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Computation and Visualization of Three-Dimensional
Soft Tissue Motion in the Orbit

Michael D. Abràmoff*, Member, IEEEand Max A. Viergever, Member, IEEE

Abstract—This work presents a method to measure the soft
tissue motion in three dimensions in the orbit during gaze. It
has been shown that two-dimensional (2-D) quantification of
soft tissue motion in the orbit is effective in the study of orbital
anatomy and motion disorders [1]. However, soft tissue motion is
a three-dimensional (3-D) phenomenon and part of the kinematics
is lost in any 2-D measurement. Therefore, T1-weighted magnetic
resonance (MR) imaging volume sequences are acquired during
gaze and soft tissue motion is quantified using a generalization of
the Lucas and Kanade optical flow algorithm to three dimensions.
New techniques have been developed for visualizing the 3-D
flow field as a series of color-texture mapped 2-D slices or as a
combination of volume rendering for display of the anatomy and
scintillation rendering for the display of the motion field. We have
studied the performance of the algorithm on four-dimensional
volume sequences of synthetic motion, simulated motion of a
static object imaged by MR, an MR-imaged rotating object and
MR-imaged motion in the human orbit during gaze. The accuracy
of the analysis is sufficient to characterize motion in the orbit and
scintillation rendering is an effective visualization technique for
3-D motion in the orbit.

Index Terms—Cinematic MRI, multimodality visualization, op-
tical flow, orbit.

I. INTRODUCTION

I T has been shown that the objective measurement of the
motion of orbital soft tissue can improve the diagnosis and

management of orbital disorders and may shed new light on the
kinematics of orbital tissue [1], [2]. In these studies, a technique
was introduced that uses cinematic magnetic resonance imaging
(MRI) and optical flow computation of the motion field. This
technique was limited to two dimensions. However, any tech-
nique based on two-dimensional (2-D) optical flow computation
can only estimate the motion projected in the imaging plane.
Since soft tissue motion and deformation is intrinsically three-
dimensional (3-D) in nature, 3-D quantification may be benefi-
cial. Problems for which 3-D quantification may be useful in-
clude the measurement of intraconal fat kinematics [3], mea-
surement of muscle kinematics [4], and elucidation of the effect
of muscle pulleys [5].
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This study introduces a method to analyze quantitatively and
visualize 3-D motion and deformation. The method is based
upon fast cinematic (cine) 3-D volumetric T1-weighted MRI
in which hypervolumes (time series of volumes) are acquired
during horizontal and vertical gaze. The 3-D motion present in
the hypervolume is then analyzed with a 3-D optical flow algo-
rithm. The algorithm is a 3-D generalization of the 2-D Lucas
and Kanade optical flow algorithm, that was found to have the
best performance on MR images [1]. A motion-to-color map-
ping was shown to be effective to visualize a 2-D-motion field in
a small space [1] and this approach has been extended to create
colored-textures that reflect the magnitude and orientation of
the flow field in 3-D space. Other approaches to measure the
motion in 3-D cine MRI sequences have been described, such
as cine phase contrast (PC) MR [6] and MR-tagging [7]. Cine
PC MRI utilizes the phase changes of the MR signals due to
tissue motion [8]–[10]. Human heart motion has also been suc-
cessfully estimated with MR-tagging [7], [11]. So far, cine PC
MRI and tagged MRI have been studied in the context of heart
and knee motion, with both relatively large and regular motion
fields (combine to the motion in the orbit). There have been no
studies comparing these methods, or applying their suitability
to estimate motion at small scales.

A limitation to the proposed method is that cine MRI requires
active cooperation from the patient. Since the main reason to
undergo cine MRI is double vision or another ocular motility
disorder, the number of MR acquisitions and the time allowed
for them is necessarily severely constrained. This limits both the
resolution of the volume and the number of volumes that can be
acquired per motion sequence.

The purpose of this paper is to quantify objectively 3-D mo-
tion and deformation of soft tissues in the orbit. To this end, 3-D
optical flow computation and 3-D motion visualization are in-
troduced as techniques to analyze and present the measurement
results. In view of the constraints outlined above, a side objec-
tive of the study is to establish whether the optical flow fields,
thus, obtained are of sufficient quality to be clinically useful.

II. M ETHODS

A. MR Volume Acquisition

Cinematic MRI (3- ) hypervolumes were obtained
using the following protocol. Gradient echo T1-weighted vol-
umes were acquired on a 1.5-T MR scanner (Philips NT) using
a head-coil with the following settings: turbo field echo, echo
time (TE) 4.598 ms, repetition time (TR) 9.36 ms, flip angle
20 , and matrix 256 256 40, resulting in a voxel size of
0.8 0.8 2.0 mm and an acquisition time of 15 s per single
volume for a single fixation position. The T1 relaxation times
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(A) (B) (C) (D)

Fig. 1. Single slices from single volumes of the three objects imaged for this paper. (A) Single slice from single volume fromCube hypervolume
(60� 60� 60� 25). (B) Single slice fromSteakMRhypervolume (256� 256� 40� 25), central portion shown. (C) Single slice fromOrbitMR hypervolume
(256� 256� 23� 9). (D) Slice fromOrbitMR Volume of Interest selected for motion estimations (180� 50� 23� 9).

were coded as signal intensities and the hypervolumes stored in
DICOM 3.0 format as series of consecutive, separate images.

B. Simulated, Measured Hypervolumes

Since the true 3-D motion field in the orbit is unknown,
simulations and MR measurements of controlled motion of
an object were used to compare the flow field estimates with
known motion fields. Simulated sequences were created by
translating (at different velocities) a cube in 3-D space and
obtaining 60 60 60 25 hypervolumes of the resulting
motion sequence. We chose one of these for this study, called
Cube.

Motion-controlled MR measured hypervolumes were ob-
tained by rotating a sirloin steak in a transparent box fitted with
an angle ruler as in [1] in the MR scanner bore. The phantom
was manually rotated 5per frame and 256 256 40 25
hypervolumes of the resulting motion sequence were obtained.
We chose one of these for this study, calledSteakMR.

In addition, a single MR volume of the sirloin steak was syn-
thetically rotated 5 per frame using (tri-)linear interpolation,
resulting in a 256 256 40 9 hypervolume of the resulting
synthetic rotation sequence. We chose one of these for this study,
calledSteakSynth.

In the orbit, soft tissues undergo both rigid motion and (non-
rigid) deformation. However, it is very difficult to evaluate ex-
periments with deformation. This is because the deformation
field cannot be objectively measured so as to provide the gold
standard for the optical flow estimates. Therefore, we have syn-
thetically simulated the 3-D deformation of a single MR volume
of the sirloin steak, which resulted in a sequence calledSteakDe-
form. The deformation simulated the impression of a rigid body
(a ball of 3.0 mm) into the top of the steak, with the bottom of
the steak being held fixed against a rigid plane over its entire
width and being unrestrained at the sides. The ball impressed
with 1.2 mm/frame. Tri-linear interpolation was used.

True orbital soft tissue motion hypervolumes were obtained
by having a healthy subject fixate on sequential marks placed at
8 intervals along horizontal and vertical lines on the inside of
the scanner bore. Each hypervolume thus acquired consists of a
sequence of volumes (256256 23 9) of the resulting hori-
zontal and vertical gaze motion sequences and each volume cor-
responds to a single gaze position. Three subjects were studied
and we chose one of these sequences, calledOrbitMR. Single
slices of a single volume of each of the sequences are shown in
Fig. 1.

III. OPTICAL FLOW COMPUTATION

A. Background

The optical flow field is a vector field that expresses the kine-
matic relationship between local 2-D or 3-D image samples
[12]. Optical flow algorithms use the spatio-temporal patterns
of these image or signal intensity samples to estimate the mo-
tion field. Optical flow computation has been used by several
researchers for 2-D motion studies of MR sequences [13]–[16].
The Lucas and Kanade first-order differential algorithm is the
most robust estimator of 2-D motion in MR sequences [1]. The
starting point of optical flow computation is the optical flow
constraint equation [12], [17]

(1)

where is the (possibly prefiltered) signal intensity se-
ries at location and time and the total derivative of
. Equation (1) expresses the assumption that structures do not

change in signal intensity as they move. To make the optical
flow vector explicit in the 3-D case, (1) can be expressed in
terms of first-order partial derivatives as

(2)

with the gradient of and , the
partial derivative of with respect to time. This is one
equation with three unknowns, the components and
of the 3-D flow vector . Thus, this equation defines a plane for
the normal component of the 3-D velocity vector. To solve (2)
for , two additional constraints need to be introduced.

B. Three–Dimensional Optical Flow Algorithm

Lucas and Kanade over-constrained the 2-D version of (2) by
assuming the flow to be regular over a small neighborhood. The
2-D motion vector can then be estimated by linear optimization
from the over-constrained system of equations. By weighting
the equations for the neighborhood with a Gaussian, the influ-
ence of neighboring (normal) flow vectors on the estimate is
increased relative to that of vectors that are more distant. By
generalizing this approach to three dimensions, the 3-D motion
vector is estimated from a system of equations [each of the
form of (2)] for the neighborhood

(3)
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where, for ,

...
...

...

The system is weighted on both sides with a 3-D Gaussian
with standard deviation (of the associated probability function)

(4)

where, for , , diag

The optimum solution for in (4), in a least squares sense,
is obtained using the pseudoinverse [18]

(5)

where pseudoinverse of .
Provided , the pseudoinverse is identical to

the least-squares inverse . The pseudoinverse
can be found efficiently in closed form

(6)

with etc., so that

(7)

and

(8)

with , so that can be
evaluated analytically. This is important for an acceptable per-
formance, since otherwise would have to be
computed iteratively.

In the discrete case, the partial derivatives of, , where
, are of dimension , so that the derivative

products of the matrix in (6) have dimension . The
eigenvalues , , and , with , of (6) form a
metric for the regularity of the (gradients in the) neighborhood

and are used as a reliability index as in [19]. If is larger
than a threshold (of dimension ), the flow in is

TABLE I
4-D “SOBEL” DIFFERENTIATION KERNEL

assumed to be regular in 3-D andis assumed to be reliable. If
is larger than , but not , the flow in is assumed to be

regular in two dimensions only and the normal ofis obtained
by projecting the result of (5) onto the eigenvector associated
with (the largest eigenvalue). Many structures in the orbit do
not have a 3-D texture, but a predominantly 2-D texture, such as
blood vessels and nerves. If strict 3-D regularity is imposed on
the motion of these structures, the normal ofcannot be used
to give an indication of the motion.

C. Derivative Computation

The quality of the optical flow field computed by the above
method depends on the accuracy of the partial derivatives

, , , and in (2), which are obtained
from the (discrete) motion sequences [19]. As mentioned above,
due to the clinical constraints, the hypervolumes that contain
the 3-D MRI motion sequences are aliased both spatially and
temporally. In [1], we have examined the 2-D performance of
three forms of derivative computation, using central difference
kernels, Sobel 2- derivative kernels and Gaussian
derivatives. In that study, Gaussian derivatives [20] were found
to have the best performance. The continuous form of the
Gaussian derivative kernel is given by

and (9)

The temporal and spatial components of the scaleof the
Gaussian and its derivative in (9) were separated asand ,
respectively, because the number of volumesin the sequence
is low (typically nine). It is important to understand that the
main constraint in this application is the clinical limit on.
It might, therefore, seem attractive to compute the derivatives
using a four-point central difference kernel or a four-dimen-
sional (4-D) Sobel kernel (Table I), since if no presmoothing
is used, , respectively, , are sufficient for these
differentiation kernels. Indeed, these two are often used in the
literature on 2-D optical flow computation, see for example
[19]. However, in the 2-D case, their performance without
prefiltering was found to be very low as a consequence of
aliasing [1]. Performance might be improved by presmoothing
with a Gaussian, but the temporal scaleof the smoothing
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kernel is then limited by in the manner explained above. At a
given sequence length, the maximum of the temporal scale
for a specific Gaussian derivative kernel (if the derivatives are
computed using Gaussian derivatives) or Gaussian smoothing
kernel (if they are computed using four-point central difference
or Sobel kernels), is limited to

Gauss

Sobel

CD (10)

provided the filter kernel is truncated to 3(resulting in a kernel
of size ). I.e., if , Gauss ,

Sobel and CD In Section VI-A,
we investigate the effect of the scale(at given ) on the per-
formance of the optical flow algorithm with Gaussian deriva-
tives and also compare the performance of the three derivative
operators described above at given, with computed as
in (10). The 4-D Sobel kernel is given in Table I

The algorithms were implemented in the Java language.
A package with these implementations is available from
www.isi.uu.nl/people/michael (please observe copyright and
disclaimer statements).

IV. PERFORMANCE ANDACCURACY MEASUREMENTS

The true 3-D motion field is known for the simulated and
motion controlled sequences. The estimated 3-D motion vector

is compared with through an angular error measure, by a
trivial generalization of the error formula of Barron,et al. [19]

(11)

where denotes angular error, the difference between the cor-
rect and measured flow vector (reported in degrees),denotes
normalization and the true motion vector. Because motion
vectors are expressed in space-time and errors can occur in the
spatial (orientation) or temporal (magnitude) dimension or both,

, thus, conveniently expresses this combined error in a single
number. We define the density as the number of reliable (i.e., if
the smallest eigenvector is larger than a threshold) flow vec-
tors divided by the total number of voxels in an image.

V. THREE–DIMENSIONAL MOTION VISUALIZATION

A. Background

In order to interpret the 3-D optical flow fields in relation
to the anatomy of the orbit, it is helpful to display the flow
fields together with a contour surface of the underlying soft
tissue anatomy. We have used two methods: a stack of 2-D sec-
tions of the 3-D flow field laid over the anatomy also shown
as a 2-D stack, and a 3-D volume rendering of the flow field
together with a rendering of the static anatomy volume. Vi-
sualization of 3-D flow phenomena, as opposed to scalar vol-
umes, is difficult and tends to produce complex images with
heavily overlapping geometry [21]. Occlusion and depth am-
biguities strain viewers’ abilities to interpret the motion data.
For example, arrow plots are generally not useful for 3-D flow,

since depth perception of one-dimensional (1-D) objects (the
arrows) is poor compared with surface objects and populating
three-space with arrows easily produces overloaded images. In
addition, most approaches assume that the flow field is locally
regular and dense [22]. A visualization method was developed
to display the 3-D flow field of the motion of orbital tissues and
still allow the relation to the underlying anatomy to be seen.

B. Two-Dimensional Section Visualization

We have previously found that color classification of 2-D mo-
tion vectors is effective in presenting the motion field in a com-
pact manner, with both orientation and magnitude of the flow
vector displayed in a single pixel [1]. However, color classi-
fication can sometimes make it difficult to see the orientation
of the flow. Spot noise [23] and line integral convolution [24]
are able to visualize regular and dense flow fields using tex-
tures formed of random noise oriented along the orientation of
the flow vector. With these techniques, the noisiness of the tex-
ture makes it difficult to show the magnitude of the flow vector.
Oriented line integral convolution (OLIC) allows the flow to be
shown as separate small “traces,” where the length of the trace
corresponds to the velocity [25]. By coloring the “traces” or
texture using our classification scheme, the advantages of both
techniques are combined. The texture is formed by displaying
2-D elliptical Gaussians that are oriented in the direction of the
flow vector. The pixel intensities of the texture are multiplied
with the color resulting from classification of the magnitude of
the flow vector at that pixel. Thus, both the orientation of the
collective motion of a tissue and the orientation and magnitude
of the motion of each individual pixel are visualized; see Fig. 2.

C. Three-Dimensional Volume Visualization

Particle visualization is a method whereby vectors are pro-
jected onto the image as small blurred ellipses oriented along
the (projected) direction of motion [23]. We have adapted that
method to show the flow field as a thinly transparent texture of
colored particles that we have calledscintillations. These are
then projected over a surface rendering of the anatomical static
3-D MRI volume [22], [26]. Thus, the collective motion of a
region of soft tissue can be appreciated as a texture and the in-
dividual motion vectors are still discernible.

The visualization proceeds as follows. While the static
MRI volume is being rendered (involving voxel interpola-
tion, gradient interpolation, opacity, shading, and viewplane
compositing computations [26], [27] at all relevant volume
locations), the interpolated 3-D flow vector corresponding with
each volume location is also inspected. Only a jittered (i.e.,
pseudorandom on a grid) subset of vectors in the flow field
is visualized to avoid cluttering. If a flow vector is reliable
(see above) and to be visualized, the voxel at that location
is not rendered. Instead, a scintillationis projected onto
the viewplane. A scintillation is a small, colored, elongated,
oriented half-ovoid Gaussian with parametersits color, ,
its shape, and , its opacity.

The color of the scintillation is determined by classifica-
tion of the 3-D motion vector according to a 3-D generalization
of the scheme adopted in [1]: the color is cast into HSV (hue,
saturation, and value) [18] space by coding the magnitudeof
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Fig. 2. 2-D section visualization. Shown is the motion of the intraconal tissue around the optic nerve in the apex of the orbit. (A) Flow field displayedover static
MRI of the left orbit (coronal view). (B) Schematic view of motion as explanation of (A). The colors of the arrows in (B) are made to correspond to the spotnoise
colors of the motion vectors in (A). The green arrow indicates the motion of the optic nerve (the front of the eye is gazing in the opposite direction), while the
tissue in front of the optic nerve is moving out of its way and the tissue behind the optic nerve fills in the gap left behind; see, also, Fig. 8.

the motion vector into the saturation channel and the 2-D orien-
tation (along a specified axis in 3-D) into the hue channel. Faster
motion shows as brighter colors.

The shape of the scintillation is determined by classifica-
tion of the 3-D motion vector. The length of the half-ovoid is
dependent on the magnitude of the 2-D projection of the
flow vector onto the viewplane. Faster motion, thus, shows as
more elongated scintillations. The elongation effect of the scin-
tillation is determined by a scaling factor. Only half of the
resulting ovoid is shown. As approaches zero, the scintilla-
tions become round dots, the size of which is determined by the
standard deviation of (the associated probability function of) a
Gaussian, . The computation of is as follows:

if

otherwise (12)

where a 4 4 projection transformation matrix (relating
homogeneous voxel coordinates to projection viewplane coor-
dinates), i.e., in homogeneous coor-
dinates, the projection of the motion
vector onto the viewplane (in homogeneous coordinates),and

the short and long axes of the half-ovoid, the scintil-
lation shape, a point in , ,
the standard deviation of a Gaussian determining the minimum
length and width of the ovoid and a scaling factor determining
the effect of on the length of the major axis of .

The opacity defines how transparent the scintillation is. If
the flow field is not sparse, depth differences between scintilla-
tions need to be accentuated to allow individual scintillations to
be discerned [28]. In order to accomplish this effect, an opaque
halo is rendered around every scintillation by manipulating the
opacity, . is a 2-D Gaussian with a standard deviation
that defines the length of its short axis, with

(13)

(A) (B)

Fig. 3. Example of scintillations. (A) Texture formed by multiple
scintillations. The underlying motion field is a translation to the right (seen
from the back) with an average motion of 1.0 voxel/volume (frame). The hue
and orientation of the scintillations code for the direction of the flow vector,
while the length of the half-ovoid and the saturation of its color code for the
magnitude of the flow vector. The background has been made dark-gray and
the underlying static object is not shown on purpose. (B) Detail of scintillation.
Shown are the parameters that define the shape of a scintillation and its halo:
� , the size of the short axis of the half-ovoid (here, 0.4),� the scaling factor
for the long axis, and� the size of the short axis of the halo (here, 0.7).

Thus, a tiny dark opaque halo is created around a scintillation,
to make individual vectors discernible [29], [30]. The approach
is illustrated in Fig. 3.

VI. EXPERIMENTAL RESULTS

This section reports on the quantitative performance of the
optical flow algorithm and shows visualizations of the 3-D
motion fields obtained. For these experiments, the scale of the
neighborhood , , was set to the spatial scale at which the
derivatives were computed or at which Gaussian smoothing was
performed, i.e . in all experiments described
in this paper while the voxel dimensions are 0.80.8 2.0
mm. Therefore, the scale of the neighborhoodis approxi-
mately 4.8 4.8 12.0 mm, corresponding to the scale of the
moving and deforming structures in the orbit, that ranges from
approximately 4–5 mm (optic nerve cross-section) to 40 mm
(rectus muscle length) in size in any one dimension. The results
in Sections VI-A and B are meant to be compared with the
results in Barron,et al. [19] study and our previous 2-D study
[1], so that we chose the same values for(0, 1, respectively,
5), to maximize the comparability.
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TABLE II
PERFORMANCE ONCUBE USING GAUSSIAN DERIVATIVES AT SCALE � = 1:3

(IN OTHER WORDS, NINE VOLUMES WERE NEEDED IN THE SEQUENCE) AT

DIFFERENTTHRESHOLDS� . IN ALL EXPERIMENTS, � = � = 1:3

Fig. 4. Performance of the 3-D algorithm onCubeexpressed as angular error 
(in degrees) as a function of temporal scale� of either the Gaussian derivatives
or Gaussian prefiltering;� = � = 1:2 and� = 5.

A. Synthetic Sequences

The first experiment was designed to check the reliability of
the 3-D optical flow computation and compare its performance
to that of the Lucas and Kanade algorithm on theSquare2se-
quence (a simulated motion sequence formed of a blurred black
square on a white background moving at (1.3, 1.3) pixels per
frame) as found by Barron,et al. [19]. TheCubesequence was
created as the 3-D equivalent ofSquare2and has a motion of
(1.33, 1.33, 1.33) voxels per volume, i.e., to the upper-right-
back. [See Fig. 1(A) for a single slice from a single volume].

Table II summarizes the performance of the algorithm on
Cubeusing Gaussian derivatives at different thresholds. The
performance is comparable to that of the Lucas and Kanade al-
gorithm onSquare2: at , the average error was

(at a density of 7.9%) forSquare2[19], while for Cubeit
is (at a density of 8.10%).

As discussed above, an important constraint in this appli-
cation is , the number of volumes in a sequence. We have
studied the effect of on the performance (i.e., angular error

) of the algorithm withCubeand compared the effect of using
Gaussian, central difference and Sobel derivative operators (the
last two with Gaussian smoothing) at the maximum scale
allowed by [see (10)], as shown in Fig. 4. WithCube, Gaussian
derivatives for gradient estimation perform superior to the others

Fig. 5. Performance of the 3-D optical flow algorithm expressed as angular
error  (in degrees) as a function of the temporal scale� of the Gaussian
derivatives,� = 5.

given and have reasonable performance even at (when
). We have also studied the performance of

the algorithm, using Gaussian derivatives, in terms of temporal
scale space on theCubesequence; see Fig. 5. At a temporal scale

, which corresponds to , the angular error is
under 0.5.

Fig. 6 shows a visualization of the flow field ofCubetogether
with a rendering of the cube itself. The 3-D motion vectors can
be determined only at the corners of the cube. The motion vec-
tors show as blue-green scintillations and due to their halos, the
flow vectors are separable and also visible as a semi-transparent
texture.

B. MR Simulated and Measured Sequences

It is important to understand that since densities are expressed
as a fraction of all voxels, densities of 0.1%–1% are actually not
very sparse and still useful for this application.

Table III summarizes the main results of the algorithm on the
SteakSynthhypervolume using Gaussian derivatives at different
thresholds . SteakSynthwas obtained by synthetic rotation of
the steak volume [obtained by static MRI, Fig. 1(B)], with an
angular rotation step of 5per volume around the axis. The
decrease in performance compared with theCubehypervolume
is probably caused by the fact that the derivatives are more dis-
continuous due to the aliasing and partial volume effects of the
MR acquisition process.

Table IV summarizes the main results for theSteakDeform
hypervolume using Gaussian derivatives and various thresholds

. SteakDeformwas obtained by synthetic nonrigid 3-D defor-
mation of the steak volume [obtained by static MRI, Fig. 1(B)]
using a simulated rigid ball and supporting plane. The better
performance compared withSteakSynthis caused by the more
regular differences in the magnitude of the deformation (over
space), compared with the more rapid magnitude differences
(over space) of a rotation.

Table V summarizes the main results for theSteakMRhy-
pervolume.SteakMRwas obtained by rotating the steak at 5
per volume (around the axis) and acquiring an MRI volume
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Fig. 6. Scintillation rendering of the 3-D flow field ofCubecombined with a
rendering of the cube itself. The cube is translating at (1.3, 1.3, 1.3) voxels per
volume (to the upper-right-back).� = 1:3, � = 5. Motion is visible only at
the corners of the cube.

TABLE III
PERFORMANCE ONSTEAKSYNTHWITH n = 9, GAUSSIAN DERIVATIVES AT

TEMPORAL SCALE � = 1:3, FOR DIFFERENTTHRESHOLDS�

TABLE IV
PERFORMANCE ONSTEAKDEFORMWITH GAUSSIAN DERIVATIVES AT SCALE

� = 1:3, FOR DIFFERENTTHRESHOLDS�

at each step. Compared toSteakSynth, performance of the al-
gorithm has deteriorated. This is probably caused by aliasing in
the temporal dimension caused by partial volume effects and the
anisotropic phase effect of the orientation of the tissue relative

TABLE V
PERFORMANCE ONSTEAKMR WITH n = 9, GAUSSIAN DERIVATIVES AT SCALE

� = 1:3, FOR DIFFERENTTHRESHOLDS� . SINCE DENSITIESARE SOLOW AT

� = 5, RESULTSARE ALSO GIVEN FOR � = 0:5 AND � = 2:5

(a) (b)

Fig. 7. (A) Scintillation rendering of the 3-D motion field ofSteakMR
combined with (B) a volume rendering of the “anatomy” of the steak . The
anatomy under the motion field is not shown since the motion field is too
dense. The axis of rotation is oriented perpendicular to the surface of the steak.
Gaussian derivatives,� = 1.3,� = 2.5.

to the gradient of the MR field. Since the density at is
smaller than 0.01%, which is not very useful for our purposes,
results are also reported for intermediate thresholds and

.
Fig. 7 shows a scintillation rendering of one half of the flow

field of SteakMRtogether with the anatomy of the steak for the
other half.

C. MR Measured Orbital Sequences

We have used 3-D optical flow computation to determine the
motion as a function of gaze position in hypervolumes of the
orbit, OrbitMR. Since the true motion field is unknown in
this case, it is impossible to obtain quantitative data on perfor-
mance. We found that the obtained 3-D flow fields are similar to
those obtained using 2-D optical flow estimation along different
planes.

To evaluate the clinical usefulness of 3-D motion estimation,
we have tried to measure the 3-D motion of theintraconaltissue.
The intraconal tissue is the fatty and fibrous tissue located in
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Fig. 8. Scintillation rendering of the 3-D motion field ofOrbitMR, together with a static rendering of both globes and both optic nerves. Shown as seen from
inside the skull looking forward toward globes (right is right). Only the motion field of the intraconal tissue close to the optic nerve is displayed, because it would
otherwise be obscured by the motion of the rectus muscles and other tissues. The subject is gazing from left to right and the optic nerve (at the back of the globe),
therefore, moves in the opposite direction, to the left. The motion of the intraconal tissue is coupled to that of the optic nerve above and below it (green, i.e., to the
left). At the trailing edge of the right optic nerve (right in this figure) this tissue can be seen to fill the space left by the motion path of the nerve. From the top of
the nerve it fills in adownwarddirection (yellow) and from the bottom of the nerve it fills in anupwarddirection (blue). This is best seen around the right nerve.
The index in the upper left corner shows the orientations corresponding to the colors.� = 1:3, � = 2:5.

between the extraocular muscles, around the optic nerve, and is
composed of tiny globules of fat suspended between connective
tissue septa [31]. Since the space within the orbital cavity is
fixed, this tissue has to deform when the muscles and the globe
move during gaze. The kinematics are unknown, but are relevant
since it has recently been proposed that this tissue may form a
functional skeleton for the orbital contents [32]. The 3-D motion
field of the intraconal tissue was measured in three subjects.
One of the motion fields, with the subject gazing from left to
right, is shown in 2-D in Fig. 2 and in a scintillation rendering
in Fig. 8. The intraconal fat can be seen to deform from over
and under the optic nerve into the space left by it as it trails the
movement of the globe. This tissue, thus, fills the vacuum left by
the nerve, as behind a spoon moving through syrup. Therefore,
it deforms like a liquid and less like a solid (if it deformed in
the manner of more solid matter such as a sponge, it would have
deformed in the same direction as the nerve, filling up the space
from sideways instead of from top and bottom).

VII. D ISCUSSION

This paper introduces a 3-D optical flow algorithm and a 3-D
optical flow visualization technique to quantify and visualize
objectively the 3-D motion of soft tissues in the orbit from MR
volume sequences. In addition, it studies the quality of the mo-
tion fields obtained, given the clinical constraints on sequence
length and resolution. The Lucas and Kanade algorithm [33]
was generalized to three dimensions and tested on (4-D) motion
sequence hypervolumes of synthetic motion of a stylized object
(a cube), of synthetic motion of an MR imaged natural object (a
steak), of an MR imaged rotating natural object (the same steak)
and of MR imaged motion in the human orbit during gaze. The
3-D motion field was visualized by rendering color-textured 2-D
slices with the 2-D motion and also by scintillation rendering,
so as to display the 3-D motion field together with conventional
volume rendering of the underlying (static) anatomy.

Previous approaches to 3-D optical flow estimation have
been successful in determining 3-D motion and deformation
from 3-D volumetric CT and MR sequences of the human heart
[34] and the human brain [35], [36]. Human cardiac optical flow
computation from CT sequences has been rigorously validated
[36]. These approaches are based on 3-D generalizations of
Horn and Schunk’s algorithm, using a global smoothness con-
straint on the motion field [17]. Local smoothness constraints,
such as Lucas and Kanade’s algorithm [19], where the flow is
constrained to be regular only in the neighborhood of the point
where the optical flow vector is to be determined, were found
to give better and more robust performance in 2-D optical flow
estimation in both natural scenes [19] and in MR sequences [1].

Our results indicate that 3-D optical flow computation by the
algorithm introduced in this study is feasible. Its performance on
synthetic 3-D volume sequences is comparable to that obtained
by conventional 2-D optical flow measurement algorithms on
2-D sequences. The algorithm is sensitive to the quality of the
partial derivatives and the best performance was reached using
Gaussian derivatives. The performance on realistic MR volume
sequences is quite acceptable. The derived flow fields are of suf-
ficient quality for clinical purposes. In fact, we have been able
to measure the previously unknown kinematics of the intraconal
tissue, which was found to deform like a liquid and less like a
solid. Compared to Cine PC and tagged MR, 3-D optical flow
computation has the advantage of needing only the intensity data
(instead of phase data for three axes in the case of cine PC) and
would also work for cine CT. The relative advantages and dis-
advantages of the three techniques merit further study.

The results also show that 3-D optical flow visualization
by scintillation rendering, combined with surface rendering
of anatomy, gives an insight into the relation of tissue motion
with the underlying anatomy. This allows an evaluation of the
quality of the 3-D flow field when the true flow field is not
known.
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In conclusion, 3-D optical flow computation has sufficient
performance to estimate the motion of soft tissues in the orbit
for clinical purposes and scintillation rendering is effective in
understanding the relationship between tissue motion and un-
derlying anatomy.
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