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Cells Segmentation From 3-D Confocal Images of
Early Zebrafish Embryogenesis

Cecilia Zanella, Matteo Campana, Barbara Rizzi, Camilo Melani, Gonzalo Sanguinetti, Paul Bourgine,
Karol Mikula, Nadine Peyriéras, and Alessandro Sarti

Abstract—We designed a strategy for extracting the shapes of
cell membranes and nuclei from time lapse confocal images taken
throughout early zebrafish embryogenesis using a partial-differen-
tial-equation-based segmentation. This segmentation step is a pre-
requisite for an accurate quantitative analysis of cell morphody-
namics during embryogenesis and it is the basis for an integrated
understanding of biological processes. The segmentation of embry-
onic cells requires live zebrafish embryos fluorescently labeled to
highlight sub-cellular structures and designing specific algorithms
by adapting classical methods to image features. Our strategy in-
cludes the following steps: the signal-to-noise ratio is first improved
by an edge-preserving filtering, then the cell shape is reconstructed
applying a fully automated algorithm based on a generalized ver-
sion of the Subjective Surfaces technique. Finally we present a pro-
cedure for the algorithm validation either from the accuracy and
the robustness perspective.

Index Terms—Bioimaging, confocal imaging, image processing,
segmentation, subjective surfaces.

I. INTRODUCTION

HE 3-D reconstruction of cellular shape is a crucial task
for reaching an integrated understanding of biological
processes leading to organism formation. Providing automated
procedures for reconstructing the shape of all the cells of a

Manuscript received March 16, 2009; revised September 01, 2009. First pub-
lished October 06, 2009; current version published February 18, 2010. This
work was supported in part by the European projects Embryomicsv (NEST Ad-
venture no. 12916), in part by the BioEmergences (NEST Pathfinder Measuring
the Impossible no. 28892), and in part by the Computer Vision Foundations and
Applications (Alfa I1-0366-FA). The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Peyman Milanfar.

C. Zanella, M. Campana, B. Rizzi, and A. Sarti are with DEIS, Bologna
University, 40136 Bologna, Italy (e-mail: cecilia.zanella2@unibo.it;
m.campana@unibo.it; barbara.rizzi @unibo.it; alessandro.sarti @unibo.it).

C. Melani is with the Facultad de Ciencias Exactas y Naturales, Buenos Aires
University, C1428EGA Buenos Aires, Argentina, and also with DEIS, Bologna
University, 40136 Bologna, Italy (e-mail: camilo@dc.uba.ar).

G. Sanguinetti is with the Instituto de Ingenierfa Eléctrica, Universidad de la
Republica, 11300 Montevideo, Uruguay, and also with DEIS, Bologna Univer-
sity, 40136 Bologna, Italy (e-mail: gsangui@fing.edu.uy).}

P. Bourgine is with the Centre de Recherche en Epistémologie Appliquée,
CNRS,Ecole Polytechnique, 75005 Paris, France (e-mail: bourgine @shs.poly-
technique.fr).

K. Mikula is with the Department of Mathematics, Slovak University of Tech-
nology, 81368 Bratislava, Slovak Republic (e-mail: mikula@vox.svf.stuba.sk).

N. Peyriéras is with the CNRS-DEPSN, Institut de Neurobiologie Alfred Fes-
sard, 91198 Gif sur Yvette, France (e-mail: nadine.peyrieras @iaf.cnrs-gif.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

This paper has supplementary PDF material available at http://ieeexplore.
ieee.org, provided by the authors. The material is 7.4 MB in file size. The supple-
mentary material contains one multimedia AVI format movie clip, which shows
the surface evolution throughout the segmentation process, and a ZIP format
archive, which includes the algorithm code that can be interactively used to seg-
ment confocal images.

Digital Object Identifier 10.1109/TTP.2009.2033629

living vertebrate embryo is far beyond the current state of art.
Achieving such a goal would readily provide measurements
for a large number of biological features including cell shape
changes and deformation characteristic for cell differentiation
and tissue morphogenesis. Cell shape segmentation is also
essential to track cell divisions and help reconstructing the
cell lineage tree and from that extract the cell proliferation
rate in space and time. This kind of data is highly relevant to
investigate stem cell populations, early steps of cancerogenesis
and drug effects in vivo. Furthermore, the reconstruction of the
cellular shape will provide relevant parameters to measure the
variability between different individuals of the same species,
opening the way for understanding the individual susceptibility
to genetic diseases or response to treatments. In this context, our
aim is to design an algorithm achieving an automated segmen-
tation of nuclei and membranes from 3-D time-lapse imaging
of live embryos engineered to express fluorescent markers.
Although interactive methods have better performances (in
terms of the percentage of objects correctly segmented), we
expected to avoid the need for any manual intervention that
becomes unrealistic when manipulating millions of objects.
The segmentation technique has to be chosen according to
the data features. Typically, 3-D images for living organism
provide incomplete information such as objects with missing
boundaries and the segmentation technique should deal with
that. Many algorithms for the shape reconstruction have been
developed by researchers worldwide, and exist almost as many
segmentation methods as there are segmentation problems. The
2-D and 3-D automatic or semi-automatic nuclei segmentation
has been covered in a number of previous works [1]-[10]. In
a recent work, Padfield er al. [11] describe a set of methods
designed to automatically segment nuclei in 2-D time-lapse
images. The methods, based on level set segmentation, have
been used to effectively extract the nuclear tracks and generate
a schematic representation of cell cycle phases. An alternative
strategy for identifying cell trajectories and studying the vari-
ation of cell shape has been recently proposed by [12]. The
algorithm performs cell segmentation and tracking using tex-
ture-adaptative snakes and has been tested on both normal and
autophagy cell image sequences. All the developed algorithms
have proved to be very useful for nuclei segmentation, however,
the reconstruction of the whole cell using membrane protein
markers is almost an unexplored area. In a previous work by
Sarti et al. [10] confocal microscopy images were processed to
extract the shape of nuclei. However, in that case, the analyzed
volumes were not acquired from a living organism but from
pieces of fixed tissues. On the contrary, the analysis of biolog-
ical processes during embryogenesis means analyzing the cells
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Fig. 1. Flowchart depicting the sequence of steps we undertook for nuclei and membranes segmentation.

within their natural environment, i.e., in a living embryo. In
that case, segmentation has to proceed from sequences of 3-D
data whose quality is much more difficult to handle. In a recent
work Keller ez al. [1] developed digital scanned laser light sheet
fluorescence microscopy for recording position and movements
of zebrafish cell nuclei throughout the first 24 h of embryonic
development. However, the reconstruction procedure does not
deal with membranes image acquisition and shape reconstruc-
tion. Ortiz et al. [13] presented a segmentation algorithm based
on gradient-curvature driven flow, which is suitable for whole
cell segmentation. They measured the robustness against noise
and resistance to surface discontinuities on synthetic images
and demonstrated the suitability of the method on real cell
images. However, as they discussed, the resistance to surface
discontinuities is strictly dependent on a parameter introduced
in curvature term that determines the strength of the regular-
ization. This pose a trade-off choice between surface accuracy
and missing boundaries filling that should be solved by the
user. Here we present a method to segment a large number
of cells from 3-D images characterized by non homogeneous
intensity and gradient signal and capable to complete surface
discontinuities without any compromise between precision and
ability to integrate the incomplete contours. The segmentation
method we propose in this work is a generalized version of the
Subjective Surfaces technique [14], [16]: It is distinguishable
from the classic formulation by the different weights applied
on the two flows constituting the motion equation (curvature
and advection). In addition, two different dynamics constitute
the same segmentation process: By acting on the matching of
level curves, we control the evolutive behavior in order to make
it first mostly diffusive then a level set motion. In the biological
application we deal with, these strategies are fundamental for
reaching satisfactory results, as preliminarily shown in [17].
Here, we expose more widely the same base concepts, but
including a study on the stability condition, an algorithm vali-
dation and an overview on future developments. The different
sections of this paper follow the steps undertaken to acquire
and analyze the 3-D confocal images (Fig. 1). In Section II,
we briefly explain the technique for image acquisition. In
Section III, we apply a filtering method for image denoising.
In Section IV we describe the segmentation algorithm. Results
are provided and discussed in Section V. Finally, in Section VI,
we propose a strategy for the algorithm validation reporting its
accuracy and robustness performances.

II. IMAGE ACQUISITION

A. In Vivo Imaging Technique

In vivo imaging is becoming an increasingly powerful tool
for the analysis of morphodynamical patterns in biology. Mi-
croscopic imaging, taking advantage of fluorescent proteins en-
gineering, is able to achieve a resolution at the sub cellular level
in a whole living organism, to analyze biological circuits dy-
namics and quantify molecular components. To obtain accu-
rate measurements of 3-D features at the cellular level in living
embryos, it is necessary to use an acquisition technique with
micrometrical resolution, able to reconstruct volumetric infor-
mation and with enough contrast to allow segmentation of in-
dividual cells. To fulfill these requirements, the analyzed im-
ages have been acquired by confocal microscopy (CLSM) or by
multiphoton laser scanning microscopy (MLSM) with the best
compromise in terms of spatial and temporal resolution [18].
LSM (laser scanning microscopy) converts the fluorescent ra-
diation coming from a point of the excited sample into a pro-
portional electrical signal. Repeating the scan for all the points
belonging to the focal plane, it is possible to reconstruct the
image of a sample section and, varying the depth of the plane,
an entire volume can be acquired. The acquisition repeated for
a temporal series turns a sequence of tridimensional data into
a 4-D data set. In order to produce high contrast images, the
specimen has been labeled through the expression of fluorescent
proteins: eGFP (enhanced Green Fluorescent Protein, targeted
to nuclei) and mCherry (a Red Fluorescent Protein, addressed
to the membranes). This procedure produces high contrast im-
ages containing high intensity regions, where a labeled structure
is acquired, versus low intensity background regions. The two
channels were acquired separately but simultaneously, as the
emission spectrum of the two proteins are sufficiently distinct.

B. Data

Our animal model is the zebrafish (Danio rerio). This is a ver-
tebrate that has been largely validated as a powerful model for
investigations related to human, including cancerogenesis and a
number of genetic diseases [19], and might become soon a major
model organism for preclinical drug testing by pharmaceutical
industries. A huge advantage of zebrafish is its suitability for in
vivo imaging: the embryos are transparent, small and they de-
velop outside the mother. This means that a zebrafish egg can
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Fig. 2. Acquired portion of the Zebrafish embryo: (a) start point about 3 h post
fertilization, (b) end point about 7 h post fertilization.

be continuously imaged throughout embryogenesis. The x, vy, z
size of the acquired images was 512 x 512 x 30 voxels. The axial
(z) resolution is around 2-fold less than the planar (xy) resolu-
tion, so the volumetric images are nonuniform in spacing: the
voxels size is 0.58 pm in x and y directions and 1.04 ym in
z. The overall volume submitted to optical sectioning is about
30 microns thick. The embryo has been imaged from 3 h post
fertilization, the time lapse goes on for a period of time 7" of 4 h,
with a temporal resolution AT of about 5 minutes. As the mor-
phogenesis is slowed down by the temperature (about 23°C), by
the end of the time lapse the embryo is just starting gastrulation
(6 h of development at 28°C) [20]. Fig. 2 shows the acquired
portion in the entire animal volume. The volume that has been
imaged encompasses part of the blastoderm (the embryonic cell
mass) and does not get into the yolk (the noncellular mass of
nutrients).

III. IMAGE DENOISING

The noise present in the image can disrupt the shape informa-
tion, therefore denoising is an essential preliminary task in im-
ages segmentation. Noise has different sources such as photon
noise, non homogeneous concentration of fluorescent proteins
in the labeled structures or the electronic noise from the instru-
ment. In order to accurately reconstruct the object shape, the de-
noising method has to improve the signal-to-noise ratio, faith-
fully preserving the position of the boundaries that define the
shape of the structures.

We then chose to filter the data with the so called geodesic
curvature filtering [10] which has been proved to be suitable for
this kind of dataset [21], [22].

Besides this, membranes segmentation requires an additional
preprocessing. Membranes images are corrupted by a weak nu-
clei signal, more intense during mitosis. This is due to over-
lapping between nuclei and membranes emission range during
acquisition. A preliminary thresholding of nuclei images sep-
arates the nuclei signal from the background, highlighting the
interfering signal that is then subtracted from the membranes
images. This simple procedure prevents a wrong interpretation
of the membranes edges deriving from the crosstalk between the
two fluorescent signals.
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Fig. 3. Details of filtering results (on the right) in comparison with the original
images (on the left) for membranes (a), (b) and nuclei (c), (d) xy slices. The noise
is greatly reduced and the image contrast is enhanced thanks to the intensity level
sets accumulation around the boundaries promoted by the geodesic curvature
technique. Gray level images with values O (black) and 255 (white).

IV. ALGORITHM FOR CELL SEGMENTATION

This section presents a detailed description of the steps under-
taken in our segmentation algorithm. We particularly focus on
membranes images, that are typically characterized by a low or
even absent signal, giving rise to incomplete contours. Missing
boundaries could be completed by using the Geodesic Active
Contour method [23], but the technique greatly depends on the
algorithm initialization: at the starting point, the reference level
has to be an approximation of the final contour. An interesting
solution, that does not require any a priori knowledge about
the edges topology, has been introduced in [9] and consists in
the use of a Malladi-Sethian approach [24]. Every membrane is
segmented using a level-set function initialized in its center and
then expanded by a balloon term. The missing boundaries are
completed by a manually chosen different weight between the
regularization and expansion term. Anyway, as we are dealing
with thousands of cells, the user intervention is, in our case, un-
feasible. Moreover, if the weight term is automatically chosen,
the method is often not able to correctly detect the membranes
boundaries. We propose to use a different technique, based on
the Subjective Surfaces [14], [16] model, in order to correctly re-
construct the shape of membranes without any manual interven-
tion. The Subjective Surfaces method has been introduced [14]
to segment objects characterized by a wide absence of informa-
tion on boundaries. Such peculiarity makes the model suitable
especially for this particular application. Besides, we would like
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Fig. 4. Details of (a) nuclei and (c) membranes original data and the edge indi-
cators obtained by applying the standard formulation of g, (b) and (d), respec-
tively; (e) is the alternative edge indicator defined in order to detect a single
contour in membranes images. Images (a), (c) with a color map from 0 (black)
to 255 (white) depicting original data intensity. In images (b), (d), and (e), colors
map values of the edge indicators from O (black) to 1 (white).

to point out that the Subjective Surfaces can be successfully ap-
plied also to nuclei segmentation, automatically solving prob-
lems related to nuclei sometimes clustered as the microscope
resolution is not able to distinguish them.

The proposed procedure requires two preliminary steps: a low
level image features extraction, illustrated in Section IV-A, and
the detection of cells position, presented in Section IV-B. The
section proceeds with a detailed description of the Subjective
Surfaces algorithm and is concluded by the numerical scheme
used for discretization.

A. Low Level Features Extraction: Edge Detector

The initial task of the segmentation strategy is to extract the
so-called low level image features. For such purpose a classic
solution is to consider an edge indicator ¢ = g(z,y,z), a
smooth nonincreasing function of the image gradient [25]

1
1+ (|VGo(2,y,2) * I(z,y,2)| /8)"

where G, (z,y, z) is a Gaussian kernel with standard deviation
o, * denotes the convolution, I = I(z,y, z) represents the fil-
tered imaged, and n is typically 1 or 2. The parameter o deter-
mines the minimal size of details that can be preserved, whereas
[ is related to the image contrast and acts as a scale factor by
which the image gray levels are mapped into the g function.
The value of g is close to 1 in flat areas (|VI| — 0) and
close to O in the regions where image gradient is high (i.e.,
edges). Thus, the minima of g denote the position of the edges
and its minus gradient is a force field that can be used to drive
the evolution, because it always points in the local edge direc-
tion. The analyzed signals (membranes versus nuclei) behave in
a completely different way in terms of edge detection: nuclei are
solid and well contrasted objects; membranes are hollow, with
a thickness of about 3 to 4 voxels and adjacent to each other.
In nuclei images, the contours to be segmented are located in
the regions where image gradient is higher and the minima of

9(w,y,2) = (1)
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Fig. 5. Example of application of the Hough transform on nuclei images:
(a) volume rendering representation of the nuclei channel (yellow) and the
accumulator array; (b) detected centers, a red sphere is rendered everywhere
the Hough transform recognizes a nucleus.

(1) denote the position of the edges [Fig. 4(b)]. On the contrary,
the function (1) reveals a double contour, on the internal and the
external side of cells [Fig. 4(d)]. These specific features require
using different functions for the detection of the edges in nuclei
and membranes images. In order to locate the minima of g in the
middle of membranes thickness, we propose an alternative edge
indicator, using the image itself (not its gradient) as a contours
detector. The edge indicator we propose is

1
L+ (1Go(2,y, 2) x I(w,y, 2) /B)"

as expected, its minima locate the contours in the middle of the
membranes thickness [Fig. 4(e)].

9(w,y,2) = ()

B. Selection of a Point of View: Cells Recognition and Location

The second step in the segmentation procedure consists in
finding a reference point located in the center of the object to
segment. Observing that nuclei are always surrounded by mem-
branes, we use the nuclear centers as starting points to seg-
ment both, nuclei and corresponding membranes. The nuclei
localization is achieved with the generalized 3-D Hough trans-
form [26] that allows detecting specific shapes within an image.
By approximating the nucleus as a spherical object, the Hough
Transform is able to recognize every nucleus and to provide its
center [27]. Before applying the Hough transform, the volumes
are transformed into an edge representation using the Canny
edge detection algorithm [28] which has mainly three advan-
tages that make it optimal as a preprocessing step of the Hough
transform: it is able to locate and mark all real edges, it mini-
mizes the distance between the detected edge and real edge and
it produces only one response per edge. A sphere with center
(20, Y0, 20) and radius r is the set of points (x,y,z) where
(x — 20)? + (y — y0)> + (2 — 29)> = r? and the parame-
ters space of the spheres with a fixed radius is a 3-D space de-
fined by (z0, Yo, 20). We also know that the center of a sphere
is located r units from the point (z,y, ) in the direction of the
image gradient in (x, y, z). The Hough transform accumulates in
a 3-D array the votes of the edge points of the image [Fig. 5(a)].
The coordinates of those votes represent the parameters of the
spheres that we are looking for. Therefore, coordinates with the
highest value are most likely representing the parameters of a
sphere in the image space and the center of each nucleus can be
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recognized detecting the local maxima in the accumulator array
[Fig. 5(b)]. To make the method more flexible, we consider a
range of values for the sphere radius [rmin, 7max] and a variation
of the gradient direction. Thus, for each edge point (x, y, z) the
sphere center is located in the neighborhood defined by the in-
terval [Fmin, Tmax| and by the angular sector along the gradient
direction.

C. Segmentation: Modified Version of the Subjective Surfaces
Technique

The method of Subjective Surfaces, as introduced in [16] and
then improved in [15], consists, in the 3-D case, in the volume
minimization of a 3-D manifold embedded in a 4-D Riemannian
space with a metric constructed on the image itself. Let us con-
sider the filtered image Z : (x,y,z) — I(z,y,z) as a real
positive function in some domain M C R? and its low level
local features given by the function g = g(z,y, z) defined in
Section IV-A. Such function is used to construct a Riemannian
metric h in R* that will be used as embedding for a 3-D hyper-
surface evolution

3)

S O o
o o O
o © O
~ O O O

g/a

starting from the center of object to be segmented (in our case
nucleus center, see Section IV-B), an initial function &, =
Do (x,y, z) is then constructed, in the image domain M, usually
as a distance or peak function. Let us define ® = ®(z, y, z,t) an
evolution of @, where ¢ represents a synthetic time known in lit-
erature as scale parameter. We point out that ®(z, y, z,0) = Py.
The graph of ® represents a 3-D manifold S = (z,y, z, ?) em-
bedded in (R*, h). ® is evolved afterward by a mean curvature
motion to minimize the volume of the hypersurface S through
the following motion equation:

o, = H)|VP|, 4

where
1

Hy=gH+ (Vg- V(I))W @)

represents the mean curvature of S in (R*, h) and
VOlo = Va+ [V (6)

can be seen as a regularization of |[V®| [29]. In (5) H still rep-
resents a mean curvature for S, but with a metric A in which the
edge detector g is equal to 1 [see (7), shown at the bottom of
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(b)

Fig. 6. Two-dimensional example of membrane segmentation in case of
missing boundaries. (a, from left to right) Original data, edge detector, seg-
mented contour, in red, superimposed to original data. (b, from left to right)
Evolution of the initial point-of-view surface and selection of a level set, red
line, for segmentation.

the page]. Subscripted denote shorthand notations for deriva-
tives, i.e., ®; = 0®/0t, ®, = O®/0w, Py = 0@/,
®,,, = 0>® /02y, and similarly for other spatial variables.
Let us now represent (4) in a more general formulation by
adding two different weights, ;» and v, to the first and second
term of the right side of (5). By considering boundaries and ini-
tial conditions, we can then write our model equation as follows:

b, = pgH|V®P|, +vVg-V&, in Mx]0,7|
®(x,y,z,t) = min(Dy), in 9M x]0, 7]
b(z,y,2,0) = Py, for (z,y,2z) € M

®)

where 7 is the value of scale parameter ¢ which corresponds to
the steady state condition for (8).

Our model equation can then be read as in the following.
The first term on the right side of (8) represents a mean cur-
vature flow, a parabolic motion that evolves the hypersurface in
normal direction with a velocity given by the mean curvature H
and weighted by the edge indicator g. The second term is a pure
passive advection along the velocity field —V g, whose direction
and strength depend on position. This term attracts the hypersur-
face in the direction of the image edges. Locally, different be-
haviors can be identified in the image regions according to one
of these flows. In the homogeneous regions g = 1 and Vg — 0;
therefore, (8) reduces to the mean curvature flow: inside the ob-
jects the hypersurface levels collapse in a point then disappear.
In regions where the edge information exists g — 0 and (8) re-
duces to a simple advection equation: The hypersurface levels
are driven towards the edges by the field —Vg, their accumu-
lation causes the increase of the spatial gradient and S starts
to generate discontinuities. In regions with subjective contours

(a+ @2+ 07) P.. + (a+ P2+ 2) By + (a+ P2+ 02) Dy,

2<I>I<I>z<1>zz +9,0,0,, +0,0.9,,

(a+<I>§+<I>§,+<I>§)3/2

@)
(a+®2 + @2 + o2)*/?
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(missing boundaries), continuation of existing edge fragments,
a is negligible and (8) can be approximated by a geodesic flow,
allowing the boundary completion with geodesics. The appli-
cation of these dynamics is clear in Fig. 6, showing the effect
of boundary completion in a membrane with a missing con-
tour. The use of different weights between the regularization
and the advective terms (v > p) facilitates the control of evolu-
tive process. Indeed, the segmentation, together with the missing
contours completion, is obtained through the shocks developed
by the hypersurface on object boundaries, while the hypersur-
face is simultaneously smoothed and flattened inside the object.
A higher weight of advective term ensures a better accumulation
of image gray levels around existing contours. The parameter
a introduced in the metric is a stretching factor and represents
a weight between two different dynamics. It indeed shifts the
model from the mean curvature flow of level sets (¢ = 0) to
the mean curvature flow of graph (¢ = 1). We will show in
Section V how we changed the a value in order to modify the
dynamics of motion equation and to improve the segmentation
of not perfectly centered objects.

D. Numerical Discretization

Concerning the numerical schemes for discretization, the par-
tial derivatives in (8) are approximated with finite differences
[14], [16], [30]. Time derivatives are discretized with first order
forward differences, the parabolic term with central differences
and the advective term with upwind schemes, where the direc-
tion of the one-sided difference used in a point depends on the
direction of the vector field v = —Vg in the same point. Let us
consider a uniform grid in space-time (z, y, z,t), then the grid
consists of the points (x;, y;, 2k, tn) = (iAx, JAy, kAz, nAt).
We denote by @7, the value of the function ® at the grid point
(24, Y5, 2k, tn ), DY giji the value of the edge indicator in the grid
point (z;,y;, z) and by v;;;, the value of the vector field v in
the same spatial grid point. The numerical approximation of (8)
is given by (9), shown at the bottom of the page, where D is a
finite difference operator on @7, . the superscripts {—1, 0, 1}
indicate backward, central, and forward differences and the su-
perscripts {z, y, z} indicate the direction of differentiation.
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(d) (e) ®

Fig. 7. Two-dimensional example of membrane segmentation in case of
missing boundaries. The point for the Surface initialization is chosen very close
to the boundaries but the membrane is correctly segmented thanks to the use of
different values for the parameter a during the Surface evolution. (a) Original
membrane. (b) Initial distance function ®, depicted in red, superimposed on
the original data. (c) Membrane segmentation, in red, superimposed on the
original data. (d) Original Surface S constructed as graph of ®. (e) The Surface
at the end of the first, diffusive, process (u = 1). (f) The Surface at the end of
the evolution, after a pure level set motion (@ = 107°).

V. RESULTS AND DISCUSSION

We applied our algorithm to time-lapse 3-D datasets depicting
zebrafish embryogenesis at cellular level. As reference points
for the algorithm initialization we chose the cell nuclei centers
detected via the generalized 3-D Hough transform. We then con-
structed an hypersurface in (R*, h) by defining a ®( function in
the image domain M. We used &9 = a/D, where D is the 3-D
euclidean distance from the reference point and « is a positive
constant. The same expression of ®, can be employed both for
nuclei and membranes segmentation. Starting from the initial-
ized surface, we performed nucleus/membrane segmentation by
using the following values of parameters:

* high value of a = 1;

o low value of ¢ = 10~6;

* load of the curvature term p = 0.1;

¢ Joad of the advective term v = 10;

* time step At = 0.065.

In the conclusive step of the algorithm, we automati-
cally picked the level set that describes the desired object.
After segmentation, the intensity distribution of the function
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(c) (d

)
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(9] ®

Fig. 8. Sequence of cell division. (a) Step 1; (b) Step 2; (c) Step 3; (d) Step 4; (e) Step 5 (Prophase); (f) Step 6 (Prometaphase); (g) Step 7 (Metaphase); (h) Step

8 (Telophase); (i) Step 9; (j) Step 10 (Cytokinesis); (k) Step 11; (1) Step 12.

Pena = P(x,y,2,7) is typically associated to a bimodal
histogram. Therefore, the segmented surface could be extracted
as the isosurface corresponding to the intermediate value of
®.pnq scalar range.

Each object is processed separately from the others limiting
the computation to subvolumes containing only one cell. This
structure greatly simplifies the code parallelization, because it
allows subdividing the volume in blocks of few cells, sending
blocks to different processors for computation and then col-
lecting all the segmented surfaces as a single result. The posi-
tion of the reference point influences the result of segmentation.
If it is around the object center, at the end of the evolution the
highest hypersurface values correspond to the shape we want
to extract. On the contrary, if we consider a strongly off-center
reference point other adjacent structures may become predom-
inant, not allowing a correct segmentation [16]. We solved this
problem, at least partially, by changing the motion equation dy-
namics during the evolution process. Using first a high value
of parameter a the process is mostly diffusive: the hypersur-
face smooths, moving away from the adjacent external struc-
tures, and simultaneously flattens inside the object. Then, with
alow value of a, the hypersurface evolves driven by a pure level
set motion, sharpening its discontinuities. A bidimensional ex-
ample is shown in Fig. 7. Since diffusion was faster, the number
of iterations with a high value of a was lower than the number

of iterations with a low value of a, to make comparable the ef-
fects of the two motions on the final contour. We used the same
parameters both for nuclei and membranes processing, except
for the total number of iterations: nuclei are smaller; thus, their
segmentation requires less iterations (40000 iterative steps for
membranes, 10000 for nuclei). The discrete time step At has
been chosen as the maximum value which insures the stability
of the advective term in (8). The stability condition, which can
be deduced from mass balance considerations [31] applied to a
single voxel, is given by

Selual + Sologl + Folol <1 (10)
where v, vy, v are the velocity components. In our application
we used the following approximation of the components arising
in the velocity field

_9i+15k — Gi-1,5k

L 9ii+1k — 9ij-1k
Gy = 2
i g k41— Gig k=1
g ~ g 2Jsk+ g »Js (11)
2
since 0 < g < 1, in the worst case |g..| = |g,] = |g-| = 0.5.

Therefore, substituting this value in (11) and setting Az =
Ay = Az = 1, we obtain from (10) At < 2/3v. In our case



ZANELLA et al.: CELLS SEGMENTATION FROM 3-D CONFOCAL IMAGES

(a) (b) (©

Fig. 9. Segmentation of a membrane with an uncompleted contour: (a) missing
portion underlined by a red circle, (b) segmented surface, (c) cut of the surface
superimposed on an image slice.

(®)

Fig. 10. Segmentation of a dividing cell: (a) constriction of the membrane un-
derlined by a red circle, (b) segmented surface, (c) cut of the surface superim-
posed on an image slice.

v = 10, so we set At = 0.065. A similar analysis is diffi-
cult for the curvature term because it depends in nonlinear way
on the solution. In the actual implementation we did not use
strong curvature weight. In case of strong curvature influence
one should approximate the equation through the semi-implicit
schemes [32]-[35] which are unconditionally stable. In this sec-
tion, we show some meaningful results of segmentation on two
different cell types distinguishable in the imaged developmental
period: epithelial cells from the enveloping layer and inner cells.
Their morphology varies along the cell cycle introducing more
morphological categories. The inner cell mass is covered by an
epithelial layer (EVL or enveloping layer). EVL cells are polar-
ized, i.e., their apical surface and baso-lateral surface have spe-
cific properties, polygonal, large, flat and they largely keep their
shape when dividing. They sometime have several nuclei, due to
some stress condition linked to manipulation. They also always
show intracellular membrane staining, probably corresponding
to intra cellular membrane compartments. Inner cells are smaller
than EVL cells and not polarized. They fill the space and their
nucleus is centered. During division inner cells become spher-
ical and largely loose adhesion to their neighbors. Fig. 9 shows
the effect of boundary completion on an inner cell: The missing
contour, underlined by the red circle, is completed by a straight
line. The algorithm shows the same behavior for dividing mem-
branes (Fig. 10). When two different nuclei are found inside the
same cell and the membrane presents a constriction along the
division plane, the algorithm segments two cells by completing
their contours with straight lines. These results demonstrate the
suitability of the Subjective Surfaces technique for this scenario,
especially if compared with other methods. In Fig. 11 we dis-
cuss our algorithm against Malladi-Sethian approach [24] in the
specific case study of missing membrane boundary. The per-
formances are comparable in the region with well defined con-
tours, whereas the final shape achieved by the classical level
set method fails in membrane completion. Before undergoing
division, inner cells become spherical, whereas nuclei staining
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Subjective
Surfaces

(@) (b)

Fig. 11. Segmentation of an uncompleted membrane by using different seg-
mentation techniques: (a) missing portion underlined by a red circle, (b) seg-
mented contour (yellow line Subjective Surfaces, blue line Malladi-Sethian).

(a) (b

Fig. 12. Segmentation of a cell before division: (a) superimposition of mem-
branes and nuclei signals, (b) segmented surfaces, (c) cut of the surfaces super-
imposed on an image slice.

(©)

elongates as the chromosomes arrange in the future cell division
plane (Fig. 12). It should be noted that the nucleus size is under-
estimated in the last two parts. This is due to the parabolic regu-
larization term in the motion (8), which prevents the segmented
surface to reach the contour if it is concave and with high cur-
vature. However, the nuclei of not dividing cells are correctly
segmented, as confirmed by visual inspection. Fig. 8 shows a
complete sequence of an inner cell division. In the first stages
the cell shape is irregular, because of the adhesion to its neigh-
bors, but becomes spherical before mitosis. In the same way, the
nucleus shape changes during cellular division from a spherical
or ellipsoidal aspect to a more oblong and flat shape. These mor-
phological features are linked to specific division phases.

1) Prophase: The nucleus starts changing its shape and
gaining in intensity, because of chromosomes condensa-
tion, and the membrane gradually looses adhesion to the
neighbors.

2) Prometaphase: Chromosomes attach to the mitotic spindle.

3) Methaphase: The chromosomes arrange in the future cell
division plane.

4) Anaphase: The two sets of chromosomes separate;

5) Telophase: The membrane shows a constriction along the
future cell division plane.

6) Cytokinesis: The daughter cells separate.

Eye inspection of the results reveals some problems in the
segmentation of EVL. membranes. As we described above, these
cells surrounding the embryo are very flat. This feature im-
paired membrane completion by the Subjective Surfaces 3-D
technique, because the small extension in depth stops the evolu-
tion process. Furthermore, EVL cells show intense intracellular
labeling [as we can see in the central cell of Fig. 13(c)], probably
corresponding to intracellular membrane compartments (Golgi
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(a)

Fig. 13. Segmentation of epithelial cells: (a) location of the epithelial cells in
the acquired volumes (dashed area), (b) segmented surfaces, (c) slice of the seg-
mented surfaces superimposed on an image slice.

(b)

Fig. 14. Detection of the epithelial cells on a 3-D LMS dataset: (a) slice of the
segmented surface, (b) superimposition of the segmented surface, nuclei channel
in volume rendering representation and detected centers.

(b)

Fig. 15. Segmentation of an entire subvolume: (a) membranes, (b) nuclei.

apparatus or endoplasmic reticulum). When the evolving sur-
face reaches this intracellular staining, it is not able to pass
on. These considerations led us to think we require a specific
method for the segmentation of the epithelial cells. Prior seg-
mentation, they have to be automatically localized within the
acquired volumes through a discriminating factor. At the mo-
ment, we are developing a simple method for the detection of
the epithelial cells based on their position. First, we segment the
surface of the embryo using the Geodesic Active Contours tech-
nique [36]. The evolution is not stopped by the external layer of
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cells, because they have a weak outer contour, so we obtain the
profile shown in Fig. 14(a). The epithelial cells remain outside
[Fig. 14(b)] the surface and thus can be easily detected and clas-
sified as epithelial. This method is interesting because of its sim-
pleness, but other factors could be used for the detection, such
as the polygonal shape or the bigger size of epithelial nuclei. Fi-
nally, in Fig. 15, we show the segmentation of two subvolumes
of nuclei and membranes. Every object is labeled with a dif-
ferent color, whose scalar value corresponds to the cell identity
number.

VI. VALIDATION

In order to visually inspect the results validity, the segmen-
tation algorithm has been first tested using a special framework
designed for managing series of 3-D biological images [37]. The
visual inspection of results allowed the detection of glaring mis-
takes in shape reconstruction, such as surfaces overlapping and
incomplete contours. Nevertheless, this estimation is not enough
to quantify the algorithm precision. We then designed a strategy
to measure both the accuracy and robustness of our algorithm.

A. Accuracy Measurement

To estimate the accuracy we propose to measure the mismatch
between a segmented surface and a gold standard obtained by
manual segmentation. Such mismatch is quantified by using the
Hausdorff distance and the mean Hausdorff distance [38], re-
spectively associated to the maximum and mean segmentation
error. In the foreseen validation method, the calculation of the
distance should be repeated by considering different gold stan-
dards for the same membrane, to execute a statistical analysis on
the data. This procedure should reduce the influence on results
of the user who made the manual segmentation. The proposed
procedure has been applied to a few cells and every manual
segmentation has been performed with the tool ITK-Snap [39].
However, a first analysis on two cells with different shapes re-
vealed interesting features (Table I). Celll, imaged before divi-
sion, is almost perfectly spherical, whereas cell2 has an irregular
shape because of the adhesion to adjacent cells.

Examining different conformations, we want to estimate the
effect of the “shape factor” on the algorithm precision. The
mean Hausdorff distances are comparable for celll: 0.440.2 ym
and cell2: 0.3 £ 0.0 gm. On the contrary, the maximum error is
different whether the shape is spherical: 1.3 + 0.3 pm or irreg-
ular: 2.1 £ 0.1 um. These results suggest that the shape influ-
ences the maximum error but not the overall precision. This is
probably due to the behavior already observed in Section V: The
inability of the segmented surface to reach the contour if it is
concave and with high curvature causes an increase of the max-
imum error in the irregular shapes (Fig. 16). Certainly, these re-
sults have to be supported by a larger record of cases. However,
they indicate that our precision is at least sufficient to identify
mitosis which is the major issue for further reconstructing cell
behaviors.

B. Robustness Measurement

A robust segmentation method should correctly extract the
shape of objects under different condition of image intensity,
signal to noise ratio and image contrast. Due to the physics of
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TABLE I
H. D. (HAUSDORFF DISTANCE) AND MEAN H.D. AVERAGED ON
TEN DIFFERENT GOLD STANDARDS OUT

[ Hd. (um) [ Mean H.d. (um)

1.3+0.3 0.4+0.2
2.1£0.1 0.3£0.0

Celll

Cell2

Fig. 16. Details of segmented surfaces (red) and gold standards (blue) showing
the region where the maximum segmentation error is located.

(@ (b) (©

Fig. 17. Slices (xy plane) of membranes sub-volume at different depths of the
sample. (a) Top. (b) Middle. (c) Bottom.

the acquisition process, our images are characterized by a signal
to noise ratio which progressively decreases when moving in
deep (z direction), as shown in Fig. 17.

Similar conditions can be achieved by artificially corrupting
images with different levels of noise. Therefore, we aim at ap-
proaching a robustness measurement investigating whether our
algorithm is able to segment a membrane enclosed in a region
of interest which is progressively degraded by additive Gaussian
noise. More precisely, the segmentation algorithm has been ap-
plied on three different images, attained by adding to the original
a Gaussian noise with mean value zero and an increasing stan-
dard deviation of 50, 100, 150 [Fig. 18(b)—(d)]. We compared
the segmentation results achieved on noisy images with the sur-
face segmented on uncorrupted, original data, that in this case
can be considered as gold standard [Fig. 18(a)]. Similarly to the
accuracy estimation procedure, the mismatch between surfaces
has been quantified through the use of the Hausdorff distance
and the mean Hausdorff distance [38]. Our results, depicted in
Table IT and Fig. 18, clearly show that, despite the increment of
noise influences the segmentation quality, however, in the worst
case (std = 150) the mean and maximum error are respectively
kept below 0.8 ym and 2.6 ym. Considering that in our scenario
the voxel size is 0.58 x 0.58 x 1.04 zm? we can certainly assume
that our algorithm is robust and its performances are acceptable
even if applied on really corrupted images.
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TABLE 11
H. D. (HAUSDORFF DISTANCE) AND MEAN H.D. BETWEEN SURFACES
SEGMENTED ON THE ORIGINAL AND NOISY DATA

std [ Hd. (um) [ Mean H.d. (um)

50 1.2 0.3
100 1.6 0.5
150 2.6 0.8

(d

Fig. 18. Results of robustness procedure. Results of robustness procedure.
Left: slices (xy plane) of the selected region. Middle: cut of segmented surfaces
superimposed on the image slice. Right: segmented surfaces superimposed
on the image slice. (a) Original data (gold standard). (b) Noisy data (std 50).
(c) Noisy data (std 100). (d) Noisy data (std 150).

VII. CONCLUSION AND FUTURE WORKS

We designed an algorithm for the automated segmentation
of membranes and nuclei based on Subjective Surfaces tech-
nique that has good performances on live zebrafish embryos
confocal images. Visual inspection of the results has shown the
ability of the algorithm to complete the missing contours, es-
pecially in membranes images, and to correctly reproduce the
objects shape. Segmentation performances have been evaluated
and quantified calculating the Hausdorff and the Mean Haus-
dorff distances between gold standard and segmented surfaces.
With the proposed validation strategy we demonstrated that our
algorithm performs well both in term of accuracy and robust-
ness against noise. The local precision seems to decrease for
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elongated and flat shapes (EVL cells and dividing nuclei). The
algorithm could be improved by integrating the segmentation
of membranes and nuclei, superimposing their edge indicators
and defining two different isosurface values for extracting both
shapes in the same process. A specific method could be designed
for the segmentation of the EVL cells that have to be localized
prior segmentation. With this work we have built the basis for
future developments toward a deeper understanding of the bi-
ological processes involved in the organism formation. In this
direction, the next step will be to pass the segmentation results
to a specific algorithm for the cell shape analysis, that has to be
defined yet, with the final goal to extract information on the cell
state and analyze the dynamics of its shape.
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