
Computing Multiscale Curve and
Surface Skeletons of Genus 0 Shapes
Using a Global Importance Measure

Dennie Reniers, Jarke J. van Wijk, Member, IEEE, and Alexandru Telea

Abstract—We present a practical algorithm for computing robust multiscale curve and surface skeletons of 3D objects of genus zero.

Based on a model that follows an advection principle, we assign to each point on the skeleton a part of the object surface, called the

collapse. The size of the collapse is used as a uniform importance measure for the curve and surface skeleton, so that both can be

simplified by imposing a single threshold on this intuitive measure. The simplified skeletons are connected by default, without special

precautions, due to the monotonicity of the importance measure. The skeletons possess additional desirable properties: They are

centered, robust to noise, hierarchical, and provide a natural skeleton-to-boundary mapping. We present a voxel-based algorithm that

is straightforward to implement and simple to use. We illustrate our method on several realistic 3D objects.

Index Terms—Surface skeletons, curve skeletons, importance measure.

Ç

1 INTRODUCTION

SKELETONS are compact shape descriptors. The skeleton, or
medial axis, of a 2D object can be defined as the centers

of maximally inscribed discs [1]. In 3D, this definition can
be extended to the centers of maximally inscribed balls.
Alternative definitions are the set of interior points that
have at least two closest points on the object surface, the
first-order singularities of the distance-to-boundary field, or
distance transform (DT). Using these definitions for a 3D
object, we obtain the so-called surface skeleton S, or medial
surface, which consists of a set of 2D manifolds, or skeletal
sheets, and a set of 1D curves. The skeleton points, together
with their distance to the 3D object boundary, define the
medial surface transform (MST), which can be used for
volumetric animation [2], surface smoothing [3], or topolo-
gical analysis used in shape recognition, registration,
simplification, or feature tracking.

A different type of skeleton is the curve skeleton C, which
consists, for a 3D object, of 1D curves locally centered with
respect to the object boundary. Curve skeletons have a low
dimensionality, which makes them suitable for “stick-
figure” object representations in 3D animation, morphing,
and geometric processing [4]. In contrast to surface
skeletons, curve skeletons lack a formal and unanimously
accepted definition.

It is widely accepted that 2D skeletons and 3D surface
and curve skeletons should fulfill several desirable
properties [3], [4]: homotopic, invariant under isometric
transformations, reconstruction, thin, centered, junction

detective, robust, efficient to compute, and hierarchical.
Although 2D skeletonization is a well-studied problem,
computing 3D skeletons with all of the above properties
is still an open problem.

The robustness and hierarchical properties deserve
further attention. The robustness property means that the
skeleton is insensitive to small-scale boundary noise. This is
needed in all practical applications because the boundary
discretization, whether voxel-based or polygon-based,
inevitably introduces noise. The hierarchical property means
computing a multiscale of nested skeletons, each one
representing the shape details on a different spatial scale.
Hierarchical skeletons are typically also robust, since
boundary noise can be seen as small-scale object details.
To the above, we add the uniformity and inclusion proper-
ties. The uniformity property requires that both curve and
surface skeletons are computed and treated similarly. For
example, if a method provides a parameter for multiscale
skeleton simplification, this parameter should be the same
for both curve and surface skeletons. The inclusion
property requires that C is a subset of S, motivated by the
fact that curve skeletons can be considered a limit case of
surface skeletons for objects with local circular symmetry
(e.g., a tube).

In this paper, we introduce the collapse measure, a novel
importance measure for computing both curve and surface
skeletons of 3D shapes. Our measure possesses all the
desirablepropertiesmentionedearlier: It is robust to compute
on complex, noisy 3D shapes, it always delivers connected
skeletons, its thresholding produces a hierarchy of nested
skeletons describing the shape at different scales, it treats
surface and curve skeletons uniformly, and it is simple to
implement. Additionally, our collapsemeasure has a geome-
trically motivated definition, which makes its use in practice
intuitive. Conceptually, the collapse measure is based on an
advection process that generalizes to 3D the global feature-
distance measure used to compute 2D skeletons by several

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008 355

. The authors are with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, The Netherlands.
E-mail: d.reniers@tue.nl, {vanwijk, alext}@win.tue.nl.

Manuscript received 6 Oct. 2006; revised 7 Feb. 2007; accepted 2 July 2007;
published online 23 July 2007.
Recommended for acceptance by H.-P. Seidel.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0182-1006.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Digital Object Identifier no. 10.1109/TVCG.2008.23.

authors [5], [6], [7]. Intuitively, this can be explained as
follows: Mass, initially located on the object boundary, is
advected onto and then along the skeleton. The collapse
measure of an object point is the amount of mass advected
through that point. All object points are treated equally,
yielding a uniform collapsemeasure for nonskeleton, surface
skeleton, and curve skeleton points. Hence, our method
merges the skeleton detection and simplification in a single
step. We present a voxel-based algorithm that computes an
approximation of the collapse measure. The algorithm does
notsimulate theadvectionprocessexplicitlybutcomputes the
collapse measure directly. We demonstrate the algorithm on
several real-world examples.

The structure of this paper is given as follows: In
Section 2, we give an overview of related work. In Section 3,
we discuss our informal model in 2D, show its equivalence
to the feature-distance measure, and propose an extension
to 3D. The informal 3D model motivates our algorithm,
which is presented in Section 4. Section 5 presents the
results of the algorithm. Section 6 discusses how our
method fulfills the desirable skeleton properties and
compares it with existing methods. Section 7 concludes
this paper.

2 RELATED WORK

Methods for computing medial axes and skeletons are
commonly classified into four groups [8]: thinning or
erosion [9], geometric methods [5], [10], [11], distance-field
methods [7], [12], [13], [14], and general-field methods [15],
[16]. Such methods usually work either on a raster or voxel-
based object representation or on a boundary sampling.
Thinning methods iteratively remove boundary voxels as
long as connectivity is not violated. Removing voxels in
order of a true distance-to-boundary fashion enforces the
centeredness criterion [17]. Geometric methods often use
the Voronoi-diagram of a boundary sampling and deliver a
polygonal skeleton description [5]. These methods are quite
complex to implement in 3D, and the resulting surface
skeletons can be difficult to handle. Other geometric
methods compute skeletons using edge collapses [10], from
a mesh segmentation [18], or by sphere sweeping [11].
Distance-field methods detect skeletons as singularities of
various types of the DT of the object [3], [13] and have been
efficiently implemented using graphics hardware [14], [19],
[20]. In general-field methods, alternatives for the DT are
used [15], [16]. These methods are generally less sensitive to
noise due to the averaging effect that the field has.

A key aspect of any skeletonization method is its ability
to produce robust, hierarchical skeletons. At the core of any
such method is an importance measure for the skeleton
points. Such measures have the desirable property that
small values correspond to skeleton points that represent
object details, whereas large values correspond to points
that represent the object’s main structure. Simplified
skeletons can be obtained by pruning the skeleton using
the importance measure [21].

We distinguish between local and global measures. Local
measures use only object properties from a small limited
vicinity of every object point and are thus incapable of
distinguishing between locally identical configurations such

as those sketched in 2D in Fig. 1. Thresholding local
measures usually delivers disconnected skeletons. Connec-
tivity can be enforced, but this requires extra work [13], [22],
[23] and often makes the simplification noncontinuous [21],
thus less intuitive. In contrast, global measures monotoni-
cally increase from the skeleton boundary to its center and
describe a skeleton point’s importance to representing the
whole object. Pruning global measures by simple thresh-
olding always delivers connected skeletons.

In 2D, the feature-distance measure, also called the
collapsed boundary measure, is a simple, robust, and
efficient to compute the global importance measure used
both for polygonal and pixel object representations by
several authors [5], [6], [7]. Fig. 1 sketches this measure: The
importance of the skeleton point p equals the length of the
smaller boundary curve delimited by points pa and pb,
where pa, pb are the points at minimum distance of p: the so-
called feature points. By this measure, the importance of q is
regarded lower, which agrees with intuition. In 3D, the
�-SMA method uses a local measure based on the angle
between the feature (or anchor) points [19], [24]. Combining
the angle with the distance-to-boundary value yields a more
robust measure [22]. Siddiqi et al. propose a range of
methods that use a local divergence-based measure to
detect and classify skeleton points in 3D [13], [25], [26]. A
similar approach using first-order moments is given by
Rumpf and Telea [3]. Pizer et al. [27] give a comparison of
methods that compute multiscale skeletons. The general-
field method by Cornea et al. [16] delivers smooth curve
skeleton hierarchies. However, only a limited number of
hierarchy levels is generated, and the different levels are not
treated uniformly. Recently, Dey and Sun [28] presented a
method that computes robust curve skeletons. Similar to
Prohaska and Hege’s method [29], they use the shortest
geodesic length between feature points as an importance
measure for the surface skeleton points. This is a global
importance measure used to find the middle of the surface
skeleton. They obtain a curve skeleton by using the local
divergence measure in [13] on this geodesic-length measure.

Related to the curve skeleton is the Reeb graph: A
1D structure encoding geometrical and topological proper-
ties of 3D shapes [30], [31]. It is constructed by following the
evolution of the level sets of a real-valued function on the
object boundary. The critical points of this function are
represented by nodes in the Reeb graph, and the edges
represent connections between critical points. The real-
valued function, defined on the object boundary, should be
chosen carefully to obtain a Reeb graph that is suitable for

356 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Fig. 1. A 2D shape and its skeleton. Points p, q 2 S, and their feature

points pa, pb and qa, qb, respectively, have locally identical configurations.

Globally, however, p is considered more important than q.

the application at hand. In contrast, our approach uses
curve and surface skeleton definitions to obtain a real-
valued function on the skeleton, the importance measure,
which is then used to simplify it.

In this paper, we propose a global importance measure
for computing multiscale surface and curve skeletons by
generalizing the 2D feature-distance measure to 3D. At the
core of our measure is an advection principle. In Section 3,
we present the conceptual model.

3 CONCEPTUAL MODEL

Let � be a d-dimensional object with boundary @�. The DT
D : � ! IR is defined as DðpÞ ¼ mink2@� distðp; kÞ, where
dist is the euclidean distance in IRd. The feature transform
F : � ! Pð@�Þ, where P is the power set, assigns to a
point p in � the set of points on @� that are at a minimum
distance of p, the feature points of p:

F ðp 2 �Þ ¼ fx 2 @� j distðp; xÞ ¼ DðpÞg: ð1Þ
The skeleton S of � is defined as those points in � that have
at least two feature points:

Sð�Þ ¼ �
x 2 �

�� jF ðxÞj � 2
�
: ð2Þ

In the generic case, skeleton points have exactly two feature
points. In the nongeneric cases, which are limit cases,
skeleton points have three or more feature points. When
d ¼ 3, S is called the surface skeleton. An equivalent
definition of the skeleton is as the points where D is
nondifferentiable. D and rD can be computed using
several methods, e.g., by solving the eikonal equation
krDk ¼ 1 using level set methods such as the fast marching
method [32], graphics hardware techniques [14], [33], or a
variety of discrete propagation methods (for an overview of
these, see [34]).

In the remainder of this section, we present a conceptual
model that appeals to intuition in order to motivate the
algorithm that we further present in Section 4. At all times,
we assume the generic case of a skeleton point having
exactly two feature points. The nongeneric cases of points
having three or more feature points are dealt with in
Section 4.3. We proceed as follows: In Section 3.1, we first
describe an informal 2D model using an advection principle
that yields a measure equivalent to the feature-distance
measure and, as such, has the desirable property of
monotonicity. In Section 3.2, we extend this model to 3D
such that we obtain a monotonic 3D importance measure.

3.1 Collapse Measure in 2D

Let � be a 2D shape. The skeleton of � can be defined as
those points where the DT D is nondifferentiable. Governed
by the eikonal equation, the trajectory of each boundary
point follows the gradient field rD and ends at the
skeleton S, where rD is undefined. We aim to define a
flow vector field F that extends rD to the skeleton such
that trajectories do not end at S. On nonskeleton points, F is
equal to the distance field gradient:

F ¼ rD on � n S: ð3Þ

Instead of ending at S, we let the trajectories end in a
unique point on S, called the root R. The precise definition
of R follows later (6). If we assume that the object is of
genus 0, the skeleton is also of genus 0 because the skeleton
is homotopic to the shape [35]. Assuming genus 0, the
skeleton of � is a tree, and it has no loops, so the
continuation of the trajectories on S toward R is prede-
termined. The flow field F on S can be defined in only one
way, namely, tangent to the skeleton:

F : F � nS ¼ 0 on S nR; ð4Þ
where nS represents the normal to the skeleton and F is
chosen in the direction of the root R. All trajectories end in
the root, where we define FðRÞ ¼~0.

Consider a discretization of the object boundary into a
large but finite number of particles evenly distributed on
the boundary @�. The advection of the particles is governed
by F. The trajectories of these particles together form a
trajectory tree of which R is the root. When the number of
particles approaches infinity, the tree covers the whole of �,
so that each point p 2 � is on the trajectory tree. On
nonskeleton points, the trajectories do not intersect because
they follow rD. On skeleton points, the trajectories
necessarily overlap, as the skeleton of a 2D shape is only
a 1D structure. Consequently, each object point p 2 � has
one or more trajectories going through it that originate on
the object boundary. The part of the boundary that is
formed by the origins of the trajectories (tree leaves) going
through a point p is called the collapse of p. The collapse at a
nonskeleton point is just its single feature point. The
collapse at a skeleton point are its two feature points plus
the origins of the trajectories incoming from the skeleton
and passing through that point. Because the skeleton is a
tree structure, a point p 2 S divides S into two subtrees. The
collapse at p is the sum (or integration in the limit) of the
feature points of the subtree not containing R, which means
that the collapse at p is a compact boundary arc.

Based on the construction presented above, we can now
define our importance measure � on �. The importance
measure tells us how important an object point p is in
representing the object boundary: The more trajectories
through p, the more important p is. In the case of an infinite
number of particles, this presents a problem, as the
importance for a skeleton point would be infinite, so we
use the size of the collapse instead:

�ðpÞ : � ! IR �ðpÞ ¼ j collapse at p j: ð5Þ
We call this importance measure � the collapse measure. We
can now define the root R as that point on S having two
neighboring points x, y 2 S, such that the collapse measure
at x is equal to the collapse measure at y:

Rð�Þ : �ðxÞ ¼ �ðyÞ: ð6Þ
Hence, the root is in the middle of the skeleton with

respect to the amount of incoming trajectories. In Fig. 2, the
feature points of the root R can be seen to divide the
boundary exactly into two components of equal length.

Intuitively, the above field F defines an advection of
particles, or mass, from the boundary onto and then along
the skeleton, up into the root R. The importance of a point

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 357

is the amount of mass that passes through that point on
its way to the root. The collapse measure has a low value
at the nonskeleton points � n S. On the skeleton, �
increases while approaching the root, as more and more
trajectories overlap. The collapse measure is monotonic
because the trajectories form a tree. It can be easily seen
that the value of � on S is equal in the limit to the well-
known feature-distance measure [5], [6], [7], which assigns
to each skeleton point the smaller boundary-arc length
between two feature points. Using our construction, we
obtain the same measure. In Fig. 2, a sparse subset of the
incoming trajectories for a point p is shown. These
trajectories clearly originate from the smaller boundary
arc between the feature points of p. Indeed, our collapse
measure �ðpÞ is equal to the length of this arc.

3.2 Extension to 3D

Our goal is to construct an importance measure in 3D that is
monotonic. Then, we can compute robust 3D skeletons
simply by thresholding this measure just as what is done in
2D using the feature-distance measure. We extend our
informal 2D advection model from the previous section to
3D. This informal model for 3D shapes motivates our
algorithm from Section 4.

Again, we want to construct a flow vector field F,
yielding a trajectory tree that covers the whole volume of �.
As in 2D, we require that the trajectories first follow rD:

F ¼ rD on � n S: ð7Þ
The definition ofF should be extended to S and there should
be a single root R 2 S. In contrast to the 2D case, there are
more possibilities to define F as S is now a 2D structure (2):
the surface skeleton, generally consisting of 2D curved
manifolds. We present a construction of F that yields a
measure that is not only monotonic but has the nice property
that it differentiates between the surface and curve skeleton.

The key idea is to slice the 3D shape into 2D simply
connected and possibly curved manifolds, called slices, and
use our 2Dmodel on these slices to define F in a divide-and-
conquer fashion. Let� denote a slicewith compact boundary
@� � @�. We define F on a slice � using the 2D model.
BecauseF is alreadydefinedon� n S by (7), the slicesmust be
parallel torD, so that trajectories starting ona slice boundary
stay in their respective slice. If we denote by n� the normal to
slice �, then we require

n� � rD ¼ 0 on � n S: ð8Þ

This implies that the 1D skeleton Sð�Þ of a slice � is at the
intersection of the slice with the surface skeleton Sð�Þ of the
object

Sð�Þ ¼ � \ Sð�Þ ð9Þ
because each point p 2 Sð�Þ is connected to its two feature
points by two trajectories originating on the slice boundary
@�. Now, F on the slice skeleton and, thus, on Sð�Þ, can be
defined according to our 2D model (4), namely, tangent to
the slice skeleton, FðSð�ÞÞ � n� ¼ 0, in the direction of the
slice root R�. The slice root R� is defined similar to the root
in the 2D model: Its two feature points divide @� into two
boundary arcs of equal length.

Applying the 2D model to each slice, we obtain one
trajectory tree per slice, yielding a trajectory forest. In order
to merge this forest into a single trajectory tree for the whole
volume �, the trajectories starting on the slice boundary @�
should not stop in the slice root R� but should continue to a
single global root R, which we will define later. This poses
the final requirement on the slices, namely, that the roots of
all the slices together form a 1D connected structure. We call
this structure the curve skeleton C, as it is connected and can
be considered in the center of the object, as it consists of
individual slice roots:

C ¼ fR�i
gi: ð10Þ

We now define a slice set satisfying the requirements
above. The key idea is that we choose each slice � such that
its root R� admits exactly two shortest geodesics on the
object surface @� between its two feature points F ðR�Þ. The
two shortest geodesics form the boundary @� of the slice. In
this way, we are sure that the slice roots form a connected
1D structure, satisfying (10). Indeed, we use here the result
by Dey and Sun [28]: They used as a definition for their
connected curve skeleton those points on S that have two
shortest geodesics between their two feature points. A
second reason why this definition fits our model nicely is
that R� is indeed the root of its slice: The two shortest
geodesics between F ðR�Þ forming the slice boundary @�
are necessarily of equal length. A slice is completely
characterized by its boundary consisting of two shortest
geodesics, together forming a Jordan curve, and the fact that
it is parallel to rD. What remains to be shown is that this
definition yields simply connected slices, in specific, that
there are no holes at Sð�Þ. Extensive empirical study
suggests this, as checked by us on several tenths of different
3D voxelized objects, sampled on various resolutions.
However, we cannot prove this and leave it as a conjecture.

Our recursive approach of first slicing the object and
then applying our 2D model to the slices yields a
hierarchically structured trajectory tree. Consider a trajec-
tory starting on the object boundary @� and slice boundary
@�. It first goes straight to the slice skeleton while staying in
its slice �. The collapse at such a nonskeleton point is a
single point on the boundary. After arriving on the slice
skeleton, located on the surface skeleton S, the trajectory
follows the 1D slice skeleton toward the slice root R� 2 C,
overlapping more and more trajectories from the same slice
on its way. The collapse at a slice skeleton point is similar to
the collapse at a skeleton point in the 2D model: a boundary

358 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Fig. 2. A rectangle shape �, its skeleton S, the root R, a skeleton point p,

and p’s feature points a, b. The collapse of p is formed by the origins of

the trajectories (red) through p.

arc on the slice boundary. Without considering trajectories
coming from other slices, the collapse at the slice root R� is
the slice boundary @�. After trajectories arrive at the slice
root, located on the curve skeleton, they continue along the
curve skeleton toward the global root R 2 C, joining the
trajectories coming from other slices. Hence, the collapse at
a curve skeleton point is an integration of slice boundaries:
an object-surface area. Indeed, the Jordan curve theorem
states that a Jordan curve on a surface of genus 0 divides
that surface into two components. In our construction, the
collapse at a curve skeleton point R� is the area of the
smaller component generated by the slice boundary and
Jordan curve @�. We still need to define the global root R.
Analogous to the 2D root, which is defined to be in the
middle of the skeleton with respect to the collapse measure
(6), the global root R is the slice root R� 2 C of the slice
whose boundary divides the object surface into two
components of equal area.

Fig. 3 exemplifies our construction. It shows a box shape,
two slices �1, �2 and one trajectory starting on @�1. The
trajectory first goes to Sð�1Þ and then to R�1

while staying
in the slice. Point R�1

is the root of �1, as the feature points
a, b of R�1

divide the slice boundary @�1 into two
components of equal length: Each component is the shortest
geodesic between a, b. The trajectory leaves the slice in R�1

and continues along the curve skeleton C. Finally, the
trajectory ends in the global root R 2 C, which coincides
with the root of slice �2. Point R is chosen as the global root
because its slice boundary divides the boundary into two
components of equal area.

As in 2D, the tree structure of the trajectories ensures that
the collapse measure is also monotonic in 3D by construc-
tion. It is furthermore important to note that the collapse
measure of a curve skeleton point p can be computed
independently from other points simply by taking the area
of the smaller object surface component generated by the
slice boundary, consisting of the two shortest geodesics
between the two feature points a, b of p. Likewise, the

collapse measure of a surface skeleton point can be directly
computed by taking the length of the shortest geodesic
between a, b on the object surface. We use these properties
in our algorithm in Section 4.

3.3 Skeleton Simplification

After we have computed � for all points in the object �, we
obtain a simplified skeleton by thresholding � with a
desired importance value � . To easily handle objects of
different sizes, we first normalize � to [0..1] by dividing it by
its maximal value, that is, half the object surface area (see
Section 3.1):

S� ¼ p 2 � j �ðpÞ > �
1

2
areað@�Þ

� �
: ð11Þ

These simplified skeletons are connected by default, as the
collapse measure � is monotonic.

One observation must be made concerning the inter-
pretation of the collapse measure �. This measure is
essentially of a higher dimensionality on the curve skeleton
C than on the remainder of the surface skeleton S n C.
Although �ðCÞ denotes a collapsed area, �ðS n CÞ denotes a
collapsed curve length. This means that, when we increase
� , the surface skeleton typically disappears completely even
before the curve skeleton starts to get simplified. This is
desirable in applications where the curve skeleton is
considered more important. However, in other applications,
this behavior may not be desired, as we shall show in
Section 6. For such applications, we can “equalize” � by
reducing the dimensionality of �ðCÞ from an area to a length
by taking its square root. We denote the equalized skeleton
by S0

� . In contrast to S� , the equalized skeleton gets
simplified uniformly both in its curve as in its surface
components when � is increased. Note that this is just one of
the possible ways to equalize �. Other options leading to
other applications are open to further study.

4 ALGORITHM

We present now a voxel-based algorithm that computes
simplified skeletons by first computing the collapse
measure and then thresholding it (11). A strong point of
our algorithm is that it works on the object-boundary voxels
only and not on any derived structures. In particular, there
is no need to compute S first. It is important to note that we
do not need to explicitly compute the flow vector field F
and simulate an advection process, which would be
unstable. Instead, we compute the collapse measure at
surface and curve skeleton voxels directly as a length and
object surface area, respectively. In Section 4.1, we present
an outline of the algorithm. Section 4.2 discusses the
implementation in more detail. Section 4.3 explains how
the algorithm deals with the nongeneric cases.

4.1 Outline

Our voxel-based algorithm computes the collapse measure
for each object voxel p independently from the other voxels.
From the curve skeleton definition (Section 3.2), it follows
that we can detect a curve skeleton point p by checking
whether p admits at least two shortest geodesics on the
object surface between its two feature points. However, in

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 359

Fig. 3. A box shape �, (part of) the curve skeleton C, and two slices �1,

�2. One trajectory is shown in red.

discrete space, this definition is problematic. On a voxelized
object surface, the length of a shortest path, as a discrete
equivalent of the shortest geodesic, is only an approxima-
tion for the geodesic length on the original continuous
surface. In practice, we will thus find only one shortest path
between the two feature voxels of a curve skeleton voxel.
Because of this, and in order to handle the nongeneric cases,
as will be explained in Section 4.3, we opt to detect the
curve skeleton differently. Instead of computing the short-
est path(s) between the two feature voxels of a voxel p, we
also consider the feature voxels of p’s neighbors, basically
“extending” the feature set of p. Shortest paths are
computed between each pair of voxels in the extended
feature set, yielding multiple shortest paths. For curve
skeleton voxels, these shortest paths form a band around
the object (see, for example, Fig. 6a), which can be
considered the discrete version of the Jordan curve that
the slice boundary is (Section 3.2). Assuming that the object
is of genus 0, such a band splits the object surface into two
connected components if and only if p is a curve skeleton
voxel, which in fact we use as the detector. The collapse
measure at p is the area of the smaller component generated
by the band. If the band does not divide the surface into
multiple components, the voxel is considered a surface
skeleton voxel, and we take as the collapse measure the
maximum over the shortest path lengths. After computing
the collapse measure for all voxels, the simplified skeleton
is computed by thresholding �. We detail the implementa-
tion in Section 4.2.

4.2 Implementation

The pseudocode of the algorithm is shown in Fig. 4. The
algorithm takes as input a binary object � voxelized on a
regular grid. The output is the simplified skeleton S� ,
represented on the same voxel grid. The voxelized
boundary @� is represented as a graph in which nodes
are voxels. An edge in the graph corresponds to two
neighboring voxels that are 26-connected, that is, share at
least one corner. The object voxels � are 6-connected, that is,
they are connected if sharing a face. The algorithm consists
of four stages: computing the (extended) feature transform,
the shortest path sets, the collapse measure, and, finally, the
simplified skeleton.

In the first stage (Fig. 4, line 1), we compute the feature
transform F using [36]. Next, we compute the extended

feature set F of a voxel p by merging the feature set of p with
the feature sets of its 26-neighbors that lie in the first octant
(line 3). The purpose of F is to combat two discretization
problems, as outlined in Section 4.1. The first problem is
that, although surface skeleton points always have at least
two feature points in IR3, this is not necessarily so in
discrete (ZZ3) space [34]. In a box of even height, no voxels
on the center surface skeleton sheet contain two feature
voxels. Second, curve skeleton points have the two shortest
geodesics between their feature points in IR3, but in ZZ3, the
geodesic length cannot be computed exactly, and we may
find only one shortest path in practice.

In the second stage, we compute the set of the shortest
paths P between each pair of feature voxels in F (line 4).
The shortest path between two feature voxels a, b is
computed as a 3D chain code [37] using the A� shortest
path algorithm [38] on the boundary graph with euclidean
distance as the search heuristic. The A� algorithm computes
only one shortest path between two feature voxels a, b. This
is not a problem because we compute the set of shortest
paths between each pair of feature voxels in F . Although
computing shortest paths between each pair of feature
voxels seems computationally expensive, the size of F is
typically small (� 8) and half of the paths are between
neighboring feature voxels.

In the third stage, the collapse measure �ðpÞ is computed.
We compute the set of connected components C in the
boundary graph in which the voxels of the shortest path set
P are removed. A simple spatial subdivision scheme on the
boundary is used to speed up the flood fills used. Moreover,
we prevent computing the collapse for voxels that certainly
are nonskeleton voxels, that is, have only a few voxels in P .
If C contains two or more connected components, p is a
curve skeleton voxel and the collapse at p is @� n c, where
c 2 C is the largest connected component in terms of voxel
count. The collapse measure is equal to the number of
voxels in @� n c (line 7). We could use a surface-area
estimator to better approximate the collapse area on the
original continuous @�, but taking the cardinality of the
collapse yields good results in practice. If C contains only
one connected component, p is either a surface skeleton or
nonskeleton voxel. In that case, the collapse at p is the
longest shortest path in P . As a collapse measure, we could
take the amount of voxels in this longest path. However,
using the length estimator in [37] instead gives better results
in practice (line 9). Although the algorithm does not
differentiate between surface skeleton and nonskeleton
voxels, for which jCj is also 1, the length of the longest
shortest path for nonskeleton voxels will be between
neighboring voxels, resulting in a very small �. The object
voxels will be of low importance and will disappear first
when increasing the threshold. Next, � is normalized, as
explained in Section 3.3 (line 11).

The above method of detecting curve skeleton points and
computing their collapse measure works well only for
genus 0 objects, that is, objects without tunnels, whose
skeleton is a tree. Detecting curve skeleton points in this
manner for objects with genus greater than zero does not
work because the Jordan curve theorem does not hold: For
points where the shortest paths P are adjacent to a tunnel, P

360 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Fig. 4. Pseudocode of the complete algorithm.

does not divide the boundary into two or more connected

components. A simple variation of the algorithm for

detecting curve skeleton points for objects with tunnels is

given as follows: We replace the curve skeleton detection

(lines 5 and 6, Fig. 4) with a “Jordan curve test” on P . See

[39] for details. The choice of a meaningful importance

measure for the points situated on C-loops is subject to

future research. Nevertheless, the variation suggested

above allows a simple and robust computation of curve

skeletons for objects of arbitrary genus. Fig. 5 shows such a

curve skeleton extracted for an object with two tunnels.

In the fourth and final stage, we simplify the skeleton

with the desired � value by applying (11) (line 13). In

order to compute the equalized skeleton S0
� , the algorithm

can be slightly modified by taking the square root of �

on C (Fig. 4, line 7) and normalizing by
ffi
1
2 areað@�Þ

q
(line 11). Depending on the value of � , we obtain for S�

or S0
� surface and curve skeletons simplified to different

levels, as demonstrated in Section 5.

4.3 Nongeneric Cases

Our model from Section 3.2 assumed the generic case of a

skeleton point having exactly two feature points and

admitting one or two shortest geodesics between them.

An example of such a generic curve skeleton point is shown

in Fig. 6a. However, our algorithm from the previous

section can also deal with the nongeneric cases, as

explained in this section. We can distinguish two cases:

1) points having three or more feature points and 2) points

having three or more shortest geodesics between their two

feature points.

We begin explaining the first case. Surface skeletons
consist of manifolds with boundaries, called sheets [40], [41].
Sheets intersect in curves. Points on these curves have more
than two feature points. Fig. 6b shows such a configuration
in a box with a vertical ridge. The selected curve skeleton
point lies on the intersection curve of three sheets and has
three feature voxels. This is a limit case. A point lying on
one sheet has one pair of feature points, but a point lying on
the intersection of three sheets has three pairs of feature
points. Some feature points are shared among pairs,
yielding three distinct feature points. No two feature points
among these three admit two shortest geodesics between
them, so that the curve skeleton cannot be detected using
this criterion. However, our algorithm combines all shortest
geodesics so that we now obtain a slice boundary that splits
the object surface into two components, correctly detecting
the curve skeleton point. Another example of a point having
three or more feature points is that of a curve skeleton point
whose inscribed ball has a finite contact with the boundary.
This yields a continuum of feature points, which in voxel
space, results in a finite number of feature voxels.
Combining the shortest paths between all feature voxels
again resolves the issue as it splits the object surface into
two components. An example of this situation in a cylinder
shape is shown in Fig. 6c.

Combining all shortest geodesics might result in slightly
wrong collapses in the uncommon occasion that a curve
skeleton point lies on the intersection curve of more than
three sheets. In this case, not every two feature points and
the associated shortest geodesic between them correspond
to a sheet. At those points, the collapse measure might
differ slightly from what it should be, violating mono-
tonicity. However, we did not find this to be a detectable
issue in any real-world example (see Section 5).

The second nongeneric case is that of a point p 2 C
having three or more shortest geodesics between its two
feature points, which happens at junction points of the
curve skeleton (Fig. 6d). This is a limit case, since each curve
skeleton point next to the junction does admit two shortest
geodesics. The difference with the generic case is that we
obtain more than two connected components in case of a
junction point. The algorithm deals with this by always
taking @� n c as the collapse at p (Fig. 4, line 7), where c is
the largest component in C, essentially taking the largest
collapse among the collapses of p’s neighbors.

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 361

Fig. 5. Curve skeleton of a box with two tunnels computed using a

variation of our algorithm.

Fig. 6. (a) Generic curve skeleton point, (b)-(d) nongeneric cases. The curve skeletons are shown with a rainbow color map encoding the collapse

measure. In each image, the shortest path set for a selected curve skeleton voxel is shown in magenta. Feature voxels are shown as spheres and

are connected to the selected voxel using line segments. These images are screenshots made using our implementation.

5 RESULTS

We have implemented the algorithm from the previous
section in C++ and have run it on a Pentium 4, 3-GHz
processor, and 1 Gbyte of RAM. As input, we used several
complex polygonal meshes from [42], [43], and voxelized
using binvox [44] for various resolutions. We used object
resolutions ranging up to 5123 voxels. For each object, the
resolution that we used is appended to the object’s name.
The Mobile object was created such that it incorporates
several synthetic, nonnatural shapes. Various measure-
ments are shown in Table 1. Column “dim” indicates the
dimension of the object. Columns “j�j” and “j@�j” indicate
the number of boundary and object voxels, respectively.
Columns “#paths” indicate the number of computed short-
est paths, and “#comp.” indicates how many times the
connected components are computed (Fig. 4, line 5),
whereas “paths t” and “comp. t” show the total wall-clock
time for both. The last column shows the total wall-clock
time for the whole algorithm to complete. As can be seen, all
objects are completed within 10 minutes. We use a simple
caching scheme for the shortest paths to prevent computing
the same shortest path more than once as much as possible.
The size of the cache is a user parameter and presents a
trade-off between speed and memory usage. In these
measurements, a cache size of 50 Mbytes was used, which
presents a speed-up factor of approximately 3 to 4. For these
resolutions, larger cache sizes do not improve speed
significantly. Column “mem” shows the peak memory
usage, which is below 800 Mbyes for all the objects we
considered.

Fig. 7 shows the simplified skeletons S� of three objects
as computed by our algorithm, with the indicated values of
� . The importance measure is visualized using a rainbow
color map, mapping 0 to blue (that is, unimportant skeleton
points) and 1 to red (that is, central important skeleton
points). We observe that the nongeneric cases in the Mobile
object, such as the cylinder and extruded star, are handled
well. The surface skeleton is mainly blue because its
importance measure is significantly smaller than that of

the curve skeleton, as explained in Section 3.3. In order to
highlight the variation of � on S n C, we can better use the
equalized skeleton S0

� . Fig. 8 shows S0
� for the Bird object. It

is interesting to see how S� and S0
� progress differently

when increasing � . With S0
� , the surface and curve skeleton

are simplified more simultaneously, especially near the
periphery of the skeleton, which can be useful for some
applications, as we will see in Section 6.

Fig. 9 shows the curve skeleton in isolation for various
objects. Note that we modified the original Rockerarm
object so that it is genus 0. We observe that the extracted
curve skeletons reach into fine structures like the tentacle
tips of the Octopus object and the Cow’s tail, are centered
with respect to the object surface, and exhibit very little
wiggle noise. Cornea et al. [8] made a comparison between
four curve skeleton methods: a basic thinning, distance
field, geometric, and potential-field method. Among the
objects tested was the Plane object. We observe that our
approach delivers superior results on this object (compare
Fig. 9 and [8, Fig. 12]). The price we pay is that our method
is slower than the first three methods mentioned in [8],
although it is the same order as the potential-field method.
More results of our skeletonization method are available
online in [45], including animations of S� ’s progression.

6 DISCUSSION

Because curve and surface skeletonization methods differ in
the precise skeleton definition that they use, the object
representation they work on, and the applications they
target, they are usually compared by their results based on
various desirable properties, as mentioned in Section 1. In
Section 6.1, we discuss how our approach satisfies these
desirable properties. In Section 6.2, we discuss how several
key aspects of our approach relate to other approaches.

6.1 Desirable Properties

The skeleton is invariant under isometric transformations
(modulo, of course, the voxel discretization). The skeleton is
up to four voxels thick due to the discretization; a simple

362 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

TABLE 1
Table with Measurements

See the text for details.

postprocessing step could be added to make it one voxel
thin if desired. The surface skeleton is centered because it is
defined as those points having at least two feature points.
The curve skeleton is centered on the surface skeleton with
respect to the shortest geodesic length function and, thus, it
is also centered within the object. Since the importance
measure is monotonically increasing (Section 3.2), the
simplified skeletons S� are connected by default. No special
homotopy-preserving provisions are needed to ensure this,
unlike, for example, [13], [23], [28], due to the global nature
of the importance measure. The simplification is continuous
for the vast majority of shapes. That is, small changes in �

result in small changes in S� . This is a very important
property, given the infamous unstable behavior of skeletal
structure. The continuity can be ascribed to the fact that the
shortest geodesic of a point q 2 S n C evolves smoothly over
S n C, so that � is continuous on S n C. The slice boundaries,
each consisting of the two shortest geodesics, evolve
smoothly over C except at curve skeleton junctions, so that
� is continuous on C and only contains jumps at C-junctions.
The skeletons are hierarchical or multiscale because �

represents a continuous hierarchy of nested skeletons in
which each S� represents a separate level.

Our approach satisfies the two additional desirable
properties we proposed in Section 1 for methods that
compute both curve and surface skeletons. First, the curve
skeleton is included in the surface skeleton because the
curve skeleton is considered a special case of the surface
skeleton, namely, as those points having more than one
shortest geodesic. Second, our importance measure treats
the nonskeleton and surface and curve skeleton points in a
uniform manner: All points are characterized by their
importance given by the advected mass model.

Our simplification method has a single parameter � ; no
other hacks or settings are needed. The meaning of the
importance �, which is thresholded by � , is quite simple
and intuitive: For a given skeleton point p, �ðpÞ represents
the fraction of the object’s boundary, which is described
by that point.

The robustness property requires the skeleton of a noisy
surface to be close to that of the corresponding smooth
surface. We can achieve this behavior by setting � such that
skeleton parts due to noise are filtered out. Fig. 10 shows the
Dino object with and without surface noise and its skeleton
for two thresholds � . As expected, we observe that S0

� of the
noisy Dino (Fig. 10b) is much noisier than S0

� of the Dino

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 363

Fig. 8. Simplified equalized skeletons S0
� for the Bird object.

Fig. 7. Simplified skeletons S� of the Dragon, Mobile, and Cow objects at four thresholds � . The importance measure is visualized using a rainbow
color map.

without noise (Fig. 10a) for small values of � : � < 0:05. The
skeleton of the noisy Dino can be made robust (Fig. 10d) by
increasing � . At � ¼ 0:1, the structure of the simplified
skeleton of the noisy Dino (Fig. 10d) is comparable to the
skeleton of the nonnoisy Dino (Fig. 10c). The importance
measures on both are also very similar, as indicated by the
colors. In the above, we used the simplified equalized

skeleton S0
� . If we use the nonequalized skeleton S� , the

spurious branches of the curve skeleton remain until � is so
high that S is completely removed.

The curve skeleton is said to be junction detective, or
allowing for componentwise differentiation, when different
logical parts of the object can be inferred from the curve
skeleton [4]. In fact, the collapses that we compute provide
us with a natural skeleton-to-boundary mapping. Surface
skeleton points map to curves on the object surface, whereas
curve skeleton points map to contiguous areas. Fig. 9 shows
the skeleton-to-boundary mapping for several curve skele-
ton points for the Hand and Horse objects. We observe that

the collapses correspond to logical parts of the boundary,
such as the legs or ear of the horse and fingers of the hand.
The skeleton-to-boundary mapping can be used in various
applications, for example, for selection purposes in geo-
metric modeling applications. Another application is shape
segmentation. The collapses associated with the curve
skeleton branches coming together in a junction provide
us with meaningful components: distinct logical object
parts. Combining the meaningful components that are
associated with all curve skeleton junctions yields a shape
segmentation having desirable properties as follows:
Because the skeleton-to-boundary mapping is based on
the shortest geodesics, the borders between segments are
smooth, minimally twisting, and robust to noise. Being
based on the curve skeleton, the segmentation respects
circular shape symmetry and is pose invariant. A shape
segmentation method from the first and third author
exploiting this skeleton-to-boundary mapping is described
in [39]. Fig. 11 shows two segmentations obtained using
this approach.

364 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Fig. 9. The curve skeletons of the Rockerarm, Plane, Hand, Octopus, Homer, and Horse objects. The importance measure is visualized using a
rainbow color map. For the Hand and Horse objects, we show the collapses (magenta) for several curve skeleton voxels (white). The line segments
indicate feature voxels of the white voxels.

Fig. 10. The skeletons can be made robust by increasing the threshold � .

The original object, or a simplified version thereof, can be
reconstructed from the surface skeleton by placing at each
voxel its maximally inscribed ball. In general, reconstruc-
tion from the curve skeleton is not possible by using only
balls. One simple application of our simplified skeletons is
that of surface smoothing. By reconstructing a surface from
the simplified skeleton S� for a small � value, small-scale
surface noise is replaced by sphere segments. For the
purpose of surface smoothing, the simplified equalized
skeleton S0

� is used, so that the spurious curve and surface
skeleton parts due to the noise near the boundary are
simplified simultaneously. Fig. 12 shows two examples. Of
course, � cannot be too high; otherwise, the reconstruction
becomes too inaccurate or “spherified.” Reducing noise in
this manner works best at thick object parts, such that the
inscribed balls of this part are large in comparison to the
inscribed balls in the perturbations. Indeed, noise at thin
parts can be considered as object features, more so than
noise at thick parts. Noise at the thin parts, namely, the
ridges of the box and the neck of the Dino, is less reduced
than the thick parts. A nice feature of using the collapse
measure is that the reconstructed object cannot become
disconnected due to the simplification, because the collapse
measure on the curve skeleton has such a high value. In
contrast, if we would simplify the Dino in Fig. 12 using only
the collapse measure as defined on S n C, the neck would
become disconnected.

The monotonicity of the collapse measure comes at a
price: Our measure is not so efficient to compute as purely
local importance measures due to the global operations
involved. Computing the feature transform using [36] takes
OðnÞ, where n ¼ j�j. Computing the set of the shortest paths
for an object voxel in the boundary graph using A� takes
Oðb log bÞ in the worst case, where b ¼ j@�j � logn. The
worst case is a sphere, as the shortest path algorithm visits
practically all boundary voxels for diametrically opposed
feature voxels. However, shortest paths are not computed
between arbitrary boundary voxels, but always between
associated feature-voxels, so that, for objects that consist of
distinct parts, the algorithm visits only a small subset of the
boundary voxels. Computing the connected components
using a hierarchical spatial subdivision scheme on the
surface takes Oðlog bÞ. Overall, the worst case of the
algorithm is Oðnðb log bÞÞ, but practical cases are far below
this limit. Table 1 shows the relation between n, b and the
runtimes for several practical objects. In particular, we note
that the speed of our implementation compares favorably to

that in [28]. On a comparable machine, their approach took
half an hour to compute a curve skeleton for the Rockerarm.
Our approach took less than 10 minutes, using a voxel
resolution of 3843 for a full curve and surface skeleton
hierarchy while observing that the complexity of the curve
skeleton is comparable (compare Fig. 9 and [28, Fig. 5]). Our
approach is faster than the potential-field method by Cornea
et al. [16], which reportedly takes up to half an hour for
voxel resolutions in the order of 2003 on a standard PC.

When discussing the speed, we should stress the fact that
our approach is, to our knowledge, the only one that
generalizes a global importance measure for 2D objects,
namely, the feature-distance measure, to 3D. This measure
is the cornerstone of our method, as it guarantees the
satisfaction of all the desirable properties considered,
similar to its analogous 2D counterpart.

6.2 Comparison with Other Methods

In this section, we compare our method with existing
methods on five main aspects of our implementation: use of
geodesics, local versus global detection, gradient field
extension, the use of advection, and discrete versus
continuous space methods.

Our approach resembles the recently published ap-
proach by Dey and Sun [28] in the sense that the shortest
geodesic length between feature points is used. There are
some important differences however. Most importantly, we
produce a skeleton hierarchy, whereas their approach does
not. Second, their approach is more of a hybrid method, in
which first the surface skeleton and global geodesic-length
measure are explicitly determined, after which a local
divergence-based measure [13] is used to find the curve
skeleton on the derived surface skeleton structure. Because
this latter measure is local, an erosion is needed to enforce
connectedness, as well as a sampling resolution high
enough to accurately compute the involved divergence. In
contrast, our approach uses a single global measure for both
the curve and surface skeleton. The measure can be
computed independently on a point-by-point fashion,
making our algorithm simple and allowing parallel proces-
sing. Furthermore, all our computations are based on a
nonderived structure, namely, the object surface. This
allows us to use a voxel representation, requiring simple

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 365

Fig. 11. Shape segmentations using the skeleton-to-boundary mapping.

Fig. 12. Surface smoothing of the Box and Dino objects by reconstruc-

tion from S0
� with a small � .

data-structures and algorithms, keeping our algorithm
straightforward and efficient. A second advantage of using
only nonderived structures and integral quantities such as
geodesics and collapsed areas is that our approach is very
robust, even for coarsely sampled volumetric objects.

We would further like to compare the surface skeleton
produced by our global importance measure with the
skeleton resulting from a purely local measure. See Fig. 13.
Fig. 13a shows the surface skeleton S� of the Cow object
computed by our method. Fig. 13b (taken in [23]) shows the
surface skeleton resulting from the moment-based measure
in [3]. The threshold used for the latter images was carefully
chosen such that the skeleton is both connected and noise
free. We chose � for our method such that the skeletons are
most similar. Nevertheless, we observe that our skeleton at
this comparable simplification level is able to capture more
details such as the horizontal skeleton sheets and the
skeleton in the udder and tail. This can be explained by the
fact that local measures cannot distinguish between these
fine structures and noise and will eliminate them together,
whereas global measures can. Our skeleton is connected
regardless of � .

At a conceptual level, our advection-based importance
measure is related to the flow complex by Giesen et al. [46],
[47]. We briefly outline next the similarities and differences.
Both approaches define a vector field inside a 3D object in
which advection of points situated on the object boundary is
considered. In both approaches, the vector field is equal to
the gradient of the distance-to-boundary function in the
noncritical points, that is, away from the skeleton. Both
approaches extend the vector field to the critical (skeleton)
points, however, in different ways and for different
purposes. In both cases, the vector field defines implicitly
a dynamical system or induced flow, which describes the
motion, or advection, of particles. Typically, such particles
originate from a (dense) sampling of the surface of the
considered 3D object. Giesen and John extend the gradient
field on the skeleton in the direction of the steepest ascent
and end the trajectories, called orbits, in [46], in critical

points where the steepest ascent cannot be determined,
called fixed points of the flow complex. In contrast, our
advection model extends the vector field on the skeleton
such that it is tangent to the trajectory tree, constructed as
described in Section 3.2, and oriented toward the unique
root. Hence, the advection model in [46] admits several
fixed points or “sinks,” even for genus 0 objects, whereas
our model admits one unique sink, or root. Our notion of
the collapse of a point is similar to the set of start points, on
the object surface, of all orbits contained in what in [47] is
called a “stable manifold” of that point. They define, and
compute, the core of a 3D object as the set of unstable
manifolds of critical points c, which are the set of points to
which the neighbors of c flow. The core is shown to be
homotopic to the medial axis or skeleton. At an implemen-
tation level, the object and skeleton are manipulated in a
computational geometry setting based on polygonal de-
scriptions using tools such as the Voronoi and Delaunay
diagrams. In contrast, we define and compute the skeleton
using the (extended) feature transform (Section 4), and we
perform all computations in a discrete voxel setting. All in
all, the goal of our advection-based model is to define a
monotonic importance measure that allows robust simpli-
fication of complex 3D skeletons, whereas the model in [46]
is used to fulfill topological guarantees for medial axes [47]
and surface reconstruction [48] computation methods.

Skeletons can be computed by direct numerical simula-
tion of advection. For example, Torsello and Hancock [49]
compute skeletons of 2D shapes by simulating an advection
process based on momentum conservation. This yields a
scalar density field that captures the local contractions and
dilations of the boundary evolution in the distance field
gradient. Hence, their method is a skeleton detector but not
a skeleton simplifier. In contrast, our collapse measure has
overall low values away from the skeleton but has a high
variation on the skeleton itself, which allows us to simplify
the skeleton.

Finally, let us mention that we have opted for a voxel-
based approach for its ease of implementation. A dis-
advantage of this is that polygonal models first need to be
voxelized. The resulting skeletons are influenced by the
grid’s orientation, causing a slight loss of rotation invar-
iance, and the grid’s resolution, which may cause a loss of
detail for objects containing small features. Methods acting
directly on continuous geometrical data do not have these
issues. However, we would like to indicate that the
definition of our global importance measure is not limited
to discrete space. As long as the key ingredients of this
measure are available, namely, computation of the feature
points, shortest geodesics, and connected components, our
approach can be adapted to other representations.

7 CONCLUSION

We have proposed the collapse measure, a novel impor-
tance measure that enables the robust computation of
multiscale curve and surface skeletons of 3D objects. To our
knowledge, this is the first truly global 3D importance
measure that can be used to obtain both surface and/or
curve skeleton hierarchies in a uniform manner. Under-
pinning the collapse measure is a physical process in which

366 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Fig. 13. A comparison between the surface skeleton produced by using

(a) our global measure and (b) a typical local measure.

mass from the object boundary is advected or “collapses”
onto the skeleton. This gives the measure an intuitive
meaning and allows us to reason about it and deduce
several properties of interest. For the practical implementa-
tion of the proposed measure, we do not explicitly simulate
the advection process, as this can be computationally
unstable and complex. Instead, we propose a practical
algorithm that is straightforward to implement, does not
need any postprocessing steps, and is robust, as it uses only
integral operations. Our algorithm delivers good results on
a wide range of real-world complex objects. A limitation of
our measure is that objects with tunnels cannot be handled.
However, this is a known limitation for the analogous 2D
feature-distance measure [5]. In detail, we can compute
curve skeletons for such objects but not simplify them since
we have no importance measure for their loop parts.

In future work, we want to apply our skeletons in
various applications such as the simplification of complex
3D objects. Also, we consider an extension of the collapse
measure that can handle objects with tunnels. The recursive
nature of our approach makes it interesting to look at
generalizations and applications beyond 3D, for example,
for time-dependent surfaces. Finally, on a more theoretical
ground, we plan to investigate our conjecture (see Sec-
tion 3.2) in more depth to acquire more insight into the
relation of shapes with their skeletal counterparts.

ACKNOWLEDGMENTS

This work was supported by the Netherlands Organization
for Scientific Research (NWO) under Grant 612.065.414. The
authors would like to thank the anonymous reviewers for
their helpful comments.

REFERENCES

[1] H. Blum, “A Transformation for Extracting New Descriptors of
Shape,” Models for the Perception of Speech and Visual Form,
W. Wathen-Dunn, ed., pp. 362-380, MIT Press, 1967.

[2] N. Gagvani, D. Kenchammana-Hosekote, and D. Silver, “Volume
Animation Using the Skeleton Tree,” Proc. IEEE Symp. Volume
Visualization, pp. 47-53, 1998.

[3] M. Rumpf and A. Telea, “A Continuous Skeletonization Method
Based on Level Sets,” Proc. IEEE TCVG Symp. Visualization,
D. Ebert, P. Brunet, and I. Navazo, eds., pp. 151-158, 2002.

[4] N. Cornea, D. Silver, and P. Min, “Curve-Skeleton Applications,”
Proc. IEEE Visualization, pp. 95-102, 2005.

[5] R. Ogniewicz and O. Kübler, “Hierarchic Voronoi Skeletons,”
Pattern Recognition, vol. 28, no. 3, pp. 343-359, 1995.

[6] L. Costa and R. Cesar, Jr., Shape Analysis and Classification. CRC
Press, 2001.

[7] A. Telea and J.J. vanWijk, “An Augmented Fast Marching Method
for Computing Skeletons and Centerlines,” Proc. Symp. Data
Visualization (VisSym ’02), pp. 251-259, 2002.

[8] N. Cornea, D. Silver, and P. Min, “Curve-Skeleton Properties,
Applications and Algorithms,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 3, pp. 530-548, May/June 2007.

[9] K. Palagyi and A. Kuba, “Directional 3D Thinning Using
8 Subiterations,” Proc. Discrete Geometry for Computer Imagery
(DGCI ’99), vol. 1568, pp. 325-336, 1999.

[10] X. Li, T.W. Woon, T.S. Tan, and Z. Huang, “Decomposing Polygon
Meshes for Interactive Applications,” Proc. Symp. Interactive 3D
Graphics, pp. 35-42, 2001.

[11] M. Mortara, G. Patanèt, M. Spagnuolo, B. Falcidieno, and J.
Rossignac, “Plumber: A Method for a Multi-Scale Decomposition
of 3D Shapes into Tubular Primitives and Bodies,” Proc. ACM
Symp. Solid Modeling and Applications, pp. 339-344, 2004.

[12] M. Wan, F. Dachille, and A. Kaufman, “Distance-Field Based
Skeletons for Virtual Navigation,” Proc. IEEE Visualization,
pp. 239-246, 2001.

[13] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker, “Hamilton-
Jacobi Skeletons,” Int’l J. Computer Vision, vol. 48, no. 3, pp. 215-
231, 2002.

[14] R. Strzodka and A. Telea, “Generalized Distance Transforms and
Skeletons in Graphics Hardware,” Proc. EG/IEEE TCVG Symp.
Visualization (VisSym ’04), pp. 221-230, 2004.

[15] N. Ahuja and J. Chuang, “Shape Representation Using a General-
ized Potential Field Model,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 2, pp. 169-176, Feb. 1997.

[16] N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian,
“Computing Hierarchical Curve-Skeletons of 3D Objects,” The
Visual Computer, vol. 21, no. 11, pp. 945-955, 2005.

[17] C. Pudney, “Distance-Ordered Homotopic Thinning: A Skeleto-
nization Algorithm for 3D Digital Images,” Computer Vision and
Image Understanding, vol. 72, no. 3, pp. 404-413, 1998.

[18] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” ACM Trans. Graphics, vol. 22, no. 3,
pp. 954-961, 2003.

[19] A. Sud, M. Foskey, and D. Manocha, “Homotopy-Preserving
Medial Axis Simplification,” Proc. ACM Symp. Solid and Physical
Modeling (SPM ’05), pp. 39-50, 2005.

[20] M. van Dortmont, H. van de Wetering, and A. Telea,
“Skeletonization and Distance Transforms of 3D Volumes
Using Graphics Hardware,” Proc. Discrete Geometry for Compu-
ter Imagery (DGCI ’06), pp. 617-629, 2006.

[21] D. Shaked and A. Bruckstein, “Pruning Medial Axes,” Computer
Vision and Image Understanding, vol. 69, no. 2, pp. 156-169, 1998.

[22] G. Malandain and S. Fernández-Vidal, “Euclidean Skeletons,”
Image and Vision Computing, vol. 16, no. 5, pp. 317-327, 1998.

[23] A. Telea and A. Vilanova, “A Robust Level-Set Algorithm for
Centerline Extraction,” Proc. Symp. Data Visualisation (VisSym ’03),
pp. 185-194, 2003.

[24] M. Foskey, M. Lin, and D. Manocha, “Efficient Computation of a
Simplified Medial Axis,” Proc. ACM Symp. Solid Modeling and
Applications, pp. 96-107, 2003.

[25] K. Siddiqi and B. Kimia, “A Shock Grammar for Recognition,”
Proc. Conf. Computer Vision and Pattern Recognition (CVPR ’96),
pp. 507-513, 1996.

[26] S. Bouix, K. Siddiqi, and A. Tannenbaum, “Flux Driven Automatic
Centerline Extraction,” Medical Image Analysis, vol. 9, no. 3,
pp. 209-221, 2005.

[27] S.M. Pizer, K. Siddiqi, G. Székely, J.N. Damon, and S.W. Zucker,
“Multiscale Medial Loci and Their Properties,” Int’l J. Computer
Vision, vol. 55, nos. 2-3, pp. 155-179, 2003.

[28] T. Dey and J. Sun, “Defining and Computing Curve-Skeletons
with Medial Geodesic Function,” Proc. Eurographics Symp. Geo-
metry Processing, pp. 143-152, 2006.

[29] S. Prohaska and H.-C. Hege, “Fast Visualization of Plane-Like
Structures in Voxel Data,” Proc. IEEE Visualization, pp. 29-36, 2002.

[30] Y. Shinagawa, T. Kunii, and Y.-L. Kergosien, “Surface Coding
Based on Morse Theory,” IEEE Computer Graphics and Applications,
vol. 11, no. 5, pp. 66-78, 1991.

[31] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology
Matching for Fully Automatic Similarity Estimation of 3D
Shapes,” Proc. 28th Ann. Conf. Computer Graphics and Interactive
Techniques, pp. 203-212, 2001.

[32] J. Sethian, Level Set Methods and Fast Marching Methods, second ed.
Cambridge Univ. Press, 1999.

[33] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Function
Using Graphics Hardware,” Proc. IEEE Visualization, pp. 83-90,
2003.

[34] D. Reniers and A. Telea, “Quantitative Comparison of Tolerance-
Based Feature Transforms,” Proc. First Int’l Conf. Computer Vision
Theory and Applications (VISAPP ’06), pp. 107-114, 2006.

[35] A. Lieutier, “Any Open Bounded Subset of IR3 Has the Same
Homotopy Type as Its Medial Axis,” Computer-Aided Design,
vol. 36, no. 11, pp. 1029-1046, 2004.

[36] J. Mullikin, “The Vector Distance Transform in Two and Three
Dimensions,” CVGIP: Graphical Models and Image Processing,
vol. 54, no. 6, pp. 526-535, 1992.

[37] N. Kiryati and G. Székely, “Estimating Shortest Paths and
Minimal Distances on Digitized Three-Dimensional Surfaces,”
Pattern Recognition, vol. 26, pp. 1623-1637, 1993.

RENIERS ET AL.: COMPUTING MULTISCALE CURVE AND SURFACE SKELETONS OF GENUS 0 SHAPES USING A GLOBAL IMPORTANCE... 367

[38] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Trans.
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[39] D. Reniers and A. Telea, “Skeleton-Based Hierarchical Shape
Segmentation,” Proc. IEEE Int’l Conf. Shape Modeling and Applica-
tions (SMI ’07), pp. 179-188, 2007.

[40] P. Giblin and B.B. Kimia, “A Formal Classification of 3D Medial
Axis Points and Their Local Geometry,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, no. 2, pp. 238-251, Feb.
2004.

[41] J. Damon, “Determining the Geometry of Boundaries of Objects
fromMedial Data,” Int’l J. Computer Vision, vol. 63, no. 1, pp. 45-64,
2005.

[42] AIM@SHAPE Repository, http://shapes.aim-at-shape.net, 2007.
[43] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The

Princeton Shape Benchmark,” Shape Modeling Int’l, 2004.
[44] P. Min, Binvox, a 3D Mesh Voxelizer, http://www.google.com/

search?q=binvox, 2007.
[45] D. Reniers, Personal Web Site, http://www.win.tue.nl/~dreniers/

skeletons, 2007.
[46] J. Giesen and M. John, “The Flow Complex: A Data Structure for

Geometric Modeling,” Proc. 14th ACM-SIAM Symp. Discrete
algorithms, pp. 285-294, 2003.

[47] J. Giesen, E.A. Ramos, and B. Sadri, “Medial Axis Approximation
and Unstable Flow Complex,” Proc. 22nd Ann. Symp. Computa-
tional Geometry, pp. 327-336, 2006.

[48] J. Giesen and M. John, “Surface Reconstruction Based on a
Dynamical System,” Computer Graphics Forum, vol. 21, no. 3,
p. 363, 2002.

[49] A. Torsello and E.R. Hancock, “Correcting Curvature-Density
Effects in the Hamilton-Jacobi Skeleton,” IEEE Trans. Image
Processing, vol. 15, no. 4, pp. 877-891, 2006.

Dennie Reniers received the MSc degree in
computer science from the Eindhoven University
of Technology (TU/e), Netherlands, in 2004. He
is currently working toward the PhD degree at
TU/e. His research interests include shape
representation and segmentation and discrete
geometry.

Jarke J. van Wijk received the MSc degree
(with honors) in industrial design engineering in
1982 and the PhD degree (with honors) in
computer science in 1986. He worked at a
software company and at the Netherlands
Energy Research Foundation ECN before he
joined the Technische Universiteit Eindhoven in
1998, where he became a full professor of
visualization in 2001. His main research inter-
ests are information visualization and flow

visualization, focusing on the development of new visual representa-
tions. He was a paper cochair for IEEE Visualization in 2003 and 2004
and for IEEE InfoVis 2006. He is a member of the IEEE, ACM
SIGGRAPH, and Eurographics.

Alexandru Telea received a degree in computer
science from the Polytechnics Institute of Bu-
charest, Romania, in 1996 and the PhD degree
in computer science from the Eindhoven Uni-
versity of Technology (TU/e), Netherlands, in
2000. Since then, he has been an assistant
professor in visualization and computer graphics
in the Department of Mathematics and Compu-
ter Science, TU/e. His research interests are in
multiscale modeling and analysis for scientific

and information visualization, shape analysis and representation, and
component and object-oriented software architectures.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

368 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

