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Computation and Visualization of Three-Dimensional
Soft Tissue Motion in the Orbit

Michael D. Abramoff* Member, IEEEand Max A. ViergeverMember, IEEE

Abstract—This work presents a method to measure the soft  This study introduces a method to analyze quantitatively and
tissue motion in three dimensions in the orbit during gaze. It visualize 3-D motion and deformation. The method is based
has been shown that two-dimensional (2-D) quantification of upon fast cinematic (cine) 3-D volumetric T1-weighted MRI

soft tissue motion in the orbit is effective in the study of orbital . : . . .
anatomy and motion disorders [1]. However, soft tissue motion is in which hypervolumes (time series of volumes) are acquired

a three-dimensional (3-D) phenomenon and part of the kinematics during horizontal and vertical gaze. The 3-D motion present in
is lost in any 2-D measurement. Therefore, T1-weighted magnetic the hypervolume is then analyzed with a 3-D optical flow algo-
resonance (MR) imaging volume sequences are acquired during rithm. The algorithm is a 3-D generalization of the 2-D Lucas
gaze and soft tissue motion is quantified using a generalization of and Kanade optical flow algorithm, that was found to have the
the Lucas and Kanade optical flow algorithm to three dimensions. )¢ performance on MR images [1]. A motion-to-color map-

New techniques have been developed for visualizing the 3-D . . . . e
flow field as a series of color-texture mapped 2-D slices or as a ping was shown to be effective to visualize a 2-D-motion field in

combination of volume rendering for display of the anatomy and @ Small space [1] and this approach has been extended to create
scintillation rendering for the display of the motion field. We have colored-textures that reflect the magnitude and orientation of
studied the performance of the algorithm on four-dimensional the flow field in 3-D space. Other approaches to measure the
volume sequences of synthetic motion, simulated motion of a motion in 3-D cine MRI sequences have been described, such

static object imaged by MR, an MR-imaged rotating object and : } . :
MR-imaged motion in the human orbit during gaze. The accuracy as cine phase contrast (PC) MR [6] and MR-tagging [7]. Cine

of the analysis is sufficient to characterize motion in the orbitand PC MRI utilizes the phase changes of the MR signals due to
scintillation rendering is an effective visualization technique for tissue motion [8]-[10]. Human heart motion has also been suc-

3-D motion in the orbit. cessfully estimated with MR-tagging [7], [11]. So far, cine PC
Index Terms—Cinematic MRI, multimodality visualization, op- ~ MRI and tagged MRI have been studied in the context of heart
tical flow, orbit. and knee motion, with both relatively large and regular motion

fields (combine to the motion in the orbit). There have been no
studies comparing these methods, or applying their suitability
to estimate motion at small scales.

T has been shown that the objective measurement of thea limitation to the proposed method is that cine MRI requires

motion of orbital soft tissue can improve the diagnosis arittive cooperation from the patient. Since the main reason to
management of orbital disorders and may shed new light on tledergo cine MRI is double vision or another ocular motility
kinematics of orbital tissue [1], [2]. In these studies, a techniquisorder, the number of MR acquisitions and the time allowed
was introduced that uses cinematic magnetic resonance imagmghem is necessarily severely constrained. This limits both the
(MRI) and optical flow computation of the motion field. Thisresolution of the volume and the number of volumes that can be
technique was limited to two dimensions. However, any techequired per motion sequence.
nique based on two-dimensional (2-D) optical flow computation The purpose of this paper is to quantify objectively 3-D mo-
can only estimate the motion projected in the imaging plangon and deformation of soft tissues in the orbit. To this end, 3-D
Since soft tissue motion and deformation is intrinsically threeptical flow computation and 3-D motion visualization are in-
dimensional (3-D) in nature, 3-D quantification may be benefiroduced as techniques to analyze and present the measurement
cial. Problems for which 3-D quantification may be useful inresults. In view of the constraints outlined above, a side objec-
clude the measurement of intraconal fat kinematics [3], meve of the study is to establish whether the optical flow fields,
surement of muscle kinematics [4], and elucidation of the effegfus, obtained are of sufficient quality to be clinically useful.
of muscle pulleys [5].

. INTRODUCTION

Il. METHODS
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Fig. 1. Single slices from single volumes of the three objects imaged for this paper. (A) Single slice from single volum@ufrernypervolume
(60 x 60x 60 x 25). (B) Single slice fronSteakMRhypervolume (256« 256 x 40 x 25), central portion shown. (C) Single slice fradrbitMR hypervolume
(256 x 256 x 23 x 9). (D) Slice fromOrbitMR Volume of Interest selected for motion estimations (X880 x 23 x 9).

were coded as signal intensities and the hypervolumes stored in [ll. OPTICAL FLOW COMPUTATION

DICOM 3.0 format as series of consecutive, separate images.
A. Background

B. Simulated, Measured Hypervolumes The optical flow field is a vector field that expresses the kine-
_ . L L matic relationship between local 2-D or 3-D image samples
_Since the true 3-D motion field in the orbit is unknownry 51 -5 stica) flow algorithms use the spatio-temporal patterns
S'mUI"’_‘t'O”S and MR measurements of co_ntrolled. motion &ff these image or signal intensity samples to estimate the mo-
an object were gsed to compare the flow field estimates wifly, g\, Optical flow computation has been used by several
known motion fields. Simulated sequences were created fqqchers for 2-D motion studies of MR sequences [13]-[16].
translating (at different velocities) a cube in 3-D space ang,q | cas and Kanade first-order differential algorithm is the
obtaining 60x 60x 60x 25 hypervolumes of the resulting ,ogt opyst estimator of 2-D motion in MR sequences [1]. The

motion sequence. We chose one of these for this study, caliggting noint of optical flow computation is the optical flow

Cube . constraint equation [12], [17]

Motion-controlled MR measured hypervolumes were ob-
tained by rotating a sirloin steak in a transparent box fitted with dl(x,t) 0 1
an angle ruler as in [1] in the MR scanner bore. The phantom dt @

was manually rotated®sper frame and 256 256 x 40 x 25

hypervolumes of the resulting motion sequence were obtain&@.‘:‘rel(x7 t) is the (possibly prefiltered) signal intensity se-
We chose one of these for this study, caltdakMR ries at locationx and timet and dI/dt the total derivative of

In addition, a single MR volume of the sirloin steak was synl-' Equat_ion _(1) EXpresses the assumption that structures dc_) not
thetically rotated 5 per frame using (tri-)linear interpolation,Change in signal intensity as they move. To make the opiical

resulting in a 256« 256 x 40 x 9 hypervolume of the resulting flow ve(;t?rv exé)"dt in _thled3-!3 case, (1) can be expressed in
synthetic rotation sequence. We chose one of these for this su}BW‘S ot first-order partial derivatives as

called SteakSynth B
In the orbit, soft tissues undergo both rigid motion and (non- VI t) v+ Lxt) =0 )

rigid) deformation. However, it is very difficult to evaluate exy,ith VI(x,t) the gradient of andl(x,t) = 8I(x,t)/t, the
periments with deformation. This is because the deformati%rtiad derivative ofI(x, ) with respect to time. This is one
field cannot be objectively measured so as to provide the g‘gauation with three unknowns, the components,, and v.
standard for the optical flow estimates. Therefore, we have s\yine 3-D flow vectorn. Thus tr;is equation defirie?a plane for

thetical'ly sjmulated thg 3-D deforrr_1ation of asingle MR volumg,a normal component of the 3-D velocity vector. To solve (2)
of the sirloin steak, which resulted in a sequence c&ledkDe- ¢ . wo additional constraints need to be introduced.

form. The deformation simulated the impression of a rigid body
(a ball of 3.0 mm) into the top of the steak, with the bottom of
the steak being held fixed against a rigid plane over its entife
width and being unrestrained at the sides. The ball impressed ucas and Kanade over-constrained the 2-D version of (2) by
with 1.2 mm/frame. Tri-linear interpolation was used. assuming the flow to be regular over a small neighborhood. The
True orbital soft tissue motion hypervolumes were obtainedD motion vector can then be estimated by linear optimization
by having a healthy subject fixate on sequential marks placed@m the over-constrained system of equations. By weighting
8° intervals along horizontal and vertical lines on the inside @he equations for the neighborhood with a Gaussian, the influ-
the scanner bore. Each hypervolume thus acquired consists ehge of neighboring (normal) flow vectors on the estimate is
sequence of volumes (256256 x 23 x 9) of the resulting hori- increased relative to that of vectors that are more distant. By
zontal and vertical gaze motion sequences and each volume g@neralizing this approach to three dimensions, the 3-D motion
responds to a single gaze position. Three subjects were studigétorv is estimated from a system of equations [each of the
and we chose one of these sequences, call®itMR. Single form of (2)] for the neighborhoo&
slices of a single volume of each of the sequences are shown in
Fig. 1. AV =D>b 3)

Three—-Dimensional Optical Flow Algorithm
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where, forx; = 1...m, x; € Q TABLE |
- I (Xl t) I (Xl t) I (Xl t) 4-D “SOBEL” DIFFERENTIATION KERNEL
x ) Y ) z )
A Ig,; (Xg,t) Iy (Xg,t) Iz (Xg,t) e ’ I-i o
: =1 | & | x41 5 B x+r{:r x | x+1
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The system is weighted on both sides with a 3-D Gaugddian o )0 o] el ot Mt .
with standard deviation (of the associated probability functiol o e g @0 8| 6|0 8
Ty 1| 2|0 a| 3|0 a| 2|0 2
WAV = Wh @) v ¥ 3|0 . | & | D B alo 3
1| 2 o] 2[ a]of a] 2|0] 2
where, forx; = 1...m, x;, € €, W = diag - -

{W(x1), W(xz)... W(xm)} . .

The optimum solution folV in (4), in a least squares sense@ssumed to be regular in 3-D ands assumed to be reliable. If
is obtained using the pseudoinverse [18] Ao is larger thanr, but notAs, the flow in2 is assumed to be

V = [WA]"Wh ®) regula_r in Fwo dimensions only and the nqrmalvafs obtalneq
by projecting the result of (5) onto the eigenvector associated

where[WA] ™ = pseudoinverse diWA]. with \; (the largest eigenvalue). Many structures in the orbit do

Provided|[A"WA]| # 0, the pseudoinverse is identical tonot have a 3-D texture, but a predominantly 2-D texture, such as
the least-squares inver§d” WA]~*A”. The pseudoinverse piood vessels and nerves. If strict 3-D regularity is imposed on

can be found efficiently in closed form the motion of these structures, the normakofannot be used
ATWA to give an indication of the motion.
S W2 S Wx)LI, Y Wx)ILL
xEQ x€Q ) x€Q I C. Derivative Computation
= XZC%Z W1y XZC%Z W)y XZC%Z W1 The quality of the optical flow field computed by the above
S WELL Y Wx)LL Y W) method depends on the accuracy of the partial derivatives
xeQ x€9 xeQ I /dx, 81 /9y, 81 [0z, anddI /9t in (2), which are obtained
®)  fromthe (discrete) motion sequences [19]. As mentioned above,
with I, = I,(x,t) etc., so that due to the clinical constraints, the hypervolumes that contain
S W(x)LI the 3-D MRI motion sequences are aliased both spatially and
xC82 temporally. In [1], we have examined the 2-D performance of
ATWp = Z%,Z W(x) 11y (7) three forms of derivative computation, using central difference
XZC: W (x)L1I, kernels, Sobel 22 + time derivative kernels and Gaussian
xeQ derivatives. In that study, Gaussian derivatives [20] were found
and to have the best performance. The continuous form of the
[ATWA] -1 Gaussian derivative kernel is given by
e - = - = . - = 2 2 2 2
el e Q(z) = ¢~/ Dand@ (z) = —%xe_’” /@) (9)
= | Wrwar ;I[jf;{,;:;‘ S wa) > | The temporal and spatial components of the scalef the
EayBye—Fe:Byy  SeySer—FesSys EvoSyy—E2, Gaussian and its derivative in (9) were separateg, @ndo,,
[[ATWA]| [ATWA] [[ATWA]| 8 respectively, because the number of volumes the sequence

is low (typically nine). It is important to understand that the

with Sy = > co IW(x)1(x,t)1,(x,t)}, so thatV can be main constraint in this application is the clinical limit on
evaluated analytically. This is important for an acceptable pdt-might, therefore, seem attractive to compute the derivatives
formance, since otherwigA? WA]~1A? would have to be using a four-point central difference kernel or a four-dimen-
computed iteratively. sional (4-D) Sobel kernel (Table 1), since if no presmoothing

In the discrete case, the partial derivatives/ofl;, where is used,n = 3, respectivelyn = 3, are sufficient for these
i € {z,y,z}, are of dimensioength™*, so that the derivative differentiation kernels. Indeed, these two are often used in the
products of the matrix in (6) have dimensidmgth 2. The literature on 2-D optical flow computation, see for example
eigenvalues\;, Ao, andXs, with A; > A> > As, of (6) form a [19]. However, in the 2-D case, their performance without
metric for the regularity of the (gradients in the) neighborhoaqprefiltering was found to be very low as a consequence of
2 and are used as a reliability index as in [19]A}l is larger aliasing [1]. Performance might be improved by presmoothing
than a threshold (of dimensioniength™?), the flow inQ is  with a Gaussian, but the temporal scaleof the smoothing
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kernel is then limited by, in the manner explained above. At asince depth perception of one-dimensional (1-D) objects (the
given sequence length the maximum of the temporal scate arrows) is poor compared with surface objects and populating
for a specific Gaussian derivative kernel (if the derivatives atBree-space with arrows easily produces overloaded images. In
computed using Gaussian derivatives) or Gaussian smoothatglition, most approaches assume that the flow field is locally
kernel (if they are computed using four-point central differenaegular and dense [22]. A visualization method was developed
or Sobel kernels), is limited t@; ;,.x to display the 3-D flow field of the motion of orbital tissues and
n—1 still allow the relation to the underlying anatomy to be seen.

Tt max(Gauss = . . . . .
"3 B. Two-Dimensional Section Visualization

ot max(Sobe) =76 We have previously found that color classification of 2-D mo-
n—>5 tion vectors is effective in presenting the motion field in a com-
s (10) pact manner, with both orientation and magnitude of the flow
provided the filter kernel is truncated te gresulting in a kernel \{ectpr displayed n a single p!xel_ [.1]' However, colo_r clas_:sp
of Size6o + 1). le, if n = 9, 0ypmax(Gausy = 1.33... fication can sometimes make it difficult to see the orientation

01 mae (SODE) = 1 aNd0; max(CD) = 0.66. .. In Section VI-A of the flow. Spot noise [23] and line integral convolution [24]

we investigate the effect of the scalg(at givenn) on the per- are able to visualize regular and dense flow fields using tex-

formance of the optical flow algorithm with Gaussian derivat—ures formed of ra_ndom nhoise or_|ented along _the orientation of
g flow vector. With these techniques, the noisiness of the tex-

tives and also compare the performance of the three derivatEU kes it difficult to show th itude of the f :
operators described above at giverwith o ;.. computed as Ourg n:ad?.s' ) It Icu | 0S O\;V i € mgﬁlnéu ”eo tﬁ ﬁw v?ct?r.
in (10). The 4-D Sobel kernel is given in Table | riented line integral convolution ( ) allows the flow to be

The algorithms were implemented in the Java I(,ngu(,igs@own as separate small “traces,” where the length of the trace
A package with these implementations is available from rresponds to the velocity [25]. By coloring the “traces” or

‘o ; - ture using our classification scheme, the advantages of both
www.isi.uu.nl/people/michael (please observe copyright aﬁ%x ) : ! . .
disclaimer statements), techniques are combined. The texture is formed by displaying

2-D elliptical Gaussians that are oriented in the direction of the
flow vector. The pixel intensities of the texture are multiplied
with the color resulting from classification of the magnitude of

The true 3-D motion fieldr..¢ is known for the simulated and the flow vector at that pixel. Thus, both the orientation of the
motion controlled sequences. The estimated 3-D motion vectwilective motion of a tissue and the orientation and magnitude
v is compared withv,.; through an angular error measure, by af the motion of each individual pixel are visualized; see Fig. 2.
trivial generalization of the error formula of Barroet,al.[19]

Tt maX(CD)

IV. PERFORMANCE ANDACCURACY MEASUREMENTS

C. Three-Dimensional Volume Visualization
1 = arccos (Veer + V) (11) Particle visualization is a method whereby vectors are pro-

wherey denotes angular error, the difference between the cégcted onto the image as small blurred ellipses oriented along
rect and measured flow vector (reported in degréemnotes the (projected) direction of motion [23]. We have adapted that
normalization and,.¢ the true motion vector. Because motiorinethod to show the flow field as a thinly transparent texture of
vectors are expressed in space-time and errors can occur inaglered particles that we have calledintillations These are
spatial (orientation) or temporal (magnitude) dimension or bottien projected over a surface rendering of the anatomical static
1, thus, conveniently expresses this combined error in a singd> MRI volume [22], [26]. Thus, the collective motion of a
number. We define the density as the number of reliable (i.e./égion of soft tissue can be appreciated as a texture and the in-
the smallest eigenvector is larger than a threshdlfow vec- ~ dividual motion vectors are still discernible.

tors divided by the total number of voxels in an image. The visualization proceeds as follows. While the static
MRI volume is being rendered (involving voxel interpola-

compositing computations [26], [27] at all relevant volume
locations), the interpolated 3-D flow vector corresponding with
In order to interpret the 3-D optical flow fields in relationeach volume location is also inspected. Only a jittered (i.e.,
to the anatomy of the orbit, it is helpful to display the flonpseudorandom on a grid) subset of vectors in the flow field
fields together with a contour surface of the underlying soift visualized to avoid cluttering. If a flow vector is reliable
tissue anatomy. We have used two methods: a stack of 2-D s@ee above) and to be visualized, the voxel at that location
tions of the 3-D flow field laid over the anatomy also showis not rendered. Instead, a scintillatignis projected onto
as a 2-D stack, and a 3-D volume rendering of the flow fielthe viewplane. A scintillation is a small, colored, elongated,
together with a rendering of the static anatomy volume. Veriented half-ovoid Gaussian with parametgrsits color, &;,
sualization of 3-D flow phenomena, as opposed to scalar vilk shape, and,, its opacity.
umes, is difficult and tends to produce complex images with The coloré, of the scintillation is determined by classifica-
heavily overlapping geometry [21]. Occlusion and depth antion of the 3-D motion vector according to a 3-D generalization
biguities strain viewers’ abilities to interpret the motion dataf the scheme adopted in [1]: the color is cast into HSV (hue,
For example, arrow plots are generally not useful for 3-D flovgaturation, and value) [18] space by coding the magniupief

A. Background
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Fig. 2. 2-D section visualization. Shown is the motion of the intraconal tissue around the optic nerve in the apex of the orbit. (A) Flow field disgnayatic
MRI of the left orbit (coronal view). (B) Schematic view of motion as explanation of (A). The colors of the arrows in (B) are made to correspond todtse spot
colors of the motion vectors in (A). The green arrow indicates the motion of the optic nerve (the front of the eye is gazing in the opposite dirdietit®, wh
tissue in front of the optic nerve is moving out of its way and the tissue behind the optic nerve fills in the gap left behind; see, also, Fig. 8.

the motion vector into the saturation channel and the 2-D orie
tation (along a specified axis in 3-D) into the hue channel. Fast
motion shows as brighter colors.

The shapé; of the scintillation is determined by classifica-
tion of the 3-D motion vector. The length of the half-ovoid is
dependent on the magnitude| of the 2-D projection of the
flow vectorv onto the viewplane. Faster motion, thus, shows
more elongated scintillations. The elongation effect of the sci
tillation is determined by a scaling factey. Only half of the
r-eSUIting ovoid is shown. Abl| a_lpproach_es -Zero' the -SCinti”a_ ig. 3. Example of scintillations. (A) Texture formed by multiple
tions become_ ro_und dots, the SIZ_e of which is (_j_etermm_ed by tﬁ%ﬁtilla{tions. The underlying motion-field is a translation to thgright (seen
standard deviation of (the associated probability function of)i@m the back) with an average motion of 1.0 voxelivolume (frame). The hue

(») (B)

Gaussiang,. The computation of, is as follows: and orientation of the scintillations code for the direction of the flow vector,
while the length of the half-ovoid and the saturation of its color code for the
U, =MV magnitude of the flow vector. The background has been made dark-gray and
h = R the underlying static object is not shown on purpose. (B) Detail of scintillation.
€1 =W p; — UjD; Shown are the parameters that define the shape of a scintillation and its halo:
o5, the size of the short axis of the half-ovoid (here, 04)the scaling factor
€2 =U;P; + WPy for the long axis, and;, the size of the short axis of the halo (here, 0.7).
o1 =04+ 0|y
22 102V (2 /o2)) - . . Lo
Eotpr py) =€ EV/TIFER/7D) if ey > 0 Thus, a tiny dark opaque halo is created around a scintillation,
&s(pipy) =0, Otherwise (12) to make individual vectors discernible [29], [30]. The approach
R (37 1

is illustrated in Fig. 3.
whereM = a 4x 4 projection transformation matrix (relating
homogeneous voxel coordinates to projection viewplane coor-
dinates),Vy = (v, vy, v., 1)T i.e., v in homogeneous coor-
dinates,U;, = (u;,u;, ws, u;)” the projection of the motion  This section reports on the quantitative performance of the
vector onto the viewplane (in homogeneous coordinatgsiid optical flow algorithm and shows visualizations of the 3-D
e the short and long axes of the half-ovofd, = the scintil- motion fields obtained. For these experiments, the scale of the
lation shapep = (p;,p;) a pointin,, u = (u;,u;)*, o4 neighborhood?, o,,, was set to the spatial scale at which the
the standard deviation of a Gaussian determining the minimuferivatives were computed or at which Gaussian smoothing was
length and width of the ovoid and a scaling factor determining performed, i.es,, = o,. o, = 1.3 in all experiments described
the effect ofU on the length of the major axis &f. in this paper while the voxel dimensions are 8.8.8x 2.0

The opacityé, defines how transparent the scintillation is. limm. Therefore, the scale of the neighborhdods approxi-
the flow field is not sparse, depth differences between scintillmately 4.8x 4.8 x 12.0 mm, corresponding to the scale of the
tions need to be accentuated to allow individual scintillations taoving and deforming structures in the orbit, that ranges from
be discerned [28]. In order to accomplish this effect, an opagapproximately 4-5 mm (optic nerve cross-section) to 40 mm
halo is rendered around every scintillation by manipulating th{gectus muscle length) in size in any one dimension. The results
opacity,&,. &, is a 2-D Gaussian with a standard deviatign in Sections VI-A and B are meant to be compared with the
that defines the length of its short axis, with > o results in Barronet al. [19] study and our previous 2-D study

o oo, [1], so that we chose the same values#q0, 1, respectively,
&o (pispj) = |V (6_((°‘/0h e/ ))) - (13)  5), to maximize the comparability.

VI. EXPERIMENTAL RESULTS
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TABLE I 2.5
PERFORMANCE ONCUBE USING GAUSSIAN DERIVATIVES AT SCALE 0, = 1.3
(IN OTHER WORDS, NINE VOLUMES WERE NEEDED IN THE SEQUENCE) AT

DIFFERENT THRESHOLDS7. IN ALL EXPERIMENTS ¢, = o, = 1.3 ED“
» 1.5°
. i ‘
- 1.0°
3 E & 7 *s
F‘ o g o ‘.‘p
= L £ 'D 5' i
r=0| 10.56° 20 E-'EI| 67 BE% ‘H‘"‘N*
1| 0547 027 8.40% 0.0"
=5 048°% a23*| 387
i) torn 05 1 15 2 25 3
5 Scale o
& Clowrsiary ek Fig. 5. Performance of the 3-D optical flow algorithm expressed as angular
4 : error ¢ (in degrees) as a function of the temporal seajeof the Gaussian
d-point GO derivatives,r = 5.
3* # Sobel 40
. = 19 givenn and have reasonable performance evenat5 (when
' a0 . grmax — 0.66...). We have also studied the performance of
¥ the algorithm, using Gaussian derivatives, in terms of temporal
™k scale space on tligubesequence; see Fig. 5. Atatemporal scale
= . .
1 - * oy = 1.3, which corresponds ta = 9, the angular errop is
e 3 3 3 under 0.5.
o Fig. 6 shows a visualization of the flow field Gubetogether
0 5 10 15 20 with a rendering of the cube itself. The 3-D motion vectors can
n (volumes) be determined only at the corners of the cube. The motion vec-

tors show as blue-green scintillations and due to their halos, the

Fig.4. Performance of the 3-D algorithm Gubeexpressed as angularertor - flow vectors are separable and also visible as a semi-transparent
(in degrees) as a function of temporal scajef either the Gaussian derivatives texture
or Gaussian prefilterings, = o, = 1.2 and7 = 5. '

B. MR Simulated and Measured Sequences

A. Synthetic Sequences Itisimportant to understand that since densities are expressed
The first experiment was designed to check the reliability @fs a fraction of all voxels, densities of 0.1%—1% are actually not
the 3-D optical flow computation and compare its performaneery sparse and still useful for this application.
to that of the Lucas and Kanade algorithm on Sguare2se- Table Il summarizes the main results of the algorithm on the
quence (a simulated motion sequence formed of a blurred bl&teakSynthypervolume using Gaussian derivatives at different
square on a white background moving at (1.3, 1.3) pixels pearesholds. SteakSyntlwvas obtained by synthetic rotation of
frame) as found by Barrort al.[19]. TheCubesequence was the steak volume [obtained by static MRI, Fig. 1(B)], with an
created as the 3-D equivalent 8fjuare2and has a motion of angular rotation step of°5per volume around the axis. The
(1.33, 1.33, 1.33) voxels per volume, i.e., to the upper-righdlecrease in performance compared withGdehypervolume
back. [See Fig. 1(A) for a single slice from a single volume]. is probably caused by the fact that the derivatives are more dis-
Table Il summarizes the performance of the algorithm agontinuous due to the aliasing and partial volume effects of the
Cubeusing Gaussian derivatives at different threshald¥he MR acquisition process.
performance is comparable to that of the Lucas and Kanade alTable IV summarizes the main results for tBeakDeform
gorithm onSquare2at + = 1, the average error was21° + hypervolume using Gaussian derivatives and various thresholds
0.16° (at a density of 7.9%) foBquare19], while for Cubeit . SteakDeformwvas obtained by synthetic nonrigid 3-D defor-
is 0.54° + 0.27° (at a density of 8.10%). mation of the steak volume [obtained by static MRI, Fig. 1(B)]
As discussed above, an important constraint in this applising a simulated rigid ball and supporting plane. The better
cation isn, the number of volumes in a sequence. We hayerformance compared witbteakSyntls caused by the more
studied the effect ofi on the performance (i.e., angular erroregular differences in the magnitude of the deformation (over
1)) of the algorithm withCubeand compared the effect of usingspace), compared with the more rapid magnitude differences
Gaussian, central difference and Sobel derivative operators ((beer space) of a rotation.
last two with Gaussian smoothing) at the maximum sealg, . Table V summarizes the main results for tBeakMRhy-
allowed byn [see (10)], as shown in Fig. 4. Wiube Gaussian pervolume.SteakMRwas obtained by rotating the steak &t 5
derivatives for gradient estimation perform superior to the othgver volume (around the axis) and acquiring an MRI volume
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TABLE V
PERFORMANCE ONSTEAKMR WITH n = 9, GAUSSIAN DERIVATIVES AT SCALE
o, = 1.3, FOR DIFFERENT THRESHOLDS7. SINCE DENSITIESARE SOLOW AT
7 = 5, RESULTSARE ALSOGIVEN FORT = 0.5 AND 7 = 2.5

LARD LGS Emror i
S encang Day
Canaity

=l 18.43% 16187 87.00%

=5 15025 11.417 5 50
o 12,367 T.28% 345%
=2.8 713" 1477 03T

=3 4.891° 1.66% 001%

Fig. 6. Scintillation rendering of the 3-D flow field @ubecombined with a
rendering of the cube itself. The cube is translating at (1.3, 1.3, 1.3) voxels p
volume (to the upper-right-backy., = 1.3, 7 = 5. Motion is visible only at
the corners of the cube.

TABLE I
PERFORMANCE ONSTEAKSYNTHWITH n = 9, GAUSSIAN DERIVATIVES AT
TEMPORAL SCALE 0, = 1.3, FOR DIFFERENT THRESHOLDST

a
Bl &
IR
2] = 3
=| @& g @ (b)
=) T.55%| 8.25°) T7.82% Fig. 7. (A) Scintillation rendering of the 3-D motion field ddteakMR
=7 4287 3.19°| s5.00% combined with (B) a volume rendering of the “anatomy” of the steak . The
= z anatomy under the motion field is not shown since the motion field is too
=8 388% 1.88% O0.09% dense. The axis of rotation is oriented perpendicular to the surface of the steak.
Gaussian derivatives,, = 1.3,7 = 2.5.
TABLE IV ; : i : r
PERFORMANCE ONSTEAKDEFORMWITH GAUSSIAN DERIVATIVES AT SCALE to the gradlent Of the MR fleld Since the denSItyrat: 018
o, = 1.3, FOR DIFFERENT THRESHOLDST smaller than 0.01%, which is not very useful for our purposes,
i results are also reported for intermediate thresholds0.5 and
T = 2.5.
Fig. 7 shows a scintillation rendering of one half of the flow
ot field of SteakMRogether with the anatomy of the steak for the
E ;E other half.
[ g = _
'3 i C. MR Measured Orbital Sequences
= . . .
= L a We have used 3-D optical flow computation to determine the
rd] 4797 B.34%) 74780 motion as a function of gaze position in hypervolumes of the
=1} 1.76% 2.20°| 30.05% orbit, OrbitMR. Since the true motion fielst,.; is unknown in
=5| 1887 253 1200% this case, it is impossible to obtain quantitative data on perfor-

mance. We found that the obtained 3-D flow fields are similar to
those obtained using 2-D optical flow estimation along different
at each step. Compared &teakSynthperformance of the al- planes.

gorithm has deteriorated. This is probably caused by aliasing inTo evaluate the clinical usefulness of 3-D motion estimation,
the temporal dimension caused by partial volume effects and tle have tried to measure the 3-D motion ofithieaconaltissue.
anisotropic phase effect of the orientation of the tissue relatiVée intraconal tissue is the fatty and fibrous tissue located in
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Fig. 8. Scintillation rendering of the 3-D motion field GfrbitMR, together with a static rendering of both globes and both optic nerves. Shown as seen from
inside the skull looking forward toward globes (right is right). Only the motion field of the intraconal tissue close to the optic nerve is disptayese, ibwould
otherwise be obscured by the motion of the rectus muscles and other tissues. The subject is gazing from left to right and the optic nerve (at taglndek of th
therefore, moves in the opposite direction, to the left. The motion of the intraconal tissue is coupled to that of the optic nerve above and behowet, (gréhe

left). At the trailing edge of the right optic nerve (right in this figure) this tissue can be seen to fill the space left by the motion path of thearerthe fp of

the nerve it fills in adownwarddirection (yellow) and from the bottom of the nerve it fills in apwarddirection (blue). This is best seen around the right nerve.
The index in the upper left corner shows the orientations corresponding to the eglessl.3, 7 = 2.5.

between the extraocular muscles, around the optic nerve, and iBrevious approaches to 3-D optical flow estimation have
composed of tiny globules of fat suspended between connectdeen successful in determining 3-D motion and deformation
tissue septa [31]. Since the space within the orbital cavity fiiom 3-D volumetric CT and MR sequences of the human heart
fixed, this tissue has to deform when the muscles and the gldBd] and the human brain [35], [36]. Human cardiac optical flow
move during gaze. The kinematics are unknown, but are relevanmputation from CT sequences has been rigorously validated
since it has recently been proposed that this tissue may forriB&]. These approaches are based on 3-D generalizations of
functional skeleton for the orbital contents [32]. The 3-D motioRlorn and Schunk’s algorithm, using a global smoothness con-
field of the intraconal tissue was measured in three subjecitraint on the motion field [17]. Local smoothness constraints,
One of the motion fields, with the subject gazing from left tsuch as Lucas and Kanade’s algorithm [19], where the flow is
right, is shown in 2-D in Fig. 2 and in a scintillation renderingonstrained to be regular only in the neighborhood of the point
in Fig. 8. The intraconal fat can be seen to deform from overhere the optical flow vector is to be determined, were found
and under the optic nerve into the space left by it as it trails the give better and more robust performance in 2-D optical flow
movement of the globe. This tissue, thus, fills the vacuum left l®stimation in both natural scenes [19] and in MR sequences [1].

the nerve, as behind a spoon moving through syrup. Thereforegyr results indicate that 3-D optical flow computation by the
it deforms like a liquid and less like a solid (if it deformed ingigorithm introduced in this study is feasible. Its performance on
the manner of more solid matter such as a sponge, it would haygthetic 3-D volume sequences is comparable to that obtained
deformed in the same direction as the nerve, filling up the spagg conventional 2-D optical flow measurement algorithms on

from sideways instead of from top and bottom). 2-D sequences. The algorithm is sensitive to the quality of the
partial derivatives and the best performance was reached using
VII. DiscussIiON Gaussian derivatives. The performance on realistic MR volume

This paper introduces a 3-D optical flow algorithm and a 3_|§_e_quences.is quite ggceptable. The derived flow fields are of suf-
optical flow visualization technique to quantify and visualizécient quality for clinical purposes. In fact, we have been able
objectively the 3-D motion of soft tissues in the orbit from MRO measure the previously unknown kinematics of the intraconal
volume sequences. In addition, it studies the quality of the m#sSue, which was found to deform like a liquid and less like a
tion fields obtained, given the clinical constraints on sequengglid.- Compared to Cine PC and tagged MR, 3-D optical flow
length and resolution. The Lucas and Kanade algorithm [3@pmputation has the advantage ofnee_dlng onlythelnftensny data
was generalized to three dimensions and tested on (4-D) moti#tstead of phase data for three axes in the case of cine PC) and
sequence hypervolumes of synthetic motion of a stylized obje¥puld also work for cine CT. The relative advantages and dis-
(a cube), of synthetic motion of an MR imaged natural object @fvantages of the three techniques merit further study.
steak), of an MR imaged rotating natural object (the same steak)The results also show that 3-D optical flow visualization
and of MR imaged motion in the human orbit during gaze. THey scintillation rendering, combined with surface rendering
3-D motion field was visualized by rendering color-textured 2-IBf anatomy, gives an insight into the relation of tissue motion
slices with the 2-D motion and also by scintillation renderingyith the underlying anatomy. This allows an evaluation of the
so as to display the 3-D motion field together with conventionguality of the 3-D flow field when the true flow field is not
volume rendering of the underlying (static) anatomy. known.
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In conclusion, 3-D optical flow computation has sufficient [14] T.S. Denney and J. L. Prince, “A frequency domain performance anal-
performance to estimate the motion of soft tissues in the orbit

for clinical purposes and scintillation rendering is effective in[15
understanding the relationship between tissue motion and un-

derlying anatomy.
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