
Published in Image Processing On Line on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://www.ipol.im/pub/pre/44/

PREPRINT July 4, 2014

An Implementation of Multiscale Combined Local-Global

Optical Flow

Jorge Jara1, Mauricio Cerda2, José Delpiano3, Steffen Härtel2

1 DCC, SCIAN-Lab, BNI, University of Chile, Chile (jjara@dcc.uchile.cl)
2 SCIAN-Lab, ICBM, BNI, University of Chile, Chile (mauriciocerda,shartel@med.uchile.cl)

3 University of the Andes, Chile (jdelpian@uandes.cl)

Abstract

Optical Flow (OF) approaches for motion estimation calculate vector fields which determine the
apparent velocities of objects in time varying image sequences. OF was introduced in 1981 by
Horn and Schunck (HS) with two basic assumptions: “brightness value constancy” and “smooth
variation” of the motion field across the image space. At about the same time, Lucas and Kanade
(LK) presented a method for motion estimation between images, considering constant motion
patterns for image patches. While the HS method is aimed to solve the problem with a smooth
flow field over the entire image -global approach- the LK method can produce homogeneous
piece-wise motion field “patches” -local approach-. Several variations of the original HS- and
LK-OF approaches have been published. Here we present the combined local-global (CLG)
approach of Bruhn et al. which encompasses properties of both HS- and LK-OF models. CLG-
OF aims to improve the accuracy of the OF motion field for small-scale variations while retaining
the HS-OF benefits of dense and smooth vector fields.

A CLG-OF implementation is provided for 2D images, using a multiscale strategy and with
two numerical solvers available: Successive Over-Relaxation and the faster Pointwise-Coupled
Gauss-Seidel, proposed also by Bruhn et al. It must be noted that the algorithm works on grey-
scale (single channel) images. Thus, color images will be converted prior to the OF computation.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web part of this article1.

Supplementary Material

Sample images and the CLG-OF demo are available here2.

1http://www.ipol.im/pub/pre/44/
2http://www.ipol.im/pub/pre/44/

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ipol.im/pub/pre/44/
http://www.ipol.im/pub/pre/44/
http://www.ipol.im/pub/pre/44/
http://www.ipol.im/pub/pre/44/
http://www.ipol.im/pub/pre/44/
http://www.ipol.im/pub/pre/44/

1 Introduction

In this article we describe the combined local-global optical flow approach introduced by Bruhn et al.
[2]. A review of the OF approaches from Horn & Schunck and Lucas & Kanade is also provided, as
their constraints have been encompassed by the CLG-OF formulation. We also present the description
for the CLG-OF numerical solution, together with (i) a multiscale strategy to increase the detectable
motion range of OF methods, and (ii) two numerical solvers: Successive Over-Relaxation and the
faster Pointwise-Coupled Gauss-Seidel.

The article is organized as follows. In the remainder of this section, a brief overview of HS-,
LK- and CLG-OF methods is presented, together with a standard multiscale approach. Section 2
introduces the CLG-OF numerical solution, considering the discrete equations and the two solvers
implemented. Section 3 presents the implemented algorithm pseudocode, function descriptions, and
complexity analysis. Section 4 provides example results of the presented implementation, together
with error evaluations in well known OF database sequences.

It must be noted that, even when the CLG-OF parameters are set to equal the HS-OF model (by
setting ρ = 0), the results from this implementation often yield worse error metrics compared to other
IPOL HS-OF versions. Other than the number of scales and parameter values, we have found that
the main reason accounting for these difference between is the stage at which the linearization (image
warping) is performed. Other HS-OF IPOL implementations perform late linearization, while ours
performs early, as in the original article of Bruhn et al. (see Subsection 1.4). It is known that late
linearization improves OF results for large displacements; however, it was not originally proposed for
the HS or CLG methods. We opted for keeping the implementation close to the original approach.

1.1 Horn-Schunck Global Approach

Let I = I(x, y, t) the input image sequence (two or more images), and V = [u(x, y, t), v(x, y, t), 1]T

the optical flow vector field. The HS model assumes that the image total brightness level is constant
across time, and that the estimated flow vectors vary smoothly across the image space. The brightness
constancy assumption is expressed by making the time derivative It = dI/dt = 0. The HS-OF [8] is
defined from a first-order Taylor expansion (linearization):

I(x+ u, y + v, t+ ∆t)− I(x, y, t) = 0 =⇒ Ixu+ Iyv + It = 0. (1)

Integrating over the image domain Ω, an “energy functional” is defined as

EHS(V) =

∫
Ω

(Ixu+ Iyv + It)
2 + α(|∇u|2 + |∇v|2)dxdy, (2)

with Ix, Iy the spatial derivatives, and |∇u|, |∇v| the norms of the gradient vectors for u and v, ∇u
and ∇v, respectively. α(|∇u|2 + |∇v|2) acting as a smoothing constraint for the OF field, since large
variations in V account for an increase the magnitude of ∇u and ∇v. The weight coefficient α > 0 is
henceforth called global regularization coefficient. Higher values of α yield more homogeneous
fields, while lower values allow more dissimilar displacement vectors. It must be noted that this
coefficient is denoted by α2 in the HS-OF article [8], instead of α in the CLG-OF article [2].

1.2 Lucas-Kanade Local Approach

The LK approach [10] assumes that the flow is constant within a neighborhood of size ρ, computing
the optical flow for all the pixels in that neighborhood, by the least squares criterion:

ELK(u, v) = Gρ ∗ (Ixu+ Iyv + It)
2. (3)

2

where Gρ∗ denotes convolution with a Gaussian kernel of size ρ. A minimum (u, v) for ELK satisfying
∂uELK = 0 and ∂vELK = 0 yields the following system of equations:[

Gρ ∗ (I2
x) Gρ ∗ (IxIy)

Gρ ∗ (IxIy) Gρ ∗ (I2
y)

] [
u
v

]
=

[
−Gρ ∗ (IxIt)
−Gρ ∗ (IyIt)

]
. (4)

If the image gradients are not zero then the system matrix is invertible, yielding a unique solution.

1.3 Bruhn et al. Combined Local-Global Approach

Bruhn et al. [2] defined the CLG-OF by an integral functional that encompasses both the HS and
the LK approaches. This combined approach aims to produce dense flow fields (characteristic of the
global approaches) which are robust against noise, by employing smoothing terms based on both the
global and local approaches.

Let ∇3I = [Ix, Iy, It]
T , then the HS-OF energy functional can be written as:

EHS(V) =

∫
Ω

(V T (∇3I∇3I
T)V + α(|∇u|2 + |∇v|2))dxdy. (5)

The CLG-OF energy functional introduces a smoothing term in ∇3I. It is defined as

ECLG(V) =

∫
Ω

(V TJρ(∇3I)V + α(|∇u|2 + |∇v|2))dxdy, (6)

with Jρ(∇3I) = Gρ∗(∇3I∇3I
T). Jρ acts as a local spatio-temporal derivative smoothing term,

defined as a convolution ∗ between a bi-dimensional Gaussian kernel Gρ, with standard deviation ρ,
with the matrix (∇3I∇3I

T). If ρ = 0 no local smoothing occurs, making the CLG-OF functional
equal to the HS-OF. If α = 0 the functional becomes equivalent to the LK-OF.

1.4 Multiscale Optical Flow

In order to fulfill the OF assumption, HS and CLG approaches impose a linearization of the brightness
constancy constraint, thus the vector field V is required to be small. This can be a problem for image
sequences with large object displacements that can appear as discontinuities and lead to erroneous
solutions. To address this issue, multiscale (MS) strategies have been proposed [4, 11], using a
coarse-to-fine approach to successively compute more accurate OF vector fields.

The main idea of the MS strategy is to compute an image pyramid with decreasing size for each
image in the set where OF is going to be estimated (typically two frames, I1 and I2, at times t1 and
t2). Starting from the smallest (coarsest) image of the pyramid, the OF is computed, and for the next
(finer) scales, the coarse estimation is used to “warp” the second frame at t2, denoted as I(x+ δV)
and compute the corresponding OF field. Thus, at each level of the pyramid the OF increment is
computed (δV), and the final OF estimation is the interpolated sum of the estimations from all the
pyramid levels. The MS CLG-OF can be written as:

ECLG(δV m) =

∫
Ω

(δV TJρ(∇3I(x+ δV))δV + α(|∇δu|2 + |∇δv|2))dxdy, (7)

where δV = (δu, δv). In general, the MS strategy can be applied to any OF algorithm, by considering
two additional parameters: the total number of scales and the scaling factor.

It is worth note that other IPOL OF methods available [11, 13] perform late linearization which
yields better accuracy for larger displacements d = [dx, dy], by making I1(x, y)−I2(x+dx, y+dy) = 0
instead of the right side in Eq 1. In the MS CLG-OF, the warping of the second image is carried
out only once per scale. As can be observed in those IPOL OF publications, an outer loop is used
to solve the system several times, updating the value of I(x + δV) in each iteration, improving the
OF accuracy.

3

2 Numerical Solution Schemes

The minimum of the energy functional must satisfy the Euler-Lagrange equation, in the form of a
system of partial differential equations

α∆u− (J11u+ J12v + J13) = 0, (8)

α∆v − (J21u+ J22v + J23) = 0, (9)

with Jik denoting the elements of the matrix Jρ. Neumann boundary conditions are assumed

∂nu = 0, ∂nv = 0. (10)

Although the CLG-OF can become equivalent to the HS-OF depending on the parameter values,
different discretization schemes were used in the original articles, leading to slightly different results
when both methods are applied to the same set of images. This also occurs for other OF approaches
and numerical schemes, as shown by Delpiano et al. [5] and Hubený et al. [9] for fluorescent moving
objects in microscopy images, and Sun et al [14] for a general overview.

For computing Jρ, the following discrete derivatives are used:

Ix ≈ I ∗ 1

2h
[−1 0 1]x|xi,yj ,tk , (11)

Iy ≈ I ∗ 1

2h
[−1 0 1]y|xi,yj ,tk , (12)

It ≈ I(xi, yj, tk+1)− I(xi, yj, tk), (13)

with h the step size of the discrete domain (h = 1 for one pixel, for instance), and Al|xi,yj ,tk the
mask vector A applied along l axis at image position (xi, yj, tk) (i.e. the central element of the mask
corresponds to the pixel (xi, yj, tk)). For time derivatives, a warped version of I(xi, yj, tk+1) is used.
Then, Jρ is computed as follows:

1. J0 = ∇3I∇3I
T ;

2. if ρ = 0 then Jρ = J0; otherwise

3. a square gaussian matrix Gρ with standard deviation ρ is computed; and

4. Jρ = J0 ∗Gρ.

The laplacian is computed by a convolution between the OF components and a kernel matrix M ,

M =

0 1 0
1 −4 1
0 1 0

 ,
∆uxi,yj ,tk ≈ u ∗M |xi,yj ,tk , (14)

∆vxi,yj ,tk ≈ v ∗M |xi,yj ,tk . (15)

The coupled system in Eqs. (8-9) can be written as:

αuxi,yj ,tk ∗M − J11uxi,yj ,tk = −(J13 + J12vxi,yj ,tk), (16)

αvxi,yj ,tk ∗M − J22vxi,yj ,tk = −(J23 + J21uxi,yj ,tk). (17)

This coupled system can be solved by multiple numerical schemes. For this work we implemented
two iterative schemes to solve Eqs. (16-17), also used by Bruhn et al. [3, 4]: Successive Over-
Relaxation (SOR), which solves sequentially uxi,yj ,tk and then vxi,yj ,tk , and Pointwise-Coupled Gauss-
Seidel (PCGS), which simultaneously solves (uxi,yj ,tk , vxi,yj ,tk) at each pixel.

4

2.1 Successive Over-Relaxation Scheme

Equations (16-17) can be solved as linear system in the form Ax = b (with x being either u or v),
where the matrix A is decomposed in the form A = D − L − U , with D a diagonal matrix and
L,U lower and upper triangular matrices, respectively. From a given initial value x0, the equation is
solved iteratively until a convergence criterion is reached. The k-th SOR iteration for x is given by
xk+1 = (D−L)−1(Uxk + b). In this case, two equations must be solved for the OF field components,
(u, v) as described next. For these equations the subscript notation is changed from two indexes (e.g.
uij) to one index (ui), in order to be consistent with the original CLG-OF article [4].

Let U and V be the matrices storing the x and y components of the OF field at given position i
and iteration k, the values of the OF field (ui, vi) for the next iteration are computed as

uk+1
i = (1− w)uk+1

i + w

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

uk+1
j +

∑
j∈N+

l (i)

ukj

− (J12iv
k
i + J13i)

2∑
l=1

α

h2
l

|Nl(i)|+ J11i

, (18)

vk+1
i = (1− w)vk+1

i + w

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

vk+1
j +

∑
j∈N+

l (i)

vkj

− (J21iu
k+1
i + J23i)

2∑
l=1

α

h2
l

|Nl(i)|+ J22i

, (19)

where w ∈ (0, 2) is the relaxation term (w = 1 corresponds the Gauss-Seidel method), and Nl(i)
denotes the neighbors of pixel i in direction of axis l (l = 1 for x-axis, l = 2 for y-axis) belonging to
Ω, making

N+
l (i) = {j ∈ Nl(i)|j > i} , (20)

N−l (i) = {j ∈ Nl(i)|j < i} . (21)

Given the definition of M , N+
l (i) represents two pixels: the right neighbor, and the lower pixel.

Similarly, N−l (i) are also two pixels: the left neighbor, and the upper pixel, and |N(i)| = 4.

2.2 Pointwise-Coupled Gauss-Seidel Scheme

A variant of the SOR scheme was proposed by Bruhn et al. [3, 7], aimed to improve its convergence
properties for real-time implementation, called Pointwise-Coupled Gauss-Seidel. In this scheme, a
coupled 2 × 2 system is solved at each pixel, and a synchronous update of the OF values for each
pixel is performed. Starting from Eqs. (16-17), and defining the vector qk+1

i = (uk+1
i , vk+1

i) at pixel
i, the system can be written as:

Miq
k+1
i = g

k+1/2
i (22)

with

Mi =

2∑
l=1

α

h2
l

|Nl(i)|+ J11i J12i

J21i

2∑
l=1

α

h2
l

|Nl(i)|+ J22i

 ,

5

and

g
k+1/2
i =

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

uk+1
j +

∑
j∈N+

l (i)

ukj

− J13i

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

vk+1
j +

∑
j∈N+

l (i)

vkj+

− J23i

 .

From Eq. (22) it can be shown that an iterative solution can be found by solving the following
2× 2 linear system (here using Cramer’s rule):

uk+1
i =

1

det(Mi)
det

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

uk+1
j +

∑
j∈N+

l (i)

ukj

− J13i J12i

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

vk+1
j +

∑
j∈N+

l (i)

vkj+

− J23i

2∑
l=1

α

h2
l

|Nl(i)|+ J22i

 , (23)

vk+1
i =

1

det(Mi)
det

2∑
l=1

α

h2
l

|Nl(i)|+ J11i

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

uk+1
j +

∑
j∈N+

l (i)

ukj

− J13i

J21i

2∑
l=1

α

h2
l

 ∑
j∈N−

l (i)

vk+1
j +

∑
j∈N+

l (i)

vkj+

− J23i

 . (24)

Although the computations for uk+1
i and vk+1

i can be performed sequentially (i.e. one iteration
loop for u, then another for v), the alternating computation for both can prevent problems for small
α values that make the term qTJρ(∇3f)q dominate in the solution. This scheme has been also
described with other solver approaches such as multigrid CLG-OF [3].

3 Algorithm

This section presents the MS CLG-OF implementation as follows: Algorithms (1-2) depict the main
algorithm pseudo-code; constants and function descriptions are given as a complement to the source
code documentation; finally, a time complexity analysis of the algorithm is presented.

3.1 Constants

• JROWS = 3 Number of rows of the Jρ matrix associated to a given image position.

• JCOLS = 3 Number of columns of the Jρ matrix associated to a given image position.

• MIN GAUSSIAN SIZE = 3 Minimum gaussian kernel size allowed for smoothing im-
ages/frames. If the computed kernel size for ρ,σ is lower than this value, no smoothing is
performed.

• EPS = 1 ·10−12 Precision threshold (epsilon) value for the numerical relaxation computations.

• MIN ERROR = 1 · 10−4 Convergence threshold for the main iteration loop. It is com-
pared to the mean variation of the OF vectors between iterations (the mean variation value
must be lower). At the iteration k, for each pixel i (N total), the variation is computed as√∑

i(u
k
i−u

k−1
i)2+(vki −v

k−1
i)2

N
.

6

Algorithm 1: calcCLG OF
Input

• I1, I2, input images for the OF computation.

• uOut, vOut, output pointers to the OF vector field.

• nRows, nCols, number of image/OF field rows and columns, respectively.

• α > 0, global regularization coefficient value.

• ρ > 0, local derivative regularization coefficient value.

• numIterations, number of relaxation iterations for the OF vector field.

• coupledMode > 0, binary flag to use either PCGS (1) or SOR (0) as relaxation scheme.

• wFactor > 0, relaxation factor (applies only for SOR).

• verbose > 0, binary flag to either display debug messages (1), or not (0).

Initialize 2D optical flow arrays pointed by u, v;1

foreach i, j in [0, nRows− 1]× [0, nCols− 1] do2

J(i, j)← J0(i, j) = ∇3I∇3I
T (i, j);3

end4

if ρ ≥ 0 then5

filterSize← b DEFAULT GAUSSIAN WINDOW SIZE ×ρc+ 1;6

// J(i, j) = J0(i, j) ∗Gρ with kernel Gρ of filterSize× filterSize elements.

for i, j in [0, nRows− 1]× [0, nCols− 1] do7

smooth(J(i, j), filterSize, ρ);8

end9

end10

i← 111

while i ≤ numIterations AND error decrease ≥ MIN ERROR do12

// Pointwise-Coupled Gauss-Seidel relaxation.

if coupledMode == 1 then13

relax system for ∗u, ∗v using Eq. (22);14

end15

// Successive Over-Relaxation.

if coupledMode == 0 then16

relax system for ∗u, ∗v using Eq. (19);17

end18

end19

uOut, vOut ← u, v;20

return uOut, vOut21

7

Algorithm 2: calcMSCLG OF
Input

• All of the input parameters from algorithm calcCLG OF.

• nScales > 1, total number of scales in the pyramid.

• scaleFactor < 1, scaling factor between scales.

filterSize← 2× b DEFAULT GAUSSIAN WINDOW SIZE ×σc+ 1;1

// Ii(i, j) = Ii(i, j) ∗Gσ with kernel Gσ of filterSize× filterSize elements.

if filterSize ≥ MIN FILTER SIZE SIGMA then2

smooth(I1, filterSize, σ);3

smooth(I2, filterSize, σ);4

end5

Initialize 2D arrays nxx and nyy with nScales elements;6

nxx[0]← nRows;7

nxx[i]← (int)(nxx[i− 1] ∗ scaleFactor + 0.5);8

nyy[0]← nCols;9

nyy[i]← (int)(nyy[i− 1] ∗ scaleFactor + 0.5);10

Initialize nScales 2D image arrays I1s and I2s with Gaussian pyramid;11

Initialize empty nScales 2D OF arrays us and vs at each scale;12

for s← nScales− 1, s > 0, s← s− 1 do13

// Warp I2 with the current OF estimation of (us[s], vs[s]).
image2warped←bicubic interpolation warp(I2s[s], us[s], vs[s], nxx[s], nyy[s]);14

// Compute OF at this scale.

us[s], vs[s]←calcCLG OF(I1s, image2warped, nRows, nCols, α, ρ, numIterations,15

coupledMode, wFactor, verbose, nScales, nScales, scaleFactor);16

if s == 0 then17

break;18

end19

// Project current OF estimation into the next scale.

zoom in(us[s], us[s-1], nxx[s], nyy[s], nxx[s-1], nyy[s-1]);20

zoom in(vs[s], vs[s-1], nxx[s], nyy[s], nxx[s-1], nyy[s-1]);21

// Update the current OF solution.

us[s− 1][i]← us[s− 1][i]/scaleFactor22

vs[s− 1][i]← vs[s− 1][i]/scaleFactor23

end24

return us[0], vs[0]25

8

3.2 Function Description

This section summarizes the purpose and parameters of the implemented functions. For the in-
put/output and MS functions the implementation contributed in Meinhardt-Llopis et al. [11] is used.
Pointer variables to 1- and 2-dimensional arrays are denoted with the prefixes * and **, respectively.

• calcCLG OF (∗image1, ∗image2, ∗uOut, ∗vOut, nCols, nRows, iterations, alpha, rho,
wFactor, verbose, coupledMode)
CLG-OF computation function implements Algorithm 1. image1 and image2 point to the in-
put images for the OF (in the form of 1D arrays of nRows×nCols elements each). uOut, vOut
are output pointer variables for the vertical and horizontal OF components, of nCols×nRows
elements each. iterations, alpha and rho give the input values for maximum number of it-
erations, global smoothing coefficient α, and local spatio-temporal smoothing coefficient ρ,
respectively. The flag coupledMode sets the iteration mode to SOR (0) or PCGS (1). When
using SOR, wFactor ∈ (0, 2) is the relaxation factor. The verbose flag enables verbose output.

• calcMSCLG OF (∗image1, ∗image2, ∗uOut, ∗vOut, nCols, nRows, iterations, alpha, rho,
sigma, wFactor, nScales, scaleFactor, coupledMode, verbose)
MS CLG-OF computation function implements Algorithm 2, by calling calcCLG OF with the
corresponding input parameters (which have the same names). sigma is the gaussian image
smoothing parameter. scaleFactor ∈ (0, 1) is the pyramid resizing factor, e.g. scaleFactor =
0.5 accounts for half size reductions. nScales gives the number of scales, provided that the
final size of the coarsest pyramid level is large enough to compute the derivatives (if not, the
maximum scale number is computed and used). The verbose flag enables verbose output.

• SOR at(∗ ∗ u, ∗ ∗ v, ∗ ∗ J, i, j, alpha, wFactor)
Solves the CLG-OF equations for the u, v components at pixel location [i, j], according to Eq.
(19). alpha gives the value of the global smoothing coefficient. J points to the arrays with the
computed (and possibly smoothed) derivatives. wFactor ∈ (0, 2) is the relaxation factor.

• relaxSOR(∗ ∗ u, ∗ ∗ v, ∗ ∗ J, nRows, nCols, alpha, wFactor)
SOR iteration for solving the CLG-OF equations by calling the function SOR at for each pixel
(with equally named input parameters), and Eq. (10) for boundary conditions. The horizontal
and vertical OF components are u, v of nRows× nCols elements each.

• relaxPointwiseCoupledGaussSeidel(∗ ∗ u, ∗ ∗ v, ∗ ∗ J, nRows, nCols, alpha)
PCGS relaxation iteration for solving the CLG-OF equations. Updates the value of the OF
vector field components u, v according to Eqs. (23-24), using Cramer’s rule. If the discriminant
value is lower than EPS a SOR iteration is performed instead. Eq. (10) is used for boundary
conditions. Function parameters are the same described for calcCLG OF and SOR at.

• boundaryCondition(∗ ∗ u, ∗ ∗ v, nRows, nCols)
Performs SOR and PCGS iterations at the boundary pixels of u, v (rows 0 and nRows − 1,
columns 0 and nCols− 1), by copying values from the non-boundary neighbor pixels.

3.2.1 Utility functions

• computeDerivatives(∗ ∗ image1, ∗ ∗ image2, ∗ ∗ dfdx, ∗ ∗ dfxy, nRows, nCols)
Computes the discrete spatial derivatives for the input time frames image1, image2 of nRows×
nCols elements. The derivatives are stored in the arrays pointed by dfdx, dfdy (x,y coordinates)
of nRows× nCols elements each. The derivatives are computed by using a 3× 1 stencil with
values [−0.5, 0.0,+0.5] (forward differences).

9

• computeJTensor(∗ ∗ dfdx, ∗ ∗ dfdy, ∗ ∗ dfdt, ∗ ∗ J, nRows, nCols)
Computes and stores the values of the tensor matrix J at each image pixel. dfdx, dfdy, dfdt
point to the derivative matrices of the input images, containing nRows×nCols elements each.
The result is pointed by J , with nRows× nCols× JROWS × JCOLS elements. For a given
pixel [i, j] the associated tensor is a 3× 3 matrix, with elements

J [1][1][i][j] = Ix[i][j] ∗ Ix[i][j]

J [1][2][i][j] = Ix[i][j] ∗ Iy[i][j]

J [1][3][i][j] = Ix[i][j] ∗ It[i][j]

J [2][2][i][j] = Iy[i][j] ∗ Iy[i][j]

J [2][3][i][j] = Iy[i][j] ∗ It[i][j]

J [3][3][i][j] = It[i][j] ∗ It[i][j],

being symmetric with respect to its diagonal, so only the upper triangular part is stored.

• matrixSmooth(∗ ∗matrix, nRows, nCols, kernelSigma)
Performs a gaussian smoothing over a given input matrix of nRows × nCols elements, by
applying a square kernel parametrized by its standard deviation kernelSigma. It is called
from calcCLG OF for smoothing the input images and the derivatives matrix, according to
the values of sigma and rho, respectively. The kernel size is computed in a way that ensures
odd values (i.e. symmetric gaussian kernels with a single central value as maximum), greater
than MIN GAUSSIAN SIZE.

• correctIndex(p, size)
Given an index p, returns p if p ∈ [0, size−1]. If not, returns its closest number from [0, size−1].

• lin2by2det(a, b, c, d)

Computes and return the determinant of a given 2× 2 matrix, A =

[
a b
c d

]
. The determinant

D is computed as D = ad− bc.

• pMatrix(nRows, nCols)
Initializes and returns a 2D pointer array of a given number of rows and columns, nRows and
nCols respectively.

• freePmatrix(∗ ∗mat, nRows)
Deallocates a given 2D pointer matrix mat, given as a pointer to an array of nRows pointers.

• xmalloc(size)
Array memory allocation function, for a given memory size.

3.3 Time Complexity

Assume a square image of Ns pixels at each pyramid level s (N0 is the original image level), and filter
kernel sizes up to k << Ns (for smoothing and derivatives). The overall cost is the sum of the cost
of building the pyramid by filtering operations O(Nsk) each, plus the OF iterations at each pyramid
level. OF iterations by matrix inversion can be computed in O(N2

s) time, but iterative methods such
as SOR and PCGS perform closer to O(CNs), where C depends on the input. However, C << N0,
for instance C < 3000 for the Middlebury dataset (Table 2). Thus, as the cost is dominated by the
finer scale (of size N0), the running time of the MS CLG-OF algorithm is O(CN0).

10

a b c

Figure 1: CLG-OF for a moving point source, simulating a fluorescent signal in a confocal microscopy
image (adapted from Delpiano et al. [5]). a,b: time frames of a synthetic point signal (top), and their
computed confocal PSF-convolved images (down), of 100×100 pixels each, for a confocal microscope
with 60x water objective and wavelengths of 543/560 nm for excitation/emission. Pixel size is 107nm
in x and y. The point displacement between the two frames is 3 pixels (321nm). c: CLG-OF field of
the PSF-convolved images, computed with parameter values: α = 200, ρ = 5, σ = 0, nScales = 1,
iterations = 200, using PCGS solver. The OF vector color code is shown at the bottom left image.

4 Evaluation

Here we present examples of the implemented CLG-OF applied to different image sequences. First, in
Subsection 4.1 we illustrate the effect of different values for the regularization coefficients α and ρ in
the OF fields. Next, in Subsection 4.2 we present and briefly discuss results from synthetic sequences
with known ground-truth OF, comparing the MS CLG-OF estimation error against examples from
the original CLF-OF article and the Middlebury database.

4.1 Example Sequences

The first example, shown in Figure 1, is the CLG-OF field for a model structure in fluorescence
microscopy, corresponding to a moving point signal (fluorescent protein, a-b). The signal was con-
volved with a theoretical point spread function (PSF, b-c) of a confocal microscope (a PSF acts as a
smoothing function that blurs signals). See details of simulation and tests for optimal parameters in
the work of Delpiano et al. [5]. Next, Figures 2-5 illustrate the effects of different values for α and ρ
in the resulting OF fields.

4.2 Error Metrics

We tested the MS CLG-OF implementation with example image sequences from Bruhn et al. [4],
shown in Figure 6, and from the Middlebury database [1], shown in Figure 7. In both cases, the
Average Angular Error (AAE) and Average Endpoint Error (AEE) against ground-truth OF fields,
as defined by Baker et al. [1], were measured. We also measured computation times, using a PC
workstation with a 3.4 GHz Intel Core i7 4930K CPU and 64 GB of RAM, running the 64-bit Ubuntu
Linux 12.04 operating system. The results are summarized in Tables 1&2.

4.3 Discussion

AAE and AEE metrics show that our implementation yields results similar to those of the original
work from Bruhn et al. [4]. For a similar error margin in the examples, the PCGS iterative scheme
performs 2 to 10 times faster than SOR, but with slightly worse error metrics.

11

I1 convolved

I2 convolved

α=20, ρ=0 α=200, ρ=0 α=2000, ρ=0

α=20, ρ=5 α=200, ρ=5 α=2000, ρ=5

α=20, ρ=10 α=200, ρ=10 α=2000, ρ=10

Figure 2: Different parameter values for CLG-OF and their corresponding OF fields for the synthetic
point source fluorescence image from Figure 1, with an horizontal displacement of three pixels. I1,I2

are the input images. Computed with parameter values: σ = 0, nScales = 1, iterations = 200,
using PCGS solver. Vectors are color coded as in Figure 1.c.

12

I1

I2

α=20, ρ=0 α=200, ρ=0 α=2000, ρ=0

α=20, ρ=5 α=200, ρ=5 α=2000, ρ=5

α=20, ρ=10 α=200, ρ=10 α=2000, ρ=10True flow

Figure 3: Different parameter values for CLG-OF and their corresponding OF fields for the Lena
image (256× 256 pixels, grey-scale version), with an horizontal displacement of one pixel. I1,I2 are
the input images. Computed with parameter values: σ = 0, nScales = 1, iterations = 200, using
PCGS solver. Vectors are color coded as in Figure 1.c.

13

I1

I2

α=20, ρ=0 α=200, ρ=0 α=2000, ρ=0

α=20, ρ=5 α=200, ρ=5 α=2000, ρ=5

α=20, ρ=10 α=200, ρ=10 α=2000, ρ=10True flow

Figure 4: Different parameter values for MS CLG-OF and their corresponding OF fields for the
baboon rotation (256× 256 pixels, grey-scale version) images. I1,I2 are the input images. Computed
with parameter values: σ = 0, nScales = 3, scaleFactor = 0.65, iterations = 200, using PCGS
solver. Vectors are color coded as in Figure 1.c.

14

I1

I2

α=20, ρ=0 α=200, ρ=0 α=2000, ρ=0

α=20, ρ=5 α=200, ρ=5 α=2000, ρ=5

α=20, ρ=10 α=200, ρ=10 α=2000, ρ=10True flow

Figure 5: Different parameter values for MS CLG-OF and their corresponding OF fields for the spiral
image with an homography transformation. I1,I2 are the input images. Computed with parameter
values: σ = 0, nScales = 3, scaleFactor = 0.65, iterations = 200, using PCGS solver. Vectors are
color coded as in Figure 1.c.

15

True flow

M
ar

bl
e

bl
oc

ks
O

ffi
ce

Yo
se

m
ite

MS-CLG SOR MS-CLG PCGS

Figure 6: Results of the MS CLG-OF implementation with the SOR and PCGS numerical schemes, in
selected images from the original GLG-OF article [4]. Computed with parameter values: α = 200, ρ =
5.0, σ = 0.85, scaleFactor = 0.65, MIN ERROR = 0.0001, iterations = 10000, and wFactor = 1.8
(SOR only). The number of scales nScales was dependent in the image size, thus chosen as 7, 5,
and 6 respectively. Convergence was achieved before the indicated number of iterations, counted at
the original image level, as shown in Table 1. The vector color code is shown at the top right image.

16

True flow MS-CLG SOR MS-CLG PCGS
D

im
et

ro
do

n
G

ro
ve

2
G

ro
ve

3
H

yd
ra

ng
ea

R
ub

be
rW

ha
le

U
rb

an
2

U
rb

an
3

Ve
nu

s

Figure 7: Results of the MS CLG-OF implementation with the SOR and PCGS numerical schemes,
in selected images from the Middlebury dataset [1]. Computed with parameter values: α = 200,
ρ = 5.0, σ = 0.85, nScales = 7, scaleFactor = 0.65, MIN ERROR = 0.0001, iterations = 10000,
and wFactor = 1.8 (SOR only). Convergence was achieved before the indicated number of iterations,
counted at the original image level, as shown in Table 2. Vectors are color coded as in Figure 6.

17

Marble blocks Office Yosemite
SOR
AAE (◦) 9.99 4.71 3.11
AEE 0.30 0.10 0.17
Iterations 875 2017 2118
Time [s] 17.01 5.42 11.51
PCGS
AAE (◦) 9.99 4.82 3.09
AEE 0.30 0.10 0.17
Iterations 190 276 1316
Time [s] 9.19 1.7 6.51
SOR by Bruhn et al. [4]
AAE (◦) 5.30 4.33 2.64

Table 1: Comparison of AAE and AEE measurements of the implemented MS CLG-OF with the
SOR and PCGS numerical schemes, against the original reported results by Bruhn et al. [4] for the
images shown in Figure 6. Available ground-truth was taken into account at pixels with OF vector
magnitude less than 1000 in Marble blocks and Office sequences, and other than 0.0406 (clouds
displacement) for Yosemite sequence. From Marble blocks and Office the first two frames were used.

Dimetro. Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus
MS CLG SOR
AAE (◦) 4.3 4.56 9.79 4.09 11.94 7.66 15.51 10.73
AEE 0.22 0.31 1.31 0.6 0.37 1.0 1.65 0.65
Iterations 589 1713 1118 2772 814 3443 547 1398
Time [s] 11.26 37.75 24.9 42.57 14.25 71.42 13.52 15.46
MS CLG PCGS
AAE (◦) 7.7 4.96 10.4 6.63 12.69 8.35 18.76 11.13
AEE 0.37 0.34 1.44 1.16 0.39 1.13 1.92 0.68
Iterations 90 113 116 56 207 184 135 216
Time [s] 4.52 7.17 9.15 3.38 7.01 9.5 9.05 5.58

Table 2: AAE and AEE measurements for the implemented MS CLG-OF with the SOR and PCGS
numerical schemes, for the Middlebury database images shown in Figure 7. Available ground-truth
was taken into account at pixels with OF vector magnitude less than 1000 for all the sequences.

18

Although some parameter values of the MS CLG-OF implementation were kept fixed for the
examples, it becomes clear that a fine tuning of α, ρ, nScales, wFactor, and scaleFactor is required
for optimum results. For instance, by varying the value of wFactor between 1.8 and 1.9, the AAE can
be further improved in 1◦-2◦ (not shown). Figures 2-5 and the variability of the error metrics illustrate
this issue, as well as reported results from Delpiano et al. [5], Hubený et al. [9], Meinhardt-Llopis
et al. [11] and Sun et al. [14].

We remind that, other than the chosen numerical scheme and parameter values, the use of late
linearization (not implemented here) allows a better handling of larger displacements d = [dx, dy], by
making I1(x, y)− I2(x+ dx, y + dy) = 0 instead of the right side in Eq 1. From the implementation
point of view, this implies two nested iteration loops: one for fixed values of d iterating over V , and
one for d performing multiple warpings at each scale. Significant improvements can be achieved this
way, but still a numerical solver such as SOR or PCGS must be used for the V loop.

5 Acknowledgments

Funding: CONICYT PhD scholarship (JJ), FONDECYT 3140447 (MC) & 1120579 (SH,JJ), US-
LACRN (MC), and ICM P09-015-F (BNI). The authors would like to thank Haldo Spontón and
Juan Cardelino for supporting the preparation of this work, and the IPOL editor and reviewers for
their valuable insights and suggestions.

Image Credits

All of the OF field and error measurement images (Figures 1,7) by the authors, except the ground
truth (“True flow”) images by IPOL.

(Figures 1,2) by the authors.

(Figure 3) from the USC-SIPI Image Database3.

(Figure 4) from the USC-SIPI Image Database4.

(Figure 5) by Mark Dow, “Logarithmic spirals, waves and tilings”5.

(Figure 6) from Image Sequence Server (Group Prof. Dr. H.-H. Nagel) at Institut für Algorith-
men und Kognitive Systeme, Universität Karlsruhe6.

(Figure 6) by Galvin et al. [6].

(Figure 6) by Lynn Quam.

(Figure 7) from the Middlebury benchmark
database [1].

3http://sipi.usc.edu/database/database.php?volume=misc
4http://sipi.usc.edu/database/database.php?volume=misc
5http://lcni.uoregon.edu/~dow/Geek_art/Logarithmic_spirals/Logarithmic_spirals_waves_tilings.

html
6http://i21www.ira.uka.de/image_sequences/

19

http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://lcni.uoregon.edu/~dow/Geek_art/Logarithmic_spirals/Logarithmic_spirals_waves_tilings.html
http://i21www.ira.uka.de/image_sequences/
http://i21www.ira.uka.de/image_sequences/
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://lcni.uoregon.edu/~dow/Geek_art/Logarithmic_spirals/Logarithmic_spirals_waves_tilings.html
http://lcni.uoregon.edu/~dow/Geek_art/Logarithmic_spirals/Logarithmic_spirals_waves_tilings.html
http://i21www.ira.uka.de/image_sequences/

References

[1] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard Szeliski,
A Database and Evaluation Methodology for Optical Flow, International Journal of Computer
Vision, vol. 92, no. 1, pp. 1-31, 2011.
http://dx.doi.org/10.1007/s11263-010-0390-2.

[2] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr, Combining the Advantages of Local
and Global Optic Flow Methods, in Proceedings of the 24th DAGM Symposium, 2002, Zurich,
Switzerland, pp. 454-462.
http://dx.doi.org/10.1007/3-540-45783-6_55.

[3] Andrés Bruhn, Joachim Weickert, Christian Feddern, Timo Kohlberger, and Christoph Schnörr,
Variational Optical Flow Computation in Real Time, IEEE Transactions on Image Processing,
vol. 14, no. 5, pp. 608-615, 2005.
http://dx.doi.org/10.1109/TIP.2005.846018.

[4] Andrés Bruhn, Joachim Weickert, Lucas/Kanade Meets Horn/Schunck: Combining Local Global
Optic Flow Methods, International Journal of Computer Vision, vol. 61, no. 3, pp. 211-231, 2005.
http://dx.doi.org/10.1023/B:VISI.0000045324.43199.43.

[5] José Delpiano, Jorge Jara, Jan Scheer, Omar A. Ramı́rez, Javier Ruiz-del-Solar, and Steffen
Härtel, Performance of Optical Flow Techniques for Motion Analysis of Fluorescent Point Signals
in Confocal Microscopy, Machine Vision and Applications, vol. 23, no. 4, pp. 675-689, 2012.
http://dx.doi.org/10.1007/s00138-011-0362-8.

[6] Ben Galvin, Brendan McCane, Kevin Novins, David Mason, and Steven Mills, Recovering Motion
Fields: An Evaluation of Eight Optical Flow Algorithms, in Proceedings of the British Machine
Vision Conference (BMC), 1988, Southampton, England, pp. 195-204.
http://dx.doi.org/10.5244/C.12.20.

[7] Wolfgang Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer, New
York, 1993. ISBN 978-0-387-94064-9.

[8] Berthold K. P. Horn, Brian G. Schunck, Determining Optical Flow, Artificial Intelligence, vol.
17, pp. 185-203, 1981.
http://dx.doi.org/10.1016/0004-3702(81)90024-2.

[9] Jan Hubený, Vladimı́r Ulman, and Pavel Matula, Estimating Large Local Motion in Live-Cell
Imaging Using Variational Optical Flow, in Proceedings of the 2nd International Conference On
Computer Vision Theory And Applications (VISAPP), 2007, INSTICC, Barcelona, Spain, pp.
542-548. ISBN 978-972-8865-74-0.

[10] Bruce D. Lucas and Takeo Kanade, An Iterative Image Registration Technique with an Appli-
cation to Stereo Vision., in Proceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI), 1981, Vancouver, BC, Canada, pp. 674-679.

[11] Enric Meinhardt-Llopis, Javier Sánchez Pérez, and Daniel Kondermann, Horn-Schunck Optical
Flow with a Multi-Scale Strategy, Image Processing On Line, vol. 2013, pp. 151-172, 2013.
http://dx.doi.org/10.5201/ipol.2013.20.

[12] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes in C, 2nd edition, Cambridge University Press, 1992. ISBN 0-521-43108-5.

20

http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1007/3-540-45783-6_55
http://dx.doi.org/10.1109/TIP.2005.846018
http://dx.doi.org/10.1023/B:VISI.0000045324.43199.43
http://dx.doi.org/10.1007/s00138-011-0362-8
http://dx.doi.org/10.5244/C.12.20
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.5201/ipol.2013.20

[13] Javier Sánchez Pérez, Nelson Monzón López, and Agust́ın Salgado de la Nuez, Robust Optical
Flow Estimation, Image Processing On Line, vol. 2013, pp. 252-270, 2013.
http://dx.doi.org/10.5201/ipol.2013.21.

[14] Deqing Sun, Stefan Roth, and Michael J. Black., A Quantitative Analysis of Current Practices
in Optical Flow Estimation and the Principles Behind Them, International Journal of Computer
Vision, vol. 106, no. 2, pp. 115-137, 2014.
http://dx.doi.org/10.1007/s11263-013-0644-x.

21

http://dx.doi.org/10.5201/ipol.2013.21
http://dx.doi.org/10.1007/s11263-013-0644-x

	Introduction
	Horn-Schunck Global Approach
	Lucas-Kanade Local Approach
	Bruhn et al. Combined Local-Global Approach
	Multiscale Optical Flow

	Numerical Solution Schemes
	Successive Over-Relaxation Scheme
	Pointwise-Coupled Gauss-Seidel Scheme

	Algorithm
	Constants
	Function Description
	Utility functions

	Time Complexity

	Evaluation
	Example Sequences
	Error Metrics
	Discussion

	Acknowledgments

