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3-D Quantification of the Aortic Arch Morphology
in 3-D CTA Data for Endovascular Aortic Repair

Stefan Wörz∗, Hendrik von Tengg-Kobligk, Verena Henninger, Fabian Rengier, Hardy Schumacher,
Dittmar Böckler, Hans-Ulrich Kauczor, and Karl Rohr

Abstract—We introduce a new model-based approach for the
segmentation and quantification of the aortic arch morphology in
3-D computed tomography angiography (CTA) data for thoracic
endovascular aortic repair (TEVAR). The approach is based on a
model-fitting scheme using a 3-D analytic intensity model for thick
vessels in conjunction with a two-step refinement procedure, and
allows us to accurately quantify the morphology of the aortic arch.
Based on the fitting results, we additionally compute the (local)
3-D vessel curvature and torsion as well as the relevant lengths
not only along the 3-D centerline, but particularly also along the
inner and outer contour. These measurements are important for
preoperative planning in TEVAR applications. We have validated
our approach based on 3-D synthetic as well as 3-D MR phantom
images. Moreover, we have successfully applied our approach using
3-D CTA datasets of the human thorax and have compared the
results with ground truth obtained by a radiologist. We have also
performed a quantitative comparison with a commercial vascular
analysis software.

Index Terms—3-D analytic intensity model, 3-D aortic arch seg-
mentation, 3-D computed tomography angiography (CTA) data,
endovascular graft (EVG).

I. INTRODUCTION

AORTIC arch repair (AAR) poses a major challenge for
surgeons and radiologists due to its tortuous anatomy and
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Fig. 1. Anatomy of the thoracic aorta (volume rendering of a CTA dataset).

Fig. 2. EVGs from Medtronic (Valiant, left) and W. L. Gore and Associates
(TAG, right).

relevant side branches (see Fig. 1). Since patients often have
significant comorbidities, an increasing number of aortic arch
pathologies are treated by semiinvasive procedures using en-
dovascular grafts (EVG, see Fig. 2) [1]. Endovascular aortic
repair (EVAR) was initially used for the abdominal aorta, but
has in recent years also been explored for the thoracic aorta
comprising the aortic arch. Thoracic EVAR (TEVAR) consti-
tutes a viable alternative to open repair, while minimizing mor-
bidity and 30-day mortality in patients [2]. However, although
endovascular interventions are minimally invasive, they are
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Fig. 3. 2-D section (left) and maximum intensity projection (right) of a 3-D
CTA dataset of a patient with clinic type B dissection after implantation of an
EVG into the aortic arch beginning distal to the left common carotid artery. The
EVG shows a significant misalignment with respect to the inner contour of the
proximal aortic arch (see the arrow on the right).

associated with specific complications. The EVGs currently
used for AAR were generally designed for the descending aorta,
and therefore, fail to represent the curved and tortuous anatomy
of the aortic arch, so misalignment of the EVG is often the
case [3] (see Fig. 3). This causes endoleaks, reinterventions,
and potentially open surgery after initial EVG placement. The
optimal EVG for endovascular arch reconstruction is yet to be
found. Key requirements of an EVG are flexibility and con-
formability to comply with the curvature of the aortic arch [3].

In TEVAR, preoperative imaging is crucial to assess the vas-
cular anatomy using, for example, 3-D computed tomography
angiography (CTA) (e.g., [4]). For patient and device selection
in TEVAR, morphological parameters need to be known, such
as aortic diameters, length of pathology along the centerline,
and tortuosity of the aorta. In addition, we propose to choose
an EVG also based on the relevant lengths along the outer and
inner contours of the aortic arch, which are important, for exam-
ple, for planning the landing zone of the EVG. In particular, in
case the landing zone is between two supra aortic branches (the
upper three main branches in Fig. 1), accurately measuring the
length between the branches along the outer contour is crucial.
However, whereas in clinical practice, the vessel diameters and
lengths along the vessel centerline can be measured using com-
mercial tools (e.g., [5]), the lengths along the inner and outer
contour of the curved aortic arch as well as the (local) curvature
and torsion of the arch are often not quantified at all, or only
manually determined, which is subjective, time consuming, and
error prone. Note that for the curved arch the lengths along the
contour, in general, significantly deviate from the corresponding
length along the centerline (see Section II-C in the following).

Previous work on automatic segmentation of vessels from
3-D images can be divided into two main classes of approaches,
one based on differential measures (e.g., [6]–[12]) and the other
based on deformable models (e.g., [13]–[25]). For comprehen-
sive surveys on the topic we refer to, for example, [26] and [27].
Approaches based on differential measures typically use partial
derivatives of the image data up to second order. For exam-
ple, in [10], the image gradient is exploited, i.e., first-order

partial derivatives of an image have to be determined. In con-
trast, in [6]–[9], [11], and [12], the Hessian matrix is used, which
requires second-order partial derivatives of an image (note that
in [9] and [11] both the gradient and the Hessian are used). In
the latter approaches, eigenvalues and eigenvectors of the Hes-
sian are exploited, and often a vesselness measure is defined
based on the eigenvalues (e.g., [7]). While being computation-
ally efficient, a disadvantage of differential measures is their
sensitivity to noise, since only local image information is taken
into account. The robustness can be improved, for example, by
using a multiscale approach (e.g., [6], [7], [9]). On the other
hand, approaches based on deformable models generally ex-
ploit contour information of anatomical structures. While these
approaches include more global information in comparison to
differential approaches, often only 2-D or 3-D contours are
taken into account (e.g., [13]–[17]). Alternatively, deformable
models using parametric intensity models have been suggested
(e.g., [28]–[30]). In comparison to contour-based models, more
image information is taken into account to improve the robust-
ness and accuracy of the segmentation result.

Concerning the segmentation of the aorta, model-based ap-
proaches have been proposed for abdominal aortic aneurysms
(AAA, e.g., [15], [18]–[20], [22]), i.e., the lower part of the
aorta, which is more or less straight, for example, to quan-
tify the lumen and thrombus. Yim et al. [15] use a deformable
cylindrical surface mesh model to segment the abdominal aorta
in contrast-enhanced 3-D MR angiography (MRA) data. The
approach exploits the image gradient to attract the deformable
model to vessel contours. de Bruijne et al. [18] describe an inter-
active vessel segmentation scheme using an active shape model
for 2-D cross sections in 3-D CTA images. The shape model has
been trained using manual segmentations of AAA. To segment
the contour of an AAA gradient information and grey levels
near the contour are used. Chen and Amini [19] use a trian-
gulated surface model in conjunction with level sets for vessel
segmentation in 3-D MRA images. In addition, Hessian-based
vessel enhancement is used as a preprocessing step. Olabarriaga
et al. [20] present an approach based on active appearance mod-
els for the segmentation of AAA in 3-D CTA images. Grey-level
image information is taken into account by sampling along sur-
face normals of the shape model. Egger et al. [22] use region-
growing and an active contour model for the segmentation of
the abdominal aorta in 3-D CTA images. To attract the contour
model to the vessel contour, the approach exploits the gradient
of a distance transform, which is initialized using the result of
region-growing. However, we are not aware of a model-based
approach, which has been used to quantify the morphology of
the aortic arch for preoperative planning of TEVAR using grafts.

In this contribution, we introduce a new model-based ap-
proach for the quantification of the morphology of the aortic
arch in 3-D CTA datasets for TEVAR (for a preliminary version
of this work, see [31]). Our approach is based on a 3-D analytic
intensity model, which is directly fitted to the image intensities
within 3-D regions-of-interest (ROIs). Fitting results include the
local vessel radius and contrast as well as 3-D positions and 3-D
orientations along the centerline. In contrast to previous work,
we also compute the (local) 3-D vessel curvature and torsion as
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Fig. 4. (Left) 3-D intensity plot of a 2-D section of a 3-D CTA dataset showing
the thoracic aorta as well as (right) a 2-D section of a generated 3-D image using
the new cylindrical intensity model.

well as the relevant lengths not only along the 3-D centerline, but
particularly along the inner and outer contour. This is important
for preoperative planning in TEVAR applications. In compar-
ison to previous contour-based deformable models (e.g., [15],
[18]–[20], [22]) much more image information is taken into
account to improve the robustness and accuracy of the segmen-
tation result. In fact, the new model represents both the 3-D
shape and the 3-D intensity structure of vessels. Moreover, in
contrast to previous approaches based on intensity models, our
model is particularly suited for vessels of large widths, such as
the aorta (e.g., in contrast to [28], [29], where Gaussian models
have been used in different applications), and it is computa-
tionally more efficient than the model in [30]. In addition, we
introduce a two-step refinement procedure to improve the ro-
bustness and accuracy of model fitting by using different sizes
of the ROI.

This paper is organized as follows. In the following section,
we describe our model-based approach. We first present the 3-D
intensity model (Section II-A), and then, describe the segmenta-
tion and quantification based on model fitting (Section II-B) and
the quantification of the aortic arch morphology (Section II-C).
We then present experimental results using 3-D synthetic
(Section III-A) and 3-D MR phantom images (Section III-B).
In Section III-C, experimental results using 3-D CTA datasets
are reported, which are compared in Section III-D with ground
truth provided by a radiologist, as well as with results using a
commercial vascular analysis software. Finally, we give a con-
clusion in Section IV.

II. MODEL-BASED QUANTIFICATION OF THE AORTIC ARCH

A. 3-D Intensity Model for Thick Vessels

To quantify the morphology of the aortic arch, we have devel-
oped a 3-D analytic intensity model. This 3-D model represents
the shape as well as the image intensities of the aortic arch within
a 3-D ROI. The model consists of an ideal sharp 3-D cylinder
convolved with a 3-D Gaussian to incorporate the blurring ef-
fect of the image formation process. This cylindrical model
comprises parameters for the width of the tubular structure (ra-
dius R) and the image blur σ, and is well suited to model tubular
structures of different widths, in particular, it allows to represent
the plateau-like intensity structure of thick vessels, such as the
aorta [e.g., see Fig. 4 (left)]. Note that the exact solution of a

Gaussian smoothed cylinder cannot be expressed analytically
and thus is computationally expensive.

In [30], an approximation of a Gaussian smoothed cylinder
has been introduced, which uses two different approximations
based on a Gaussian function and a Gaussian error function
for thin and thick cylinders, respectively, and which employs
blending functions to smoothly switch between both approxi-
mations. However, the application here concerns the segmenta-
tion of the aorta, which has a large width. Therefore, we here
use a different approximation, which is particularly suited for
thick cylinders. This 3-D approximation is based on a 2-D ap-
proximation [32] of a Gaussian smoothed large disk using the
Gaussian error function Φ(x) =

∫ x

−∞ (2π)−1/2 e−ξ 2 /2 dξ, and
is defined as follows:

gCylinder′ (x, R, σ) = Φ
(

c2 − 1
c1

+ c1

)
(1)

where

c1 =
2
3

σ

√
σ2 + r2

2σ2 + r2 and c2 =
(

R2

2σ2 + r2

)1/3

(2)

using x = (x, y, z)T and r =
√

x2 + y2 . In comparison to the
approximation in [30], the computation of (1) is about two times
faster. The main reason is that the Gaussian error function,
which computationally is the most expensive operation, needs
to be evaluated only once for each voxel in (1), whereas for
the approximation in [30], the Gaussian error function has to be
computed twice.

Based on (1), the complete 3-D intensity model is con-
structed by incorporating intensity levels a0 (surrounding tis-
sue) and a1 (vessel) as well as a 3-D rigid transform R
with rotation parameters α = (α, β, γ)T and translation pa-
rameters x0 = (x0 , y0 , z0)

T . This results in the 3-D para-
metric intensity model with a total of ten parameters p =
(R, a0 , a1 , σ, α, β, γ, x0 , y0 , z0)

T

gM ,Cylinder (x,p)

= a0 + (a1 − a0) gCylinder′ (R (x,α,x0) , R, σ) . (3)

For example, Fig. 4 shows a 3-D intensity plot of a 2-D section
of a 3-D CTA dataset of the thoracic aorta (left) as well as a
2-D section of a generated 3-D image using the new cylindrical
intensity model (right). It can be seen that the new model very
well represents the plateau-like intensity structure of the aorta
in the original data.

B. Segmentation and Quantification of the Aortic Arch

To segment the aortic arch, we utilize an incremental (seg-
mentwise) process, which starts from a given point D at the
descending aorta and proceeds along the aorta until it reaches a
given point A at the ascending aorta (see Fig. 5). In each incre-
ment, the parameters of a cylinder segment are determined by
fitting the cylindrical model gM,Cylinder to the image intensities
g(x) within a 3-D ROI, thus minimizing∑

x∈ROI

(gM,Cylinder(x,p) − g(x))2 . (4)
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Fig. 5. 2-D section of a 3-D CTA dataset showing the aortic arch with sketched
centerline, marked points A and D, and points 1, 2, and 3 distal to the supra
aortic branches.

For minimization, we apply the method of Levenberg–
Marquardt (e.g., [33]), incorporating first-order partial deriva-
tives of the cylindrical model with respect to the model pa-
rameters. The partial derivatives have been derived analytically.
Initial parameters for the fitting process are determined from the
estimated parameters of the previous segment using a Kalman
filter (e.g., [34]), i.e., the incremental scheme adjusts for varying
thickness and changing direction. Note that in our case both the
3-D vessel shape and the 3-D centerline including its 3-D orien-
tation are determined simultaneously by model fitting. In con-
trast, in previous approaches often a subsequent skeletonization
step is required to compute the centerline, and the orientation of
the centerline is often determined approximately based on the
computed skeleton, or not computed at all.

To increase the robustness and accuracy of model fitting, we
here apply a two-step refinement procedure. In the first step, the
aorta is segmented as described earlier using a relatively large
size of the 3-D ROI, i.e., more image information is included
to robustly estimate the position x0 and orientation parameters
α defining the centerline. The size and shape of the 3-D ROI
are automatically adapted to the local shape of the aorta based
on the fitting results (i.e., the estimated radius and orientation).
In the second step, the estimates for the remaining parameters,
such as the radius are refined by applying the model to the
same cylinder segment again (using the estimated parameters
from the first step as initial parameters), but using a smaller
size of the ROI in the direction of the centerline to increase the
accuracy. Note that both steps use the original image data, i.e.,
in comparison to multiscale approaches different image scales
and image smoothing are not required.

Prior to model fitting, we perform two preprocessing steps.
First, to achieve isotropic image data an interpolation based on
cubic polynomials [35] is applied. Second, the image intensities
are clipped. The reason is that with our model we assume one

Fig. 6. 3-D segmentation result of the aortic arch overlayed with two orthog-
onal 2-D sections of the original 3-D CTA dataset.

intensity level a0 for the surrounding tissue within the 3-D ROI.
However, the aortic arch is located close to the air-filled lung (see
Fig. 5), which has quite different intensity values (≈−800 HU)
compared to the surrounding tissue of the aorta (≈0 HU). Thus,
intensity values below 0 HU are set to 0 HU.

C. Quantification of the Aortic Arch Morphology

By applying our approach described earlier, we obtain esti-
mates for the model parameters p for each vessel segment. In
particular, based on the estimated radius R, position x0 , and
orientation α, we yield a 3-D description of the shape of the
aortic arch. For example, Fig. 6 shows the computed 3-D shape
of the aortic arch overlayed with two orthogonal sections of the
original 3-D image data.

In addition to the estimated positions x0,k along the center-
line, the centerline can also be characterized by its curvature
and torsion; whereas, the curvature measures the bending of the
centerline, the torsion describes how sharply it is twisting. To
compute the (local) 3-D curvature κ and torsion τ of the center-
line of the aortic arch, we apply a least-squares approach using
3-D parametric curves pk (t) = (px,k (t), py ,k (t), pz ,k (t))T de-
fined by the parameter t, which are locally fitted to a range of
centerline positions xk−r , . . . ,xk , . . . ,xk+r . In our case, we
use cubic polynomials pk (t) = c3t

3 + c2t
2 + c1t + c0 for the

x-, y-, and z-components of the curve, and for the range, we use
r = 7. By fitting the parametric curve pk (t) to the centerline
points within a local range, we obtain estimates for the coeffi-
cients c0 , c1 , c2 , and c3 for all three components of the curve.
For the kth position of the centerline, the curvature and torsion
can then be computed by (e.g., [36], [37])

κk =
|p′

k × p′′
k |

|p′
k |

3 and τk =
|p′

k (p′′
k × p′′′

k )|
|p′

k × p′′
k |

2 (5)

where p′
k , p′′

k , and p′′′
k denote first-, second-, and third-order

derivatives of pk(t) with respect to t, respectively. The deriva-
tives can be directly computed from the fitted cubic polynomials,
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Fig. 7. Sketch of a curved aortic arch (left) showing the radius R, the radius
of curvature Rκ , as well as the corresponding lengths li , lc , and lo along the
inner contour, the centerline, and the outer contour, respectively. The diagram
(right) shows the absolute difference between the length of the centerline and
the inner/outer contour as a function of Rκ for R = 15 mm and l = 10 mm.

for example, the first-, second-, and third-order derivatives of
the x-component are given by p′x,k (t) = 3 c3t

2 + 2 c2t + c1 ,
p′′x,k (t) = 6 c3t + 2 c2 , and p′′′x,k (t) = 6 c3 . The derivatives for
the y- and z-components can be computed analogously. For a
given curvature κ, the radius of curvature Rκ is computed by
Rκ = κ−1 .

To visualize the segmentation results within a 2-D figure and
to compute the lengths along the inner and outer contour of
the curved aortic arch, we project the segmentation results onto
a plane. In our case, this plane is specified by the centerline
points A and D as well as the most anterior (highest) point
along the centerline. For example, Fig. 10 shows the projected
plane and the centerline (dashed), the inner and outer contour
(white), as well as the points A, 1, 2, 3, and D, where the
points 1, 2, and 3 are distal to the three supra aortic branches. In
addition, at several positions along the centerline, the estimated
diameters are visualized by lines. Note that for the curved arch,
the lengths along the contour, in general, significantly deviate
from the corresponding length along the centerline. To illustrate
this, Fig. 7 (left) shows a sketch of a curved aortic arch with
two branching vessels. For a radius R of the aorta, a radius of
curvature Rκ , and a certain length lc along the centerline, the
lengths li and lo along the inner and outer contour, respectively,
compute to

li = lc − lc
R

Rκ
and lo = lc + lc

R

Rκ
(6)

i.e., the absolute difference between the lengths along the con-
tour and the centerline is given by e(R,Rκ, lc) = lc − li =
lo − lc = lc(R/Rκ ). For example, for a typical radius of the tho-
racic aorta of R = 15 mm, a radius of curvature Rκ = 55 mm,
and a length lc = 10 mm, the lengths along the inner and outer
contour are li ≈ 7.3 mm and lo ≈ 12.7 mm, respectively, i.e.,
the difference is about e ≈ 2.7 mm. Fig. 7 (right) shows the
difference e as a function of the radius of curvature Rκ for
R = 15 mm and lc = 10 mm. It can be seen that for small cur-
vatures (large values of Rκ ), the difference is about e ≈ 1 mm
(10%), while for larger curvatures, the difference can reach
e ≈ 5 mm (50%) for realistic values of the parameters.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results of applying
our 3-D segmentation and quantification approach. First, seg-

Fig. 8. 2-D cross sections (top) and 3-D segmentation results (bottom) of 3-D
synthetic tori of different radii of curvature Rκ = 20 vox (left), Rκ = 50 vox
(middle), and Rκ = 100 vox (right) using R = 15 vox, σ = 1 vox, as well as
a contrast of a = 100 and additional Gaussian noise (σn = 20).

mentation results are shown for 3-D synthetic images of curved
tubular structures and for a 3-D MR image of a tubular phan-
tom. Moreover, we have applied the new approach to segment
ten 3D CTA datasets of the human thorax comprising the aor-
tic arch. The results are compared with ground truth provided
by a radiologist as well as with a commercial vascular analysis
software

A. 3-D Synthetic Images

To analyze the performance of the new approach, we have
generated different 3-D synthetic images containing curved
tubular structures using Gaussian smoothed tori with different
parameter settings. The images comprise also different levels of
additive Gaussian noise. For example, we have generated 3-D
images of smoothed tori using nine different radii of curvature
Rκ = 20, 30, . . . , 100 vox (distance from the centerpoint of the
torus to the centerline position of the ring), thus representing cur-
vatures of κ = 0.05, . . . , 0.01 vox−1 , as well as using a radius
of R = 15 vox and Gaussian smoothing with standard deviation
σ = 1 vox (vox denotes the spatial unit in 3-D, i.e., one voxel
is a cube with a size of one vox in each dimension). The im-
age contrast was set to a = 100 and the standard deviation of
the added Gaussian noise to σn = 20. Fig. 8 (top) shows 2-D
cross sections for Rκ = 20 vox (left), Rκ = 50 vox (middle),
and Rκ = 100 vox (right). Note that very large curvatures, such
as Rκ = 20 vox are anatomically not realistic for the thoracic
aorta, however, we have included them to explore the limits of
the proposed approach.

In all 3-D images of the tori, the segmentation and quantifi-
cation was successful. For example, Fig. 8 (bottom) shows the
computed 3-D shapes for three tori overlayed with one section
of the original 3-D image data (top). Moreover, the results for
the estimated radius R, radius of curvature Rκ , and curvature κ
for nine tori with varying curvature are summarized in Table I.
We have computed the mean error ē and the maximal error
emax over all segments of the tori as determined by the incre-
mental segmentation scheme (between 183 and 695 segments
in this experiment). It turns out that the radius R was quite well
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TABLE I
SUMMARY OF 3-D SEGMENTATION RESULTS FOR NINE TORI WITH VARYING

CURVATURE: MEAN ERROR ē AND MAXIMAL ERROR em ax OF THE ESTIMATED

RADIUS (IN VOX), RADIUS OF CURVATURE (IN VOX), AND CURVATURE (IN

VOX−1 ), COMPUTED OVER ALL SEGMENTS OF THE TORI

estimated with a maximal error of emax,R = 0.41 vox over all
nine tori, which is well in the subvoxel range. Excluding the
tori with the highest curvature, the error is much smaller with
emax,R ≤ 0.07 vox for Rκ ≥ 50 vox. For the radius of curvature
Rκ , the mean error ēRκ

and the maximal error emax,Rκ
are well

below 2.5% and 5% compared to the correct value, respectively,
except for the case of the very high curvature Rκ = 20 vox (cf.,
Fig. 8, left). However, even in this case, the obtained maximal
error is only emax,Rκ

= 1.5 vox, which is still a relatively good
result. Note that the errors ēRκ

and emax,Rκ
are slightly increas-

ing for larger radii of curvature Rκ ≥ 70. The reason is that
with increasing Rκ , the torus is locally less curved, which natu-
rally makes it more difficult to estimate Rκ with high accuracy
(note that the presented errors are absolute values). However,
the relative errors with respect to Rκ are not affected. The
results for the mean ēκ and the maximal error emax,κ of the
curvature κ in Table I are analogous to those of the radius of
curvature Rκ .

B. 3-D MR Phantom Image

To further validate our approach, we created a 3-D MR im-
age of a tubular phantom. The tubular phantom is made of
acrylic glass and has a length of about 160 mm and an in-
ner radius of Ri = 15.50 mm. The tubular phantom was filled
with a gadolinium-based contrast agent (gadopentetate dimeg-
lumine (Gd-DTPA), Schering, Berlin, Germany) and Iomeprol
(400 mg I/ml, Bracco–Altana Pharma, Konstanz, Germany),
and was scanned with a standard clinical 1.5 T whole-body sys-
tem (Avanto, Siemens). The resulting 3-D phantom image has
a size of 512 × 512 × 80 voxels with an isotropic resolution of
0.78 mm. Fig. 9 (left) shows a 2-D longitudinal section of the
tubular phantom.

The results of applying our approach to segment the 3-D MR
phantom image are presented in Table II. The table shows the
estimated radius R̂ and the error eR = |R̂ − Ri | for ten cross
sections. The mean error is ēR = 0.46 mm, which is about half
of the image resolution. Fig. 9 (center) shows the 3-D segmen-
tation result overlayed with two orthogonal 2-D sections of the
MR image. Moreover, Fig. 9 (right) shows one 2-D cross sec-
tion overlayed with the segmentation result, where the contour

Fig. 9. 3-D MR image of a tubular phantom. (Left) 2-D longitudinal section.
(Center) 3-D segmentation result. (Right) 2-D cross section overlayed with
segmentation result.

TABLE II
3-D SEGMENTATION RESULTS FOR A 3-D MR IMAGE OF A TUBULAR

PHANTOM: ESTIMATED RADIUS R̂ AND ERROR eR OF THE ESTIMATED RADIUS

AS WELL AS ERROR epos OF THE ESTIMATED POSITION OF THE CENTERLINE

(ALL IN MM) FOR TEN DIFFERENT SECTIONS OF THE TUBULAR PHANTOM

as well as the diameter and position of the centerline (intersec-
tion point of the two lines) are highlighted. It can be seen that
the tubular phantom has been segmented quite well.

In addition, we investigated the accuracy of the estimated
position of the centerline. Ground truth was determined by a
radiologist, who interactively determined the position of the
centerline for ten cross sections. The error epos of the estimated
position of the centerline is shown in Table II. The mean error
is ēpos = 0.27 mm, which is also well below image resolution
and is about a factor of two smaller than the mean error for the
radius.

C. 3-D CTA Datasets

We also applied our model-based approach to quantify the
morphology of the aortic arch in ten 3-D multislice CTA
datasets. The patients were scanned with a 16-slice CT scan-
ner (Aquilion 16, Toshiba, Japan) using an iodinated contrast
medium (Iomeprol, 400 mg I/ml). The 3-D images comprise 619
to 829 slices with a slice spacing of 0.8 mm. Each slice consists
of 512 × 512 voxels and has a within-slice resolution between
0.512 and 0.625 mm. For each 3-D image, we specified a point
D at the descending aorta as a starting point for segmentation as
well as a point A at the ascending aorta as end point (see Fig. 5).
In all ten 3-D images, the segmentation and quantification of the
aortic arch was successful. As an example, Fig. 6 displays the
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Fig. 10. Projected 2-D plane showing the aortic arch of the first 3-D CTA
dataset, where the centerline (dashed), the inner and outer contour (white),
the points A, 1, 2, 3, and D, as well as several estimated diameters are
marked.

Fig. 11. Picture shows a graft, which has been aligned in accordance with the
segmented shape of the aortic arch shown in Fig. 10.

computed 3-D shape for the aortic arch of the first 3-D image. In
addition, Fig. 10 shows the 2-D projection of the segmentation
result, where the points A, 1, 2, 3, and D at the centerline as
well as the inner and outer contour are marked. To illustrate the
application of the segmentation results for preoperative plan-
ning of TEVAR using a graft, Fig. 11 shows a picture of a graft,
which has been aligned in accordance with the segmented shape
of the aortic arch (see Fig. 10).

Two-dimensional projections of the segmentation result for
the second up to tenth 3-D image are displayed in Fig. 12 (from
top-left to bottom-right). Moreover, Table III lists for the first
3-D image the estimated radius of the aorta, radius of curvature,
and torsion at the points A, 1, 2, 3, and D, as well as lengths
between these points along the inner and outer contour and along
the centerline. It can be seen that the lengths along the inner and
outer contour significantly differ from the corresponding lengths
along the centerline.

The computation time for segmenting the aortic arch is about
40 s for the first step and 20 s for the second step (on a PC with
Intel Core2 Quad CPU (2.4 GHz) running Linux).

TABLE III
ESTIMATED RADIUS OF THE AORTA, RADIUS OF CURVATURE, AND TORSION AT

THE POINTS A, 1, 2, 3, AND D AS WELL AS LENGTHS BETWEEN THESE POINTS

ALONG THE INNER AND OUTER CONTOUR AS WELL AS ALONG THE

CENTERLINE FOR THE FIRST 3-D CTA DATASET

D. 3-D CTA Datasets: Validation Based on Ground Truth

To validate our approach in the case of the 3-D CTA datasets,
we compared the experimental results with ground truth, which
was manually obtained by a radiologist performing measure-
ments on multiplanar reformations. In addition, the results were
compared with the results obtained using a dedicated worksta-
tion with a commercial vascular analysis software as well as with
the results of a region-growing approach. For the aortic arch of
the first 3-D image (see Fig. 10), the radiologist manually esti-
mated the radius of the aortic arch in steps of 2 mm along the cen-
terline yielding 70 measurements. Fig. 13 shows the estimated
radius of the aortic arch for the new approach (bold) and the seg-
mentation results of the radiologist (small grey squares and grey
line) as well as for the commercial software (dashed). It turns
out that our approach yields a much better result with respect
to the ground truth than the commercial software. The maximal
difference of the estimated radius between our approach and
that of the radiologist is emax,R = 1.02 mm for all 70 measured
radii, the mean error is ēR = 0.34 mm, which is well below
image resolution, and the standard deviation is σR = 0.26 mm.
In contrast, the commercial software yields a maximal error
of emax,R = 3.26 mm, a mean error of ēR = 0.44 mm, and a
standard deviation of σR = 0.53 mm. In particular, the commer-
cial software has problems at the three supra aortic branches,
where the radius has been overestimated (dashed), see the left
side of the vertical lines 1, 2, and 3 (see Fig. 13). In contrast,
using our approach, the estimated radius is hardly affected by
the supra aortic branches, and thus, yields more accurate seg-
mentation results. Furthermore, the region-growing approach
yields a maximal error of emax,R = 2.83 mm, a mean error of
ēR = 1.23 mm, and a standard deviation of σR = 0.46 mm.
The larger maximal error is explained by the fact that region-
growing leaks into the supra aortic branches. By manually
correcting the results at the branches, the results improve
(emax,R = 1.96 mm, ēR = 1.17 mm, and σR = 0.42 mm), how-
ever, the results are still significantly worse compared to our
approach.

Moreover, for all ten 3-D datasets, we have compared the
estimated radius of the aorta using our approach with the radius
determined by the radiologist at the 3-D points A, 1, 2, 3, and
D. It turned out that the results of our approach well agree with
the ground truth with a maximal error over all points in all 3-D
images of emax,R = 1.31 mm, a mean error of ēR = 0.38 mm,
and a standard deviation of σR = 0.31 mm.
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Fig. 12. Same as Fig. 10 for the second to tenth 3-D CTA datasets (from top-left to bottom-right).

Fig. 13. Diagram shows the estimated radius (in millimeters) of the aortic arch
for the new approach (bold), the segmentation results of a radiologist (grey),
and the result of the commercial software (dashed).

IV. CONCLUSION

We introduced a new model-based approach for the segmen-
tation and quantification of the morphology of the aortic arch in

3-D CTA datasets for TEVAR. The approach is based on a 3-D
analytic intensity model, which is particularly suited for ves-
sels of large widths. This model is directly fitted to the image
intensities to estimate the model parameters. To increase the ro-
bustness and accuracy of model fitting, we suggested a two-step
refinement procedure, which uses a larger size of the 3-D ROI
in the first step to estimate the position and orientation of the
centerline and which uses a smaller ROI size in the second step
to accurately estimate the radius. Based on the fitting results, we
directly compute the (local) 3-D vessel curvature and torsion as
well as the relevant lengths along the 3-D centerline and along
the inner and outer contour, which are important parameters to
assess if and how TEVAR can be applied.

We have validated our approach based on 3-D synthetic im-
ages of curved tubular structures as well as using a 3-D MR
image of a tubular phantom. The experiments demonstrated that
the approach allows to quantify the radius and curvature as well
as the position of the centerline highly accurately. In particular,
the errors of the estimated radius and position of the centerline
are well below image resolution. Moreover, we have success-
fully applied our approach using ten 3-D CTA datasets and have
compared the results with ground truth obtained by a radiolo-
gist. It turned out that the new approach accurately estimates the
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radius of the aortic arch. Finally, we quantitatively compared our
approach with a commercial vascular analysis software as well
as with a region-growing approach. The comparison showed
that our approach yields superior segmentation results.

Using the proposed model-based approach, it is possible to
quantify relevant morphological parameters of the aortic arch,
which are important for preoperative planning in TEVAR ap-
plications. Future work involves the use of these parameters to
preoperatively choose a suitable EVG for an individual patient,
for example, based on geometric simulations.
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Gefässchirurgie, vol. 14, pp. 219–229, 2009.

[4] R. Greenberg, J. Secor, and T. Painter, “Computed tomography assessment
of thoracic aortic pathology,” Semin. Vasc. Surg., vol. 17, no. 2, pp. 166–
172, 2004.

[5] M. Lell, K. Anders, M. Uder, E. Klotz, H. Ditt, F. Vega-Higuera,
T. Boskamp, W. Bautz, and B. Tomandl, “New techniques in CT an-
giography,” RadioGraphics, vol. 26, pp. 45–62, 2006.
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