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Abstract: Cell migration is a complex biological process that involves changes in shape and orga-
nization at the sub-cellular, cellular, and supra-cellular levels. Individual and collective cell migration
can be assessed in vitro and in vivo starting from the flagellar driven movement of single sperm cells
or bacteria, bacterial gliding and swarming, and amoeboid movement to the orchestrated movement
of collective cell migration. One key technology to access migration phenomena is by using opti-
cal microscopy in combination with image processing algorithms. This approach resolves simple
motion estimation (e.g. preferred direction of migrating cells or path characteristics), but can also
reveal more complex descriptors (e.g. protrusions or cellular deformations). In order to ensure an
accurate quantification, the phenomena under study, their complexity, and the required level of de-
scription need to be addressed by an adequate experimental setup and processing pipeline. Here,
we review typical workflows for processing starting with image acquisition, restoration (noise and
artifact removal, signal enhancement), registration, analysis (object detection, segmentation and
characterization) and interpretation (high level understanding). Image processing approaches for
quantitative description of cell migration in 2- and 3-dimensional image series, including registra-
tion, segmentation, shape and topology description, tracking and motion fields are presented. We
discuss advantages, limitations and suitability for different approaches and levels of description.
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INTRODUCTION
Computational methods for analysis of dynamic

events associated with cell migration have become in-
creasingly important. The combination of light mi-
croscopy with digital image processing algorithms is a
powerful tool to quantify dynamic events like cellular dis-
placements, rearrangements and morphology changes
at sub-cellular, cellular, and supra-cellular levels (Fig. 1).
Migratory events can be observed as individual and
collective cell displacements, ranging from the flagel-
lar driven movement of single sperm cells or bacte-
ria [1], bacterial gliding and swarming [2], amoeboid
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movement [3], or the orchestrated movement of collec-
tive cell migration [4]. Depending on the context, dif-
ferent image processing algorithms have to be applied
in order to quantify trajectories of single objects or to
estimate the motion of organized cell groups or tissue.
In addition, motion can be coupled with descriptors that
characterize the shape or topology of single or grouped
cells. In order to attain an accurate analysis of the bio-
logical phenomena under investigation, multiple factors
need to be addressed. Experimental sample and acqui-
sition settings such as field of view, sampling intervals
(space and time), imaging technique, markers, fluores-
cence characteristics, quality of the microscopic signal,
and camera/detector define the quality of the image se-
ries. In addition, images must be processed and an-
alyzed with adequate mathematical and computational
tools in order to access the desired information.



A series of new microscopy techniques has emerged
over the last years, which have increased the demand
for advanced computational methods. For in vivo obser-
vations at sub-cellular levels, fluorescence microscopy
has become a standard tool for 2D and 3D imaging.
The use of various markers and filters also allow the
observation of different structures, using a range of flu-
orescence channels simultaneously. Even though the
spatial resolution of conventional optical microscopy is
limited by Abbe’s law of diffraction [5], resolution be-
yond the diffraction limit has been achieved with differ-
ent approaches. Some methods like Structured Illumi-
nation Microscopy (SIM) [6, 7], Stimulated Emission De-
pletion (STED) [8], or 4π-microscopy [9], alter the shape
and dimension of the basic emission unit of a molecular
light source, the so-called Point Spread Function (PSF).
Some techniques depend on extensive post processing
of the acquired image series like Photo Activated Local-
ization Microscopy (PALM) [10], Stochastic Optical Re-
construction Microscopy (STORM) [11], SIM, and Super-
resolution Optical Fluctuation Imaging (SOFI) [12, 13].
Readers interested in optics and image acquisition tech-
niques and possible pitfalls are referred to specialized
literature [14, 15, 16].

At cellular and supra-cellular levels, fast imag-
ing techniques based on Spinning Disk Microscopy
(SDM) [17] or Light Sheet Microscopy (LSM) [18, 19] can
acquire images over a larger field of view more quickly
and/or with greater depth, compared to conventional
confocal laser scanning microscopes. In these novel
techniques, basic image properties such as Signal-to-
Noise Ratio (SNR), background characteristics, spatial
and temporal sampling frequencies, and characteristic
PSFs render very different raw materials for subsequent
analysis. The choice of adequate methods for denoising,
segmenting Regions Of Interest (ROIs), descriptors of
shape and topology, tracking, and motion fields, requires
a combination of backgrounds in mathematics, physics
and computer science.

This review is intended to aid the life scientist decid-
ing on whether to choose or adapt the most adequate
computational strategy when it comes to the quantitative
analysis of events associated with cell migration. The
article organization is summarized in Fig. (2), which fol-
lows the typical pipeline of a computational image anal-
ysis of migration. In order to set a common language for
the remaining sections, we define a digital image as an
array of pixels in 2D (voxels in 3D), with numeric values
(brightness in color channels) associated to each pixel

that reflect optic properties of the sample. The numer-
ical pixel values are determined by the bit depth of the
image1. Commonly, digital images contain brightfield,
phase contrast, or fluorescence readings correspond-
ing to direct (autofluorescence) or indirect signals from a
subjacent cellular structure (e.g. marked by fluorescent
proteins, fluorescent antibodies, or quantum dots).

RESTORATION AND REGISTRATION

The quality of digital image series acquired by light
microscopy is affected by multiple phenomena. The de-
gree of photon noise and the shape of the microscopic
PSF are a consequence of the optical components and
the sensitivity of the sensors. In addition, sample drifts,
rotations, or volumetric changes are either related to
the mechanical stability of the system, such as platform
movements in the xyz axis, or arise as a result of the
evolution of the biological specimen during in vivo ex-
periments. Finally, fast 3D scanning techniques may
produce significant data volumes with empty or irrele-
vant information [20, 21]. This section discusses the
related technical and experimental factors that need to
be considered within an image processing framework to
address image quality issues.

Restoration: denoising and deconvolution

The combination of high signal intensities from the
desired microscopic structure, low signal intensities from
the background of the image, and low pixel noise facili-
tates quantitative image processing [22, 23]. In order to
maximize the success and robustness of posterior im-
age processing routines, it is important to enhance the
SNR [15], paying close attention to the image acquisition
setup and the protocols prior the experiment such as la-
beling, mounting and configuration of the optical system
during sample preparation.

While signals from non-desired structures (e.g. due
to autofluorescence, spectral overlap, or unspecific la-
beling) can be minimized during sample preparation and
acquisition, remaining fluctuations at the single pixel
level, or so-called photon noise, affect virtually all ac-
quired microscopic raw images. Only some super-
resolution techniques like PALM, STORM, SOFI, and its
derivatives remove pixel noise as a result of their intrinsic

1The bit depth corresponds to the number of bits used to represent
the intensity/color values, e.g. 8, 12, 16 bit codes per pixel allow 256,
4096, 65536 intensity values respectively.
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Fig. (1). Schema of cell migration at three levels: supra-cellular, cellular, and sub-cellular. (A) Epithelial cells
tissue migrating during a wound healing assay. (B) Single cell migration. (C) Structural reorganization of internal
actin fibers during cell migration. Cytoplasm (blue), nucleus (white), and directional migration signal (green).

localization and fluorescence emission profile [10, 12,
13].

For all other techniques, pixel-level noise and the
3D shape of the PSF are the major obstacles for cor-
rect signal detection [24]. This is especially true when
weak excitation or fast imaging is required [25, 26]. In
particular, for imaging near the diffraction limit of light
microscopy, the size of the image pixels (or voxels in
3D) must become smaller than the size of the micro-
scopic PSF (commonly determined by the Full Width at
Half Maximum, FWHM). When the pixel-level noise be-
comes smaller than the sample signals which distribute
as Gaussian PSFs over a vicinity of pixels, this spatial
difference becomes a key element for efficient noise re-
moval through deconvolution.

The so-called deconvolution process aims to reduce

noise and simultaneously correct signal intensities us-
ing the shape of the microscopic PSF. Deconvolution is
essential for a reliable quantification of fluorescent inten-
sities of cellular structures or ion concentrations, espe-
cially near the resolution limit [24, 20]. Several deconvo-
lution methods have been developed. Here we summa-
rize classical, non-linear, and some more complex ap-
proaches.

Classical deconvolution algorithms [21] are based on
linear approaches. For instance, the Wiener filter [27]
was formulated for signal-independent additive Gaus-
sian noise models providing a reduction of the effect of
small coefficients in the Fourier domain. Another clas-
sical approach is the Tikhonov-Miller filter [28, 29], a
linear filter which minimizes a functional which is the
squared difference between the acquired image and a
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Fig. (2). Image processing pipeline for the analysis of cell migration.

blurred estimate of the original object regularized by a
Tikhonov energy bound. The drawback of linear filters
is that they cannot restrict the solution domain requir-
ing the incorporation of additional constraints, e.g. fi-
nite support, smoothness, regularization terms, or non-
negativity. The non-negativity constraint is a limitation
since the intensities of the images represent light energy
(number of photons) which cannot be negative [28].

Non-linear deconvolution approaches incorporate
these constraints [21] through iteratively minimizing the
error functions defined between the acquired image and
blurred estimate of the original object [30]. Some ex-
amples of these approaches are Jansson-van Cittert
method [21, 31], the Classical Maximum Likelihood Es-
timator (CMLE) [32], or the least-squares PSF fitting
based on realistic 3D PDF models [33]. A common
drawback for these algorithms is the demanding com-
putational and time requirements of the iterative formu-
lations.

Alternative deconvolution filtering techniques were
recently proposed based on Wavelets [34, 35], sparse
representations [25, 26] or space-variant blur approxi-
mations [36] in order to provide faster implementations
over the iterative approaches.

Deconvolution software exist as custom built proto-

types, open source projects (e.g. imageJ [37] and its ex-
tension FIJI [38]), optional commercial software features
from microscope vendors, or packages from software
providers. Deconvolution software should offer com-
plete control to set or import parameters used during
the microscopic acquisition, and be designed for easy
incorporation into the daily routine of microscopic imag-
ing [39, 40]. Some software packages offer batch pro-
cessing to ease the user of manually setting physical
parameters for deconvolution in each stack (e.g. Huy-
gens Scripting Software from SVI [41]). Batch process-
ing is an important feature for large data sets obtained
from in vivo observations, especially in long term 3D ex-
periments that can easily pile up terabytes of imaging
data [17, 42]. Alternative providers like Zeiss [43] or
AutoQuant [44] do not reveal the underlying principles
of their physical, numerical, or probabilistic approaches,
while others like SVI follow conventional theory.

Apart from following guidelines published in studies
that compare the performance of different commercial
and open source deconvolution packages (HuygensPro,
AutoDeblur, Deconvolution Lab, Parallel Iterative Decon-
volution and Iterative Deconvolve 3D) on synthetic and
microscopic images [39, 40], we suggest direct testing
of software demos with typical sample images of cellular



organelles like membranes, mitochondria and endoplas-
mic reticulum or fluorescent beads below the diffraction
limit. An adequate deconvolution removes pixel noise
and maintains signals from sub-cellular structures or
point sources as Gaussian-like profiles reflecting the mi-
croscopic PSF without blurring. Figs. (3A,3B) shows mi-
croscopic spinning disk images before and after decon-
volution on a supra-cellular level. Pixel noise, ill-defined
membrane structures and blebs impede a clear defini-
tion of the cellular structures in Fig. (3A). Fig. (3B) is
virtually free of pixel noise and structural details are out-
lined within the signals of the membrane bound fluores-
cent protein. The deconvolution process was carried out
with Huygens Professional deconvolution software [41].

Registration

For a precise characterization of the growth and mi-
gration of cellular structures, spatial and temporal data
alignment is essential [45]. In this context, image reg-
istration aims to estimate an optimal transformation be-
tween two images or volumes in order to minimize spa-
tial and temporal misalignment.

Misalignment can stem from perturbations of the ac-
quisition system, protocols, movement or the evolution
of the specimens (e.g. restricted growth in sealed en-
vironments using agarose [46], or large migrations that
require repositioning the sample) as well as from mathe-
matical processing tools used in denoising (e.g. median
filters with even kernel size). Formally, misalignment can
be described as affine invariant transformations, a com-
bination of translation, rotation, scaling, and tilts [47]. It
is essential to remove drift artifacts in order to obtain
precise descriptions of growth or shape changes during
migration.

Cell migration studies may require encapsulation
protocols that can contribute to misalignment between
images. For example, in several in vivo studies of ze-
brafish development (e.g. neural crest migration) spec-
imens must be embedded in agarose to track migration
over long periods of times [48, 46]. During embryo devel-
opment, translations and scaling of the sample are ob-
served due to the shift of the focal plane within the grow-
ing embryo. Growth alone can create drift, which can
be accentuated by encapsulation resulting in more com-
plex deformations such as twists. Deformations need to
be differentiated from cellular changes through 3D anal-
ysis and using prior knowledge of the cells from 2D im-
ages [49].

In general, there are two types of registration meth-
ods: (i) intrinsic methods which try to use the information
present in the acquired images in order to find the best
transformation for alignment, and (ii) extrinsic methods
which use external references that can be tracked inde-
pendently of intrinsic deformations [45].

Intrinsic and extrinsic registration methods first need
to define a similarity metric between reference and target
images, later they optimize a transformation that maxi-
mizes the chosen similarity coefficient [50]. Markelj et
al. [51] presented similarity coefficients classification in-
volving: (i) intensity-based analysis (e.g. sum of squared
differences, normalized cross-correlation coefficients, or
mutual information) that require normalized intensities
or the calculation of a joint histogram [49], (ii) feature-
based analysis (estimation of distances between corre-
sponding points or feature metrics) as curvature-based
registration [52], and (iii) optimization methods such as
gradient descent [53], conjugate gradient descent, multi-
resolution search, or deterministic annealing.

Classical registration methods applied either to intrin-
sic or extrinsic registration consider drift and movement
in the xyz axis through the alignment of the centers of
gravity in combination with Median, Gaussian, or Kuwa-
hara filters [54] (available as z-correction in an extra-tool
for Huygens Deconvolution Software or ImageJ-FIJI).
Rotational sample alignment approached by rotation in-
variant moments of morphology in combination with ro-
tational axis based on Eigenvectors and Eigenvalues
have been described in [55, 56, 57]. After translational
and rotational alignment, image borders or irrelevant im-
age sections can be removed by digital cutting.

Other algorithms have been proposed for registra-
tion to address more complex conditions of cell migra-
tion. In this context, we can find curve methods that
provide a robust registration of images based on fea-
ture curve extraction modeled by a set of curves such
as B-splines [58]. In addition, surface methods consider
the boundaries or surfaces as similarity metrics by char-
acterizing high contrast areas as references among im-
ages. Furthermore, Morphological Moments and Princi-
pal Axis establish reference elements of reduced dimen-
sionality among images. This can simplify the descrip-
tion of the analysis of global similarities. More advanced
approaches consider methods based on correlation and
mutual information [49], Wavelets [35], or Soft Comput-
ing [45].

In general, registration processes balance the trade-
off between minimizing misalignment and conserv-



ing the actual translational, rotational, and volumetric
changes that occur during cell migration. When feasible,
the addition of external references helps simplify and op-
timize the registration process. Some of the algorithms
used to address image registration are available in com-
mercial [41] or open source software packages [37].
However, validation processes, particularly for non-rigid
algorithms, still pose major challenges [50, 59].

SEGMENTATION
Segmentation is the process of identifying ROIs with

a certain meaning from the rest of an image. Segmen-
tation of ROIs is needed for the calculation of spatial
and some temporal descriptors, including shape, topol-
ogy, and organization (see “Shape and Topology”) as
well as motion related descriptors (see “Motion Estima-
tion”). Simple criteria like grouping pixels by similarity
(e.g. pixel intensity, texture), finding discontinuity regions
(boundaries), or looking for known shapes or patterns
can give a fast but rough estimation of the total num-
ber, size and spatial distribution of fluorescent structures
like nuclei, vesicles or fibers since these structures have
relatively homogeneous labeling. Images with poor sig-
nal quality issues (see “Restoration: denoising and de-
convolution”) and/or complex structures like membranes
and their protrusions (e.g. blebs, filopodia) require more
advanced techniques to detect subtle morphology fea-
tures and patterns among variable image conditions.
The combination of increasingly large data volume from
acquisition techniques, together with the variability of
cell and tissue characteristics within complex scenarios
(e.g. densely packed cell arrangements or overlaps that
impede even visual assessment) makes reliable and au-
tomated segmentation of migrating cells a constant chal-
lenge for improved computational methods [60].

Filtering and thresholding
Threshold segmentation is based on the selection of

global or local intensity values (thresholds) that sepa-
rate pixels in ROIs from the background. Thresholds
can be constant or adaptive as function of global or lo-
cal intensity features. They can be applied directly af-
ter registration and deconvolution, after applying addi-
tional filters for image smoothing or contrast enhance-
ment, or by enhancing shape, texture, or boundaries.
Filters are commonly implemented as discrete convolu-
tions [56], where the choice of kernel size and values
determine the enhancement. Popular filters like Canny

and Sobel target ROI edges [61, 62] but, as is the case
with many boundary detectors, they are prone to local ir-
regularities or residual image noise. Following the filter-
ing enhancement and thresholding strategy, Rapoport et
al. [63] first filtered image artifacts with a quadratic opti-
mization function with sparseness and smoothness reg-
ularizations, followed by a simple threshold to define the
ROIs. In general, the selection of filters is completely de-
pendent on the structure of the target ROIs, and strate-
gic choices and adjustments lead to an improved seg-
mentation. For example, the majority of nuclei can be
segmented by direct intensity thresholds; however, a
strategic filter choice (e.g. Laplace or oval shape filters)
can enhance the contrast of the nuclei in relation to the
background, prior to the threshold application, improving
the final segmentation. To avoid manual thresholding,
automatic threshold selection has been proposed [64],
in order to maximize the intensity variance among two
groups of pixels. More sophisticated threshold election
based on clustering algorithms has also been proposed,
and demonstrated superior performance over manual
threshold selection [65].

Segmentation refinement
After thresholding, a rough approximation of the

ROIs is obtained. Further refinements can be applied to
connect, disconnect or improve ROI boundaries by tak-
ing into account morphology features such as boundary
size, holes, orientation, and area. A popular method to
separate ROIs is the watershed algorithm, which is used
in many segmentation pipelines, as outlined by Khairy et
al. [66]. The watershed algorithm interprets image in-
tensities (or ROI distance maps) as topographic reliefs
where intensity levels are analogues of altitude. Then,
it simulates a rainfall that leads to water accumulations
at topographic sinks. Finally, lakes are grown against
the topographic gradients until they reach a saddle point
or local maximum which separates the catchment area
of a neighboring lake or region. These watersheds de-
fine borders that can be used to assign or separate
fused ROIs. This method is fast, but can lead to over-
segmentation when the image relief has too many local
minima [66]. However, the number of local minima can
be reduced by successively smoothing the image prior
to applying the watershed. The smoothing approach re-
sults in a trade-off between too many ROIs and too many
fused ROIs. For example, Harder et al. [67] segmented
cells with a region adaptive threshold scheme, followed
by an Euclidean distance transform applied to the ROIs



in the mask image, and then separated the joined re-
gions based on the watershed algorithm.

Deformable model fitting
Deformable models define high-level ROI properties,

typically related to morphology or image features. They
allow final ROI representation improvement and seg-
mentation of a wide range of shapes while at the same
time dealing with issues like non-homogeneous ROI in-
tensities or weak contrast. Deformable model segmen-
tation methods are based on using Partial Differential
Equations (PDEs) to solve mathematical optimization
problems, stated as integral functions for minimization
or maximization. Instead of explicitly defining an en-
hancement filter, these models define higher level ROI
properties, such as size, boundary smoothness, image
contrast or region homogeneity, which are weighted and
balanced in a sum of terms over the input and the seg-
mented image [68]. Strategies to solve these equations
can be implemented with generic or ad hoc methods that
can include application constraints such as interactivity
or user clues, parameter flexibility, error tolerance, or
computational performance. The optimization functions
are commonly defined over the entire image, model-
ing ROI boundaries with parametric or implicit functions.
Boundary models are suitable for finer representations
by interpolation or refinement techniques, and thus are
useful for obtaining more accurate estimations of ROI
shape parameters.

Parametric models are often referred to as active
contours or snakes [69, 70, 71, 72]. Implicit models are
known as level-sets or geometric active contours, and
have been reviewed in [73, 74]. Both models optimized
energy functionals that included forces and restrictions
to find contours with a minimum energy while staying
close to image features (the most common are intensity
changes). The PDEs are solved by iterative algorithms
that start from an initial estimation of the ROIs. Com-
mon problems are initialization sensitivity (local optima),
contour splitting or merging handling. In particular for
fluorescence imaging, additional terms have to be intro-
duced in the optimization functional to deal with bound-
aries in ROIs with missing information in 2D and 3D as
in the subjective surfaces approach [75, 76]. To tackle
sensitivity to initialization, Bergeest et al. [77] recently
suggested a new term with convex energy functionals to
find a global segmentation optimum in an efficient nu-
merical calculation. Their approach does not suffer from
local minima bias and the resulting segmentation is inde-

pendent of the initialization. Zimmer et al. [78] included
texture parameters into the snake model which led to
cell segmentation in the presence of pseudopods; in ad-
dition, cell interactions were handled with repulsive con-
tours. In [17, 79, 80], parametric 2D/3D active contour
models have been applied to improve the segmentation
of biological structures with satisfactory results, showing
the versatility of the approach in general.

Other strategies
Other methods for segmentation include Hierarchi-

cal Self-Organizing Maps (HSOM) [81], supervised seg-
mentation [82], and geodesic mean curvature flow [83].
Zheng et al. [81] proposed a hybrid segmentation that
combined HSOM, histogram- and region-based tech-
niques. Feature vectors of pixels are extracted in or-
der to train the HSOM and to learn which groups have
similar pixel properties used to later define preliminary
regions. Final segmentation is obtained with region-
and histogram-based techniques. Zaritsky et al. [82]
presented a multi-cellular segmentation algorithm which
learns how to classify basic image features of local
patches within an image by using a support vector ma-
chine approach. Next, a refinement step, through a
combination of classification and graph-cut segmenta-
tion is applied to optimize the ROIs and eliminate errors.
Bourgine et al. [83] used a geodesic mean curvature flow
model to filter noise from the input image. Finally, cell
nuclei centers are detected and segmented with a gen-
eralized subjective surface method.

Extension to 3D
The advantage of working in 3D is the potential to

avoid overlapping objects in 2D images. A major dis-
advantage is the increase in computation cost (mem-
ory and/or calculations) of the algorithms. In addition,
the resolution of most confocal microscopy techniques
in the xy-plane is at least three times better than in the
z-axis [84]. Therefore, special adjustments need to be
made such as image interpolation or anisotropic filter-
ing. Segmentation can be directly performed at each
xy-plane [85, 83] or extended to 3D. However, segmen-
tation by processing each xy-plane requires further com-
putations to connect the 2D ROIs along the z-axis (see
Fig. 3). The extension from 2D to 3D requires checking
consistency for ROI connectivity, and optionally smooth-
ness, in order to deal with the effect of the elongated
voxel in the z-axis that distorts the surface properties



(see Fig. 3E; the surface representation of the seg-
mented parapineal cell after refinement with a 3D ac-
tive surface model led to acceptable surface properties).
Segmentation by extending to 3D also requires defin-
ing operations over voxels sets. For instance, Amat et
al. [86] defined 3D ROIs by directly associating voxels
into a super-voxel using a k-means approach, and ob-
tained the final segmentation by identifying connected
super-voxels.

Segmentation with temporal information
Melani et al. [85] applied a combination of subjective

contours (level-sets) and optical flow [87] for motion es-
timation which handled smooth intensity changes in the
image over time but was prone to the aperture problem 2.
Later, Mikula et al. [88] used a generalized subjective
surface model [83] with a time-regularization constraint
in the energy function. They assumed smooth con-
tour displacements between consecutive time frames
and performed a forward segmentation by incrementally
linking the segmentation from previous frames. Then,
the obtained trajectories were refined through 3D + time
parametrized curves. They validated this approach with
synthetic models and nuclei sequences with spherical
shapes and smooth motion/deformations. Luengo-Oroz
et al. [89] presented a method for 3D + time tracking
and segmentation using convolution of 4D (3D + time)
templates (“morphological elements”) to represent and
locate motion from nuclei and membranes. They seg-
mented ROIs and their divisions through time by mor-
phological operations such as erosion or dilation. They
also presented a watershed algorithm extended to 3D
including a viscous term to segment cell membranes,
and performed tests with 2-photon and light sheet mi-
croscopy images. The algorithms performed poorly
when segmenting membranes in noisy images, when
portions of the image provide a weak signal, or when
segmenting objects moving quickly.

SHAPE AND TOPOLOGY
Following segmentation, the next step for quantitative

analysis of dynamic events in cell migration is selecting
an adequate representation for the ROIs (e.g. the bio-
logical structures under study), and subsequent quan-
tifications of shape, topology, and organization (Fig. 2).
2The motion of an object larger than the field of view is locally am-
biguous. Thus, any local motion detector will respond identically to
multiple types of motions for the object.

Historically, biologists have used the term morphology
to include both shape and topology descriptions [90],
whereas in mathematics or computer science, morphol-
ogy only refers to the characterization of the object
shape. Topology, on the other hand, quantifies the ex-
istence of tunnels or holes within the object3. In this
section, we review main descriptors for object shape and
topology and their accuracy based on the selected strat-
egy for object representation.

Object representation
A ROI can be seen as a set of image pixels or vox-

els resulting from image segmentation. One of the sim-
plest ways to represent the segmented ROIs is to con-
struct a “mask” image of the input, with pixels labeled
with a common number for each ROI (background pixels
labeled with zero). A special case is the binary mask,
where no distinction between ROIs is made and there
are only two pixel labels: one for the ROIs and zero for
the background. ROIs can also be represented by sub-
sets of boundary elements, ordered chain-codes [91],
local features in spaces like Fourier descriptors [56],
Gabor [92], wavelets [93], parametric curves or sur-
faces that encode the volume [94, 95], approximation
of set volumes with geometrical primitives like paral-
lelepipeds [96] or tetrahedra [97], or boundary regions
with triangles [98]. In addition, higher level representa-
tions such as area, perimeter, Cartesian/Zernike [55, 56]
moments, or even those derived from human cognition
models [99] can be built. The choice of representation is
closely related to the desired parameters to be extracted
as discussed next, but it is also a trade-off between the
precision of the representation and the computational
load (memory and/or calculations) required for extract-
ing information. Thus, high detail representations like
voxel sets can be very accurate, but require a significant
computational load.

Shape
Migration often involves variations of cell shape (see

Fig. 1). Some key migrational stages can be identified
by studying the dynamics of cell deformation [100, 101,
102]. Also, the dynamics of local cell membrane defor-
mations like blebs, filopodia, or lamellipodia can be as-
sociated to specific molecular mechanisms [103]. Thus,
3In the sense of the geometric study of objects. In mathematics, the
topology encompasses a broader range of properties for spaces re-
lated to connectedness.
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Fig. (3). Steps for 3D reconstruction of the parapineal nucleus in the brain of a zebrafish embryo. (A)
Fluorescence SDM image (40×) of transgenic Tg(flh::EGFP) embryo at 38 hours post fertilization (hpf). (B) Cell
membranes of the parapineal nucleus after deconvolution. (C) Cell membranes are manually outlined as red lines.
(D) 2D active contour models drive polygons to (i) minimize perimeter through an elasticity parameter α, (ii) smooth
the boundaries through a bending parameter β, (iii) maintain fine structures such as filopodia through a strong
gradient vector field weighted by κ [72]. (E) Left: 2D active contours are used to form a preliminary 3D surface
model of each cell. This surface model is a poor representation of the 3D morphology of the cell since it reflects
the lower resolution along the z-axis using confocal microscopy. Right: 3D active surface models smooth the cell
surface, especially along the z-axis, while maintaining fine structures and the bending in the xy-plane [79]. (F) Left:
Active surface models of 24 parapineal cells with morphologic and organizational parameters during morphogenesis
(e.g. 3D principal rotation axis are shown for each cell) [17]. Right: Orientation of the parapineal nucleus and brain
within the zebrafish embryo. Scale bar 10 [µm].



global cell shape and local membrane events carry valu-
able information about cell migration.

Some commonly used shape descriptors for cells
are: area (or surface area for 3D images), volume, cen-
ter of mass, and bounding boxes [104, 105, 106, 102].
These descriptors can be understood as low order de-
compositions within the Cartesian moment theory [55].
However, higher order descriptions like kurtosis or skew-
ness can also be computed analogous to statistical mo-
ments or mechanical moments of inertia. Moments
are useful in calculating geometrical descriptors such
as principal axes, through a combination of first and
second order moments. Other approaches commonly
used to compute shape in cell migration are descrip-
tors such as the spindle factor [107] (relation between
the minor and major axis as a measure of elongation),
roundness [105, 108] (explained in detail by [109]), con-
tour descriptors like perimeter [105] or convexity [110],
and manual protrusion counting [111]. All of them rely
strongly on the basic descriptors that can be extracted
from Cartesian moments in combination with the convex
hull [112], as well as contour measurements like perime-
ter [113] and curvature [56].

The computational precision of ROI descriptors such
as area, principal axes, convex hull, perimeter, and
roundness is closely related to the ROI representa-
tion [114]. For instance, calculating a perimeter mea-
surement by counting edge pixels in a mask image has
a 30% mean error using a 45 degree rotated square of
size 100 pixels per side, but using a polygonal repre-
sentation, the error can be reduced to 5%. The same
exercise can be performed with the estimation of area
in 2D, where pixel representation, for the same figure
has less than 5% error. In general, the discrete nature
(pixels or voxels) of computer images makes it neces-
sary to implement boundary descriptions like polynomi-
als or splines in order to access contour descriptors like
perimeter, surface area, convex hull or curvature, with
a certain degree of accuracy. However, description of
complete regions like area, volume, or moments of mor-
phology can be accurately estimated in pixel or voxel
representation.

Topology
Topological descriptors are rarely mentioned as

such, but they have been frequently used in biology and
become increasingly important to characterize circuits
or tubular networks. For instance, development studies
describe cell spatial distribution in processes like epi-

boly [115] and formation of brain asymmetries in ze-
brafish [116]. Another example is the reorganization
of actin fibers during cell migration illustrating structural
change not captured using global shape descriptions.
In actin fiber studies, descriptors like the number of
fibers, intersections, and relative orientations, have been
proposed as topological-like descriptors [117]. Also,
dendritic development studies [118] have extracted de-
scriptors such as the number and degree of branching,
the number and length of segments, the growing angle
(shown in Fig. 4A), and have even classified neurons
based on their structure [119].

A number of studies involving multi-cellular systems
like tissues or organs, as well as their temporal evolution,
require analysis of the spatial distribution of cells. For
instance, relative distances among cell nuclei describe
the compactness of the group [121], and relative ori-
entation of the main axis reveals information about cell
alignment [17]. In actin fiber-related studies, there are
two main approaches to quantify fiber topology. The first
approach describes fiber structures with global numbers
such as the mean fiber orientation [120] (see Fig. 4B)
or mean fiber thickness [122]. The second approach
identifies each individual fiber [117], by reducing a set of
fibers into a 1D graph structure (line segments in a 2D
or 3D space) known as a skeleton (Fig. 4A). In neuronal
development and migration studies, the most common
approach to describe topology is to manually draw the
structure, with the help of specialized software/hardware
such as Neurolucida [123]. It is a complex and time
consuming task that delivers good results by allowing
the experienced biologist to directly identify the struc-
ture [124]. Interestingly, recent approaches from com-
puter vision have emerged, mainly through the (semi)
automatic reduction of structures into skeletons. These
techniques have been applied in biological works (for
a review see [125]), and semi-automatic implementa-
tion routines are readily available in software programs
like ImageJ [37], Imaris [126], or Neuromorph [127].
Among these works, the direct skeletonization by mor-
phological erosion of segmented ROIs is frequently re-
ported [128, 129, 130, 131]. However, all of these
approaches require some degree of manual interven-
tion, or extremely carefully selection of input informa-
tion [130], due to microscopy resolution constraints and
segmentation errors.

Among the available methods to compute skeletons
in the computer vision and geometry communities, we
mainly found approaches based on two object represen-
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Fig. (4). Models and descriptors for structure analysis at different levels of organization. (A) Cellular level.
Left: Raw maximum intensity image projection of an electroporated neuron with m-Cherry from the parapineal
nucleus of zebrafish brain at 48 [hpf], using SDM (63×, z-step is 0.5 [µm], scale bar 9 [µm]). Middle: Surface
model after manual segmentation of the neuron. Right: Skeleton representation of the neuron (left) and example
descriptors such as node depth counted from the soma (orange circles). (B) Sub-cellular level. Left: Raw maximum
intensity image projection from DITNC1 astrocytes transfected with actin-EGFP plasmid, using confocal microscopy
(60×2.4, 7 z-steps of 1 [µm], scale bar 20 [µm]). Middle: Automatic segmentation was obtained by using a Gabor
filter bank, similar to [120], and manual thresholding to highlight the actin filaments. Right: The segmented image
was color-coded using the pixel-level orientation given by the Gabor filter bank max value.



tations: point clouds and surfaces. Point cloud based
methods [132] are among the most widely used due
to their simple implementation and speed (ROI pixels
from mask images can be treated as point clouds in 2D
and 3D). They are very sensitive to noise which leads
to the generation of spurious branches. These meth-
ods are accurate for estimating global descriptors such
as total structure length. However, they are not well
suited for estimating edge or node number due to their
noisy results and systematic underestimation of final
segment length. Surface-based approaches for 3D ob-
jects [133, 129] are much less known in biology but have
emerged as an alternative to stabilize topological de-
scriptors measurements. They transform the object into
a 1D representation by searching for the smallest repre-
sentation (minimizing branches) which best represents
the object structure, reducing the appearance of spu-
rious objects. These methods achieve good estimates
for almost all descriptors, but are more difficult to imple-
ment and apply due to their multiple configurable param-
eters. Surface-based methods offer promising new ap-
plications, beyond semi-automatic methods toward fully
automatic topological quantification. Other authors have
proposed elaborated pruning methods by measuring the
importance of each point in the skeleton. For example,
Reniers et al.’s method [134] can be incorporated into
point cloud algorithms to control spurious branches by
adding a new control parameter, the importance thresh-
old.

MOTION ESTIMATION

So far, shape and topology descriptors can be used
to address quantification of fixed as well as time-lapse
images. In cell migration, in addition to discerning con-
formational changes, motion analysis is a key issue for
understanding migrational processes. Migration can be
seen in embryonic development, wound healing, and
disease development such as tumor progression and
tissue degradation, among others. Motion phenomena
can be addressed for a single cell (see example in
Figs. 1,5A,5B) or groups of cells (Figs. 1,3). One illustra-
tive example is the study of embryogenesis in zebrafish,
which requires tracking of individual cell nuclei and han-
dling of cell division [66]. We distinguish between two
main approaches for motion estimation: tracking and
motion fields. The first requires ROI segmentation and
aims to estimate individual trajectories, while the second
aims to get a general estimation of motion patterns upon

intensity changes over time, without depending on seg-
mentation.

Tracking
In general, the process of identifying and linking seg-

mented objects between frames in a given image se-
quence is called object tracking (sometimes “segmented
object association”), with the linked trajectories giving
the path of the object. Events like object collisions, ap-
pearances and disappearances can occur, and have to
be handled by the algorithms in order to obtain correct
trajectories.

Trajectories can be used to extract straight-forward
descriptors such as estimated object velocities, as well
as more complex measurements. We present common
cell tracking algorithms and trajectory descriptors.

Tracking by detection basically consists of two
stages: cell segmentation followed by association. First,
object segmentation is performed for all time frames.
Next, the objects must be linked in time, in order to
obtain the complete path, which gives their trajectory.
Tracking descriptors characterize each trajectory, rep-
resenting for instance the faith map of individual cells.
The linking of segmented objects frame-to-frame can be
made by feature vectors, including spatial distance and
similarity measures. Common features include mean
cell intensity level and shape descriptors. For example,
Harder et al. [67] used a feature vector of mean cell in-
tensity, area, and center of mass. Next, they established
a one-to-one correspondence by associating the clos-
est cells, evaluating their similarity using the Euclidean
distance between the corresponding feature vectors. An
extended review can be found in Khairy et al. [66]. Sim-
ilarity measures such as the Euclidean distance, can
be effective if the feature vector remains stable along
the trajectory, i.e. the tracked cell has a defined shape
and a good temporal resolution. The similarity mea-
sure has been also extended to trajectories, for instance,
by inspecting the trustworthiness of the tracking results,
as proposed by Rapoport et al. [63]. The trustworthi-
ness is measured by the ratio between the intersection
of adjacent cell masks and the area of the cell mask.
By using the largest forward and backward cell over-
lap, they selected a unique successor cell. From a set
of short trajectories with high trustworthiness, they de-
duced the final trajectory and lineage of the every cell
by the consistency of movement. A similar approach
was presented by Chowdhury et al. in [135], based
on bipartite graph matching and properties of Gaussian



distributions. These types of methods are used primar-
ily when tracking isolated objects where the acquisition
speed is fast enough to capture the object motion re-
sulting in some overlap between the same ROI in con-
secutive frames. Typically, this is the case when image
acquisition is fast enough to ensure individual ROI dis-
placements of less than their average diameter between
two frames. Some examples include imaging nuclei in
phase-contrast or moving sperm, where tracking per-
forms well and is easy to implement.

Tracking by model methods use a model with prior
knowledge about the motion or feature changes through
the migration. This implies that assumptions have to be
made about the expected motion. From these, objects
are registered frame by frame, generating the associa-
tion among frames and, finally, the trajectories. For ex-
ample, in sperm tracking, the assumption of non-cell-
division can be made, and therefore a simple spatial dis-
tance can be used to generate the object association.
Tracking by model approaches assume either a distribu-
tion for the feature vector, physical constraints, or most
likely deformations along cell trajectories [136]. Debeir
et al. [137] used the mean-shift algorithm, assuming a
feature distribution that incorporates possible variations
in cell morphology and grey-scale patterns present dur-
ing cell mitosis. Kachouie et al. [138] introduced a prob-
abilistic model (Bayesian) to address the spatiotempo-
ral cell segmentation-association problem. When model
knowledge is not directly available, the general track-
ing approach is based on image registration by making
assumptions about object features, such as color con-
servation or motion constraints, and then trying to find
a suitable transformation (rigid or deformable) between
cells at two different or consecutive frames. The reg-
istration of the objects gives a relation between cells
at different times. One example is the work of Sacan
et al. [139] who tracked cell boundaries and intracellu-
lar points using active contours and optical flow estima-
tion. Hand et al. [140] published a detailed paper re-
viewing five methods based on image registration, and
compared their accuracy and computation costs. Yang
et al. [141] presented an intensity-based non-rigid reg-
istration approach, which was extended to register 3D
+ time image series of moving cell nuclei. A hybrid ap-
proach by Xie et al. [142] addressed E. Coli migration
in phase contrast images with low-contrast boundaries
that changed very quickly. They proposed dynamically
weighted similarity criteria by assuming constant speed
and motion coherence. Using a model approach is more

sophisticated than simply tracking by detection, and can
be applied to more complex scenarios, e.g. nuclei track-
ing in fluorescence image sequences without sufficient
temporal resolution, or nuclei changing shape over time.

Event handling Event handling is a critical step in the
tracking pipeline, providing information to prevent incor-
rect object associations. To this end, it is necessary to
know the kind of events that can occur, their character-
istic features, and which actions need to be taken within
the tracking pipeline. Common events are objects sud-
denly appearing or disappearing from the field of view,
and moving objects that can touch or fuse. Some impor-
tant events are: mitosis or cell division, cell fusion, fis-
sion, or apoptosis. Several works have addressed these
events in the tracking pipeline. Rapoport et al. [63] de-
tected mitosis observing the Y-shape produced in the
trajectory and its characteristic spatiotemporal pattern.
Kanade et al. [143] detected mitosis based on intensity
change and handled objects coming into or leaving the
field of view. Harder et al. [67] detected mitosis using
an extension of the likelihood measure based on size
and mean intensity of mother and daughter cell nuclei.
Huh et al. [144] found mitosis events by using a detector
based on a probabilistic model, which identified a video
patch containing a mitotic event, and then localized the
birth event. Amat et al. [145] developed a classifier using
3D Haar-like elliptical features which distinguished cell
division events with high detection accuracy over mil-
lions of cells from light sheet microscopy images. Dufour
et al. [22] detected when cells divided, entered or left the
observation volume based on the location and shape of
detected cells. Finally, Xie et al. [142] handled events in
the case of drastic cell appearance change, overlapping
and occlusion.

Tracking descriptors After tracking, the obtained set
of trajectories is quantitatively analyzed in order to cal-
culate descriptors that characterize migration dynamics.
Some features are: motility, velocity, diffusivity, and pro-
liferation.

-Motility can be estimated from straightforward tra-
jectory descriptors such as length, displacement (dis-
tance between start and end points), comparative refer-
ence (maximum length or maximum distance traveled)
and straightness index [60]. More complex descriptors
can be calculated like the chemotactic index and the
McCutcheon index, introduced by Meijering et al. [146].



Also, directional descriptors can be extracted at each
trajectory point or at full trajectory level (persistence in-
dicator).

-Velocity/speed can be directly calculated from a
given cell trajectory, including instantaneous, mean, or
maximum values. The speed can be computed from the
displacement between two frames divided by the tim-
ing of the sequence. For example, analysis over the
instantaneous speeds can be elaborated to obtain an
arrest coefficient corresponding to the fraction of time
that the object is not moving. Mean straight speed and
mean curvilinear speed can be derived from the trajecto-
ries representing its linearity and forward/backward pro-
gression. An example with other velocity descriptors is
shown in Figs. (5A,5B). Grouped data analysis was cre-
ated with speed histograms in order to obtain statistics
of the migration dynamics [60].

-Diffusivity aims to characterize motion with the help
of Mean Squared Displacement (MSD). This measure
relates observed movement with underlying physical
phenomena. For instance, a linear relation between
MSD and time implies a random walk motion (“free dif-
fusion”). Other modes of motion that can be identified
using MSD information are constrained diffusion (molec-
ular binding, confined motion, motion impeded by obsta-
cles) and motion due to a flux [60].

-Proliferation: cell division detection facilitates pro-
liferation analysis by incorporating division counting,
speed, and cell lineage. One example is the work of
Harder et al. [67], who analyzed the resulting cell lin-
eage from tracking and mitosis detection in order to ex-
tract mean displacements, calculate average cell motility
and detect rare events from the cell lineage trees. Bhan-
son et al. [147] quantitatively analyzed cell growth rates
by area, using the change of cell number in small re-
gions as a rough but useful proliferation estimation. The
review of Khairy et al. [66] illustrated how only by iden-
tifying proliferation events with color images, complex
supra-cellular events like peripheral cell division waves
in zebrafish embryogenesis can be visualized.

Motion fields
Optical Flow (OF) techniques are well established

methods in computer vision to calculate motion fields,
and have been proposed for the characterization of cell
dynamics in recent years. OF methods relax the as-
sumption of a conserved quantity (e.g. distance, shape
and topology) during displacement. They focus on varia-
tions of intensities at local levels (pixels or small regions)

to account for motion without requiring object segmenta-
tion. So far, OF applications in biology have been limited,
but recent works have illustrated the maturation of these
techniques for the quantification of dynamics in difficult
scenarios [151, 152, 86]. In this section, we review OF
methods and descriptors that can be elaborated in the
context of cell migration.

OF methods in cell migration have been applied
at sub-cellular, cellular, and supra-cellular levels. At
sub-cellular level, neurotransmitter trafficking [150], cal-
cium waves speed [153], and Golgi apparatus migra-
tion have been measured [154]. These works char-
acterized speed and orientation of clearly defined ob-
jects: GABAB receptor subunits, calcium waves, Golgi
(or transient Golgi). OF applications at cellular level are
more frequent. Examples are mean cell motion estima-
tion [155], by averaging vector field of voxels represent-
ing the cell [156, 140, 152, 157], or direct motion estima-
tion of a set of voxels [86] or super-voxel [158]. Fig. (5B)
is an example of motion estimation at supra-cellular level
where object segmentation and tracking are difficult to
obtain. In similar scenarios, OF has been applied to
assess motion of unlabeled cells of Dictyostelium [159],
or chick development [160], to estimate wound healing
speed [161] or tissue flow [159, 157]. Tissue level OF
applications aim to identify global motion patterns (rota-
tion, speed) or clusters of moving cell. Other OF variants
directly include parameters associated to cell migration
as attractant spatial gradients [162].

OF methods start from the “grey value constancy”
assumption [163]: a given object and background pro-
vide constant light intensity between two consecutive
frames. The OF algorithm searches for the best vector
field that explains intensity variations at the pixel level.
It is implemented as a minimization process resulting
in a vector field indicating horizontal and vertical mo-
tion (see Fig. 5B). One of the first methods to compute
OF was proposed by Lucas & Kanade [164] as a least-
squares minimization. Their method performed well in
corners [165] but failed at straight edges due to the aper-
ture problem [166]. Horn & Schunck [163] proposed an
alternative minimization algorithm by introducing an ad-
ditional smoothness constraint. The algorithm diffuses
information from corners to straight-edge regions with
the additional cost of removing discontinuities. A first re-
view was presented by [167], and a general computer
vision benchmark database was proposed by [168]. In
a related approach by Bruhn et al. [149], anisotropic dif-
fusion was introduced to carry information from corners
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Fig. (5). Object tracking versus optical flow (OF) for motion estimation. (A) Human sperm motility analysis
performed by tracking sperm trajectories for 1s at sampling rate of 30 frames per second (fps) with bright field
microscopy. Scale bar 46 [µm]. The first image is shown together with paths that characterize different displacements
of more than 67 [µm]. (B) Magnification of the white square in (A). Scale bar 9 [µm]. The blue path shows the linear
displacement between the starting point (x1, y1) and the end point (xf , yf ); it is used to calculate the “velocity of the
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window, and defines the “velocity of the average path” (VAP). From VSL, VCL, and VAP, a series of additional path
descriptors can be derived which characterize human or animal sperm motility for scientific or diagnostic purposes
(see text and [148]). (C-F) OF motion estimation of enveloping layer, epiblast and yolk cell nuclei during zebrafish
gastrulation. (C) z-Projection from fluorescence SDM images of cell nuclei expressing H2B-RFP mRNA at 5.3
[hpf], dorsal view (25×, 0.005 [fps]), with vegetal pole to the left and animal pole to the right. (D) Color-coded
OF vector field (one vector each 8 pixels) for two time steps, calculated by the combined local-global OF method
[149, 150] (parameters: α =2, ρ =0). (E) Merged images from (C) and (D). (F) The orientation histogram reveals
one primary direction of migration to the vegetal pole with two sub-populations: one around 140 and one around
210 degrees, representing epiboly movement biased towards the embryo dorsal midline (dotted line) during early
zebrafish gastrulation [115]. Scale bar 10 [µm].



to edges. Bruhn et al.’s approach preserved disconti-
nuities in the OF field and extended the range of de-
tectable motion through multi-scale analysis [169]. De-
spite the interesting perspective of these methods and
their wide use in computer vision, very few applications
have been described in cell migration or even in biol-
ogy. Mainly the complex nature of the methods (mini-
mization algorithms), and the multiple adjustable param-
eters have made the adoption of these methods difficult.
Our group has recently started to systematically investi-
gate the performance of different OF techniques for mo-
tion analysis of fluorescent point signals in microscopic
image series [150]. So far, OF techniques without multi-
scale implementations can predict motions within an er-
ror of 3% for small displacements. However, the crite-
ria for optimum parameter combinations for the calcu-
lation of the vector fields must be chosen carefully and
depends on the temporal sampling frequencies. These
methods pose an interesting perspective in quantifying
cell migration [170] without explicit segmentation. For
the interested researcher, we suggest some OF imple-
mentations available from the Image Processing On Line
(IPOL) repository [171].

Descriptors from OF The output of any of the above
mentioned OF methods is a vector field: the direc-
tion of the motion and its speed are available for each
pixel. The most straightforward information that can be
computed are mean speed and motion direction within
ROIs [156, 140, 157, 86]. However, this operation re-
quires object segmentation. Another approach is to
search for simple motion patterns, for instance rotational
patterns [160], or more complicated patterns like protru-
sion formation [155]. For a general pattern analysis, OF
can be decomposed into translation, rotation, and con-
vergence motions [172], an idea that has been applied
to quantify wound healing dynamics in [161].

FINAL REMARKS

We have presented principles, features, main draw-
backs, and advantages of presently applied image pro-
cessing approaches for the analysis of dynamic events
in cell migration. We discussed the main criteria in se-
lecting the most suitable techniques for a given experi-
mental setup. Additionally, we have introduced main pre-
processing operations for denoising and registration, to
allow biologists to correctly prepare their raw data for
subsequent image processing methods like segmenta-

tion, shape & topology characterization or tracking. Alto-
gether, we expect that our review of current and emerg-
ing methods in computer vision applied to cell migration
studies stimulates future efforts within this field.
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