctuations that are measured for any pixel that has an

intensity value equal to the average intensity, hiik, will be zero
by definition. Similarly, these pixels will contribute zero to the

calculated spatial auto- and cross-correlation functions (eqn

(3)). This simple observation can be used to aid in the ICCS

analysis of arbitrarily shaped subregions in cells. For instance,

if an arbitrary region of the imaged cell is selected, then the

resulting matrix can be ‘padded’ with the mean intensity of the

selected pixels to create a final Nx � Ny image for subsequent

ICCS analysis. The number of pixels that are added to the

Fig. 8 Confocal LSM images of CHO–K1 cells expressing a5-integ-
rin–GFP. (A) Spatial autocorrelation analysis of the central region of

the cell results in a good fit of the correlation function (o0 = 0.31 mm).

(B) Spatial autocorrelation analysis of the entire image, including off-

cell contributions, results in a poor 2D fit of the correlation function

(o0 = 0.94 mm). (C) Replacing the background with the mean

intensity of the cell leads to a good fit of the autocorrelation function

(o0 = 0.34 mm). In addition, 62%more NIF were included in (C) than

in (A). Scale bar, 5 mm.
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selected region of interest is not important as long as they

surround this region to complete a rectangular Nx � Ny pixel

array. From the equation for the spatial auto- and cross-

correlation functions given above and in eqn (3), one can see

that any ‘padding’ of the selected region of interest with its

average intensity will not contribute to the numerator of the

spatial correlation functions, but will in fact, decrease the

entire function by a factor that is proportional to the number

of pixels that were added to the image (Fig. 9).

This decrease occurs because we have artificially introduced

additional spatial lag values to be included in the spatial

averaging that is performed when calculating the correlation

functions. This is easily accounted for, however, and in cross-

correlation experiments, where we are only interested in the

ratio of the cross-correlation function amplitude to that of the

autocorrelation function, no adjustments are necessary be-

cause this ratio will remain unchanged. Arbitrary subregions

of images can now be analyzed by simply ‘padding’ the

resulting selection with the mean intensity of the fluorescence

signal of the selected subregion. Normal ICCS analysis of such

images will then result in accurate IF measurements.

This method for selecting arbitrary subregions within

images was applied to two channel total internal reflection

fluorescence (TIRF) microscopy images in order to measure

the IF between the cytoskeletal protein, actin, and one of its

binding partners a-actinin. The a-actinin protein constitutes

an important component of FAs by linking intracellular actin

filaments to transmembrane integrin receptors, thus coupling

the cytoskeleton to the extracellular matrix.42,43 While these

two proteins are known to interact, less is known about the

fraction of interacting molecules, especially in different regions

of the cell.

In order to measure the interaction between actin and

a-actinin at the leading edge of a migrating cell (outside of

well-formed FAs), a small subregion of the two channel TIRF

image (a-actinin–GFP and actin–mRFP) was manually se-

lected at the cell front. The mean intensity of this small

subregion was then used to ‘pad’ the surrounding regions to

create two images with a total size of 256 pixels (Fig. 10). 4 � 4

pixel sub-blocks of these images were then randomly spatially

scrambled and ICCS analysis was performed on the resulting

images. It was found that there was significant interaction

between actin–mRFP and a-actinin–GFP in this manually

selected region (M1ICCS = 0.71 and M2ICCS = 0.62). This

demonstrates that the extension of ICCS analysis to manually

selected image subregions is possible in two channel fluores-

cence images, which can be an important tool in measuring

molecular interactions in subregions within cells with hetero-

geneous distributions of proteins.

Selection of arbitrary regions of interest within the image in

this manner significantly increases the range of images to

which ICCS can be applied. Combined with random scram-

bling of pixel blocks within the image, the ‘mean-padding’

procedure allows for small numbers of interacting particles in

small user-defined regions of the cell to be measured with

relative ease using ICCS, which would be extremely difficult to

measure without the use of such tools. These simple methods

for overcoming some of the inherent limitations in the ICCS

technique have extended its practical application to measuring

interactions in cells.

5. Conclusions

Spatial ICCS is a powerful tool for measuring interactions

between macromolecules in cells via fluorescence microscopy

Fig. 9 For each channel of the 256� 256 pixel two channel overlay image, the respective mean intensities were ‘padded’ around the outside of the

image matrix creating a final 512 � 512 pixel image. The resulting spatial cross-correlation function (and autocorrelation functions) for the ‘mean-

padded’ image is exactly 4 times smaller than that of the original image due to the increased area that was added.

Fig. 10 The interaction of actin and a-actinin at the leading edge of a

migrating cell. The interaction of actin and a-actinin at the leading

edge of a migrating cell. A cellular subregion within the two channel

TIRF microscopy overlay image of actin–mRFP and a-actinin–GFP

was manually selected (white area). Pre-processing of the images by

mean-padding, and spatial sub-block scrambling was carried out prior

to ICCS analysis to determine the IFs between the two proteins via

ICCS (M1ICCS = 0.71 and M2ICCS = 0.62). Scale bars are 10 mm.

Images courtesy of Prof. Rick Horwitz.
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image analysis, especially when the particle number density is

high. In fact, ICCS is sensitive to any type of spatial molecular

association, whether it is mediated through a covalent or

electrostatic interaction, or via an unlabelled intermediary

protein as part of a larger complex. However, certain limita-

tions such as the relatively high IF detection limit and the need

for uniform particle distributions, have remained a significant

obstacle for the application of spatial ICCS analysis to many

biological systems. In this work, we have developed two

strategies to extend the scope of spatial ICCS analysis, and

to significantly improve the practical usage of the technique.

First, the random scrambling of small sub-blocks within the

image and second, the mean-padding procedure for arbitrary

sub-region selection.

The IF detection limits of ICCS can limit the effectiveness of

the method in many experimental situations and these are

strongly dependent on the NIF sampled within the image.

However, it was shown that dividing the image into smaller

Sx � Sy pixel sub-blocks and randomly redistributing these

blocks throughout the entire Nx � Ny image, dramatically

improved the fit quality for the calculated spatial cross-corre-

lation function for images with low NIF sampling, thereby,

decreasing the IF detection limits. The random scrambling of

smaller sub-blocks within the image increases the rate at which

the spatial cross-correlation (and autocorrelation) function

decays to zero, but does not affect the zero spatial-lags

amplitude. The net result is a narrowing of the correlation

functions, which increases the chance of obtaining a good fit to

the 2D Gaussian function because it leads to better spatial

resolution of the central peak from random background

correlations. The use of this scrambling method was also

shown to extend the application of ICCS to the measurement

of the colocalization within large, irregularly shaped objects

within the images, such as focal adhesions that normally

would preclude the application of ICCS.

We introduced a procedure to select arbitrary regions of the

images for analysis. This procedure consisted of ‘padding’ the

matrix that contained the selected region of interest with the

mean intensity of that region. ICCS analysis of these types of

images resulted in identical spatial correlation functions,

reduced by a factor proportional to the number of pixels that

were added around the region of interest. This practical tool,

combined with the image scrambling procedure, allows one to

select individual focal adhesions, cell protrusions, or other

small regions of interest for subsequent ICCS analysis of the

molecular interactions within these structures. Selection of

arbitrary regions of interest within the image in this manner

significantly increases the range of systems to which ICCS can

be applied. Combined with random scrambling of pixel blocks

within the image, the mean-padding procedure allows for low

numbers of interacting particles in small user-defined regions

of the cell to be measured with relative ease using ICCS. This

would be extremely difficult to measure without the use of such

tools. We have shown that simple methods for overcoming

some of the inherent limitations in the ICCS technique have

extended its practical application for measuring protein inter-

actions in cells. Due to the statistical nature of spatial ICCS,

certain limitations persist such as the requirement of relatively

large areas of analysis. This implies that spatial ICCS cannot

be applied to arbitrarily small subregions within a cell as

would be necessary in the case of images of neuronal dendrites

or bacteria. In addition, the application of ICCS results in a

measure of the degree to which two molecules are spatially

associated and is therefore only an indirect measure of inter-

action. As such, other in situ techniques such as FRET

together with in vitro co-immunoprecipitation studies are

necessary to confirm the direct interaction of the two mole-

cules of interest.

Finally, we have presented a method to quantify the inter-

action of cellular components from fluorescence images col-

lected at a given time. However, to gain more insight into the

important temporal relationships between these components,

temporal ICCS and related techniques must be performed on

two-channel time series to measure the co-transport of these

proteins.

6. Experimental

6.1 Simulated images

All the image simulations and correlation function calcula-

tions were performed using custom written MATLAB 7.0

(The MathWorks, Natick, MA) routines and the image pro-

cessing and optimization toolboxes. These routines are freely

available at http://wisemangroup.mcgill.ca/software.php. De-

tails of the simulations and analysis have been published

previously.21

6.2 Transfection of fluorescent protein constructs

CHO–K1 cells (Sigma-Aldrich, St. Louis, MO) were cultured

in Dulbecco’s modified Eagle’s medium supplemented with

10% fetal bovine serum, 4 mM L-glutamine, 100 units mL�1

penicillin, 0.1 mg mL�1 streptomycin, and 0.1 mM nonessen-

tial amino acids (Gibco, Carlsbad, CA). Cells were maintained

in a humidified 5.0% CO2 atmosphere at 37 1C. Cells were

plated on 6-well dishes (VWR, Mississauga, ON) and grown

for 2 days. Two solutions were prepared for each well to be

transfected (12 solutions total). The first set of solutions was

prepared by diluting 5 mL of lipofectamine (Invitrogen, Carls-

bad, CA) in 50 mL of OptiMEM (Invitrogen). The second set

of solutions was prepared by diluting 1 mL DNA plasmid

encoding for YFP–talin (Prof. Horwitz Lab, University of

Virginia) in 50 mL OptimMEM. These two sets of solutions

were mixed and left at room temperature for 20 min. The

resulting 100 mL lipofectamine–DNA solutions were then

added to the 6-well plates containing the cells, and were

incubated for 6 h at 37 1C, and 5.0% CO2. After the 6 h

incubation time, the liquid was removed from each well and

replaced with normal growth media. After 25 h, the cells were

removed from the surface of the 6-well plate by addition of a

0.25% (w/v) trypsin solution. The cells were then incubated at

37 1C on 35 mmmicrowell dishes (MatTek, Ashland MA) that

had been coated with fibronectin. These dishes were coated by

incubation for 1 h at 37 1C with a 2 mg mL�1 solution of

fibronectin in PBS. The cells were then fixed with a 4% (w/v)

paraformaldehyde solution for 10 min at room temperature

and then imaged. MEF cells were cultured and transfected as
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described previously.44 Stable a5–GFP transfected cell lines

were generously provided by Prof. R. Horwitz.

6.3 Microscopy

The CHO cells expressing YFP–talin were imaged using a

FV300 Olympus (Olympus America, Melville, NY) confocal

LSM. Excitation of YFP was provided by the 514 nm laser line

of an Ar ion laser. The resulting fluorescence emission was

collected with an Olympus 60� PlanApo oil immersion objec-

tive (NA 1.4). Wavelengths between 535 nm and 565 nm were

selected using a band-pass emission filter (Chroma, Rock-

ingham, VT) and detected using a photomultiplier tube with

a voltage of 550 V. The pixel resolution of these images was

0.12 mm. The TIRF system used to image actin–mRFP and a-
actinin–EGFP was described in detail previously.44 Confocal

imaging of a5–GFP CHO–K1 cells was described previously.20
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