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Abstract Quantitative characterization of the lateral

structure of curved membranes based on fluorescence

microscopy requires knowledge of the fluorophore distri-

bution on the surface. We present an image analysis

approach for extraction of the fluorophore distribution on a

spherical lipid vesicle from confocal imaging stacks. The

technique involves projection of volumetric image data

onto a triangulated surface mesh representation of the

membrane, correction of photoselection effects and global

motion of the vesicle during image acquisition and seg-

mentation of the surface into domains using histograms.

The analysis allows for investigation of the morphology

and size distribution of domains on the surface.
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Introduction

In the last decade giant unilamellar vesicles (GUVs)

became a very popular membrane model to explore the

lateral structure of diverse artificial and natural lipid mix-

tures containing membranes (Bagatolli 2006). The cell size

dimension of GUVs (mean diameter *25 lm) makes this

versatile membrane model system very appropriate for

applying several fluorescence microscopy-related tech-

niques in order to study membrane lateral structure. This

type of experiment opened for the first time the possibility

to obtain spatially resolved information from distinct free-

standing membrane regions at the level of single vesicles

(Bagatolli and Gratton 1999; 2000; Korlach et al. 1999;

Dietrich et al. 2001). This information has been used

to construct phase diagrams for various lipid mixtures

(Veatch and Keller 2005), but also to evaluate lateral het-

erogeneity in compositionally complex mixtures [GUVs

composed of natural lipid extracts or native membranes

(Bernardino de la Serna et al. 2004; Plasencia et al. 2007;

Montes et al. 2007)] as well as to evaluate partitioning of

different membrane proteins into these different membrane

regions (Kahya et al. 2005).

The distinct membrane domains observed in GUVs are

generally related with equilibrium thermodynamic phases

typically using: (1) the partitioning of different fluorescence

probes into the distinct coexisting regions in the membrane

or (2) by performing comparative analysis of different

fluorescence parameters (such as fluorescence probe diffu-

sion coefficient, or fluorescence emission shift) measured in

the different membrane regions [see, for example, (Korlach

et al. 1999; Bagatolli and Gratton 2000)]. However, dif-

ferences in the aforementioned parameters between coex-

isting membrane domains are necessary but not sufficient

conditions to demonstrate the presence of equilibrium
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thermodynamic phases. In a previous work (Fidorra et al.

2009), we introduced a sequential image analysis approach

(involving segmentation and 3D reconstruction) for confo-

cal fluorescence microscopy data of GUVs. We showed that

lipid domain area fractions can be retrieved from GUVs and

this information can be used to validate predictions from

equilibrium thermodynamic phase diagrams (such as the

lever rule). Among other observations, our results proved

that the composition in the whole GUV population is rep-

resentative of the initial composition utilized to prepare

GUVs. Similar approaches have been tested by others for

other lipid mixtures and further validated with information

obtained from other biophysical techniques, i.e., NMR (see

Juhasz et al. 2009). Image analysis approaches not only

provide a necessary tool to properly determine phase equi-

librium in compositionally simple lipid bilayers, but

potentially also offer the possibility to obtain additional

morpho-topological parameters normally lacking in fluo-

rescence microscopy experiments involving GUVs.

Honerkamp-Smith et al. (2008) have used a single confocal

plane near one of the poles to measure correlation lengths

along the domain boundary for a single domain. For 2D lipid

monolayers observed by time lapse microscopy in Langmuir

troughs, image processing routines have opened access to a

quantitative description of morpho-topological properties

(Härtel et al. 2005) and improved our understanding

of enzyme coupled lipid domain formation significantly

(Fanani et al. 2010). For free-standing lipid bilayers, the

diverse morphologies observed for solid domains in GUVs

require refined analysis of the fluorescence images.

In this article we present a new image analysis approach

that facilitates a detailed quantitative analysis of the mor-

pho-topological characteristics of domain structures in

quasi-spherical GUVs imaged by confocal fluorescence

microscopy. This is achieved by reconstructing an image of

the membrane in a two-dimensional representation, in

particular a spherical surface, from the volumetric image

data. Our method takes into account the characteristics of

the fluorophores involved and the specific experimental

setup. Thus, the effects of photoselection are accounted for,

and the domains are identified on the basis of an analysis of

the fluorescence intensity map. Specific advantages of this

method are that it provides identification of domains and

their boundaries (as closed curves), and it provides a global

characterization of the lateral structure. We demonstrate

that a range of surface quantifiers for the domains can be

identified such as vertex angles on polygonal domains and

curvature of domain boundaries. The setup can easily be

extended to quantify new properties of heterogeneous

GUVs. The emphasis in the presentation is put on the image

analysis technique rather than new insights in specific bio-

physical phenomena, and the presented results are proof of

concept examples of quantitative characterizations.

The article is organized as follows: the ‘‘Materials and

methods’’ section lists the materials used and describes the

procedures for preparation and imaging of GUVs. In

‘‘Projection of confocal data,’’ the techniques of repre-

senting confocal image data of a GUV on a sphere are

introduced. In ‘‘Analysis on the surface,’’ the tools for

analysis of the lateral structure of the GUV based on the

projected images will be presented. In ‘‘Domain charac-

terization,’’ examples of the results from the described

analysis are given for two example vesicles. The article is

closed with a short discussion.

Materials and methods

Materials

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dil-

auroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dipalmi-

toyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin

(egg, chicken), ceramide (egg, chicken), cholesterol and

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine

rhodamine B sulfonyl) (ammonium salt) (Rh-DOPE) were

purchased from Avanti Polar Lipids, Inc. 1,10-Dioctadecyl-

3,3,30,30-tetramethylindocarbocyanine perchlorate (DiIC18)

and 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-sinda-

cene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phospho-

choline (Bodipy-PC) were purchased from Molecular Probes

(Invitrogen). Naphtopyrene was purchased from Sigma.

Preparation of GUVs and confocal laser scanning

fluorescence microscopy experiments

GUVs of different compositions were prepared following

the electroformation method described by Angelova et al.

(1992) using a custom-built chamber (Fidorra et al. 2006).

Briefly, aliquots of the desired lipid mixture containing the

fluorescent probes dissolved in organic solvent (Cl3CH/

MetOH 2:1 v/v) were deposited on each Pt electrode (4 ll

of 0.2 mg/ml lipid stock solution), and the solvent was

evaporated under vacuum. After the removal of the organic

solvent the chamber was filled with a sucrose 200 mM

solution and an AC field was applied to the chamber using

a function generator (Vann Draper Digimess� Fg 100,

Stenson, Derby, UK) with an amplitude of 1.3V and a

frequency of 10 Hz. The electroformation was carried out

for 90 min at temperatures above the main phase transition

temperature of the different lipid mixtures. Subsequently,

the GUVs chamber was cooled at room temperature in a

time span of approximately 5 h in an oven (J.P. Selecta,

Barcelona, Spain) using a temperature ramp (*0.2�C/

min). The last step was done in order to achieve equilib-

rium conditions in our samples. Once the solution reached
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room temperature, the vesicles were transferred to an iso-

osmolar glucose solution in a special chamber (200 ll of

glucose ? 50 ll of the GUVs in sucrose in each of the

eight wells of the plastic chamber used; Lab-tek Brand

Products, Naperville IL). The density difference between

the interior and exterior of the GUVs induces the vesicles

to sink to the bottom of the chamber, and within a few

minutes the vesicles are ready to be observed using an

inverted microscope. The temperature during image

acquisition was controlled at 20.0 ± 0.5�C. The GUV

mixtures used in this article are: (1) DOPC/DPPC/choles-

terol with various molar fractions doped with 0.5 and

0.2 mol% with respect to total lipids of Naphtopyrene and

Rh-DOPE, respectively (Figs. 1, 4); (2) DLPC/DPPC

(30:70) doped with 0.25 mol% with respect to total lipids

of DiIC18 and Bodipy-PC (Figs. 3, 6, 7, 8, 9, 12); (3) egg

SM/egg ceramide (70:30) doped with 0.5 mol% of DiIC18

(Figs. 10, 11). The temperatures for electroformation were

(1) 55�C, (2) 50�C and (3) 70�C.

Confocal image stacks were acquired on a Zeiss LSM

510 Meta confocal laser scanning fluorescence micro-

scope. A C-Apochromat 409 water immersion objective

with a NA 1.2 was used in our experiments. Two channel

image stacks were acquired using multi-track mode.

Argon and NeHe lasers (458 and 543 nm for Naphtopy-

rene and Rh-DOPE and 488 nm and 543 nm for Bodi-

pyPC and DiIC18 respectively) were used as excitation

sources. The laser lines were reflected to the sample

through the objective using different dichroic mirrors

(HFT 488/543/633 for exciting Rhodamine-DOPE, DiIC18

and Bodipy-PC and HFT 458 for Naphtopyrene). The

fluorescence emission collected through the objective was

directed to the PMT detectors using a mirror. Generally,

a beam splitter was used to eliminate remnant scatter

from the laser sources (NFT 545 or NFT 490) in a two

channel configuration. Additional filters were incorpo-

rated in front of the PMT detectors in the two different

channels to measure the fluorescent intensity, i.e., a long

pass filter [560 nm for Rhodamine-DOPE and DiIC18,

and band pass filters of 500 ± 20 nm and 525 ± 25 for

Naphtopyrene and BodipyPC. The acquired intensity

images were checked to avoid PMT saturation and loss of

offsets by carefully adjusting the laser power, the detector

gain and the detector offset. The image stacks were

acquired at a sampling rate of 70 nm for Dx and Dy, and

340 nm for Dz, which is slightly above the Nyquist fre-

quency, which was calculated to *40 nm for Dx and Dy,

and *140 nm for Dz with Huygens Scripting Software

(Scientific Volume Imaging, Hilversum, The Nether-

lands). The sampling above the Nyquist frequency was

necessary to guarantee sufficient scan speed, which

minimizes vesicle movement and photobleaching. The

obtained confocal raw fluorescence image stacks were

deconvolved by Huygens Scripting Software using an

algorithm based on the Classic Maximum Likelihood

Estimator.

tnemngilaretfAtnemngilaerofeB

Circle fits

Point cloud

Fig. 1 A circle is fitted to each

slice, which is then translated so

the center of the circle is on a

common axis for the whole

stack. The circle radii are then

used for another circle fit (the

thick circle on the top right),
essentially fitting a sphere to the

whole point cloud. For clarity

the scaling factor c = Dz/Dx has

been applied to both the

‘‘before’’ and ‘‘after’’ images in

this figure, even though it is a

fitting parameter
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Projection of confocal data

Confocal microscopes provide bitmap images of GUVs

with fluorophores partitioned into the membrane. If mul-

tiple fluorophores are in use, the intensities of fluorescence

are recorded in separate channels. In this article, we refer

to these channels as red, green and blue (RGB) values for

each pixel. Three-dimensional image data are provided in

the form of stacks of bitmap images, slices, each corre-

sponding to a constant z, i.e., a plane parallel to the

xy-plane. Typically, the physical separation between slices

is greater than the physical separation between neighbor-

ing pixels in the xy-plane by a factor of 3–6, so the res-

olution in the z-direction is lower than in the xy-focal

plane. The point spread function of the imaging technique

is rather broad (compared to the voxel separation) in the

z-direction, so the image stack can benefit significantly

from deconvolution.

Alignment of confocal stacks

In order to project the image onto a sphere, we need to

align the model sphere with the vesicle in the image. This

is carried out by choosing points by intensity thresholds

applied to the individual channels and fitting the resulting

point cloud to a sphere.

Unfortunately, GUVs can undergo significant random

motion while the image stack is acquired, which may take

several minutes. Translational motion of a spherical vesicle

is seen by displacements between the centers of the circles

depicted on adjacent slices. We do not see significant

distortion within the individual slices. To correct for the

displacements, a circle is fitted to each slice, and the slices

are then translated to have the circle centers on a common

axis (see Fig. 1). The circle fits are calculated as least

squares solutions (see ‘‘Appendix 1’’) of the equation

x� xcð Þ2þ y� ycð Þ2¼ r2 ð1Þ

using a set of (x, y)-coordinates obtained by thresholding

the image by intensity.

This does not correct for motion in the remaining

degrees of freedom, i.e., rotation and translation in the

z-direction. The latter is reduced, however, as the vesicles

are resting on the bottom of the chamber because of the

density difference of the sugar solutions described in

‘‘Materials and methods.’’ The motion of the vesicles may

be further reduced using an adaption of the immobilization

technique described by Lohse et al. (2008) to GUVs.

Another type of motion, which cannot easily be cor-

rected for, is the motion of domains on the surface, which

causes a distortion in the shapes and sizes of domains.

Domains near the equator1 are more distorted than domains

near the poles, since they span a greater number of slices

and thus are imaged over a longer period of time. For this

reason, GUVs with a percolated gel phase are most suitable

for morphological characterization of domain boundaries,

since the gel phase in this case fixes the domain structure in

place. Concerning liquid-liquid coexistence, our images are

not suitable for such characterizations, so we extracted only

total area information from these. Faster imaging tech-

niques, such as spinning-disk confocal microscopy, might

enable morphological characterizations of the domain

structure on these systems as well.

The circle fits provide a set of ð~z; rÞ pairs, where r is the

circle radius and ~z is the slice number, i.e., the z-coordinate

is given by z ¼ c~z;where c = Dz/Dx is the ratio between the

voxel depth in the z-direction and the width in the x- and

y-directions. These pairs are then used for another circle fit,

which essentially constitutes a fit of a sphere to the entire

point cloud. This second fit is the least squares solution of

the equation

r2 þ c~z� zcð Þ2¼ R2; ð2Þ

where R is the sphere radius and zc is the z-coordinate of

the center. The scaling parameter c can be provided as

known from the equipment settings during acquisition or

included as a fitting parameter. We have in general chosen

to do the latter and check the result with the expected

value.

Triangulation of the sphere

The sphere is approximated by a deltahedron, i.e., a poly-

hedron with triangular faces. The vertices are located on

φ
θ

Fig. 2 h is the polar angle, i.e., the angle from the z-axis, and takes

values in the range (0, p] (in radians), while / is the azimuth angle,

i.e., the angle from the x-axis of the projection onto the xy-plane, and

takes values in the range (-p, p]. We refer to h = 0,p as the poles

and h ¼ p
2

as the equator

1 See Fig. 2 for a definition of the equator and the poles.
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the sphere, and the deltahedron corresponds to a triangu-

lation of the sphere.2 The only convex, regular3 polyhedra

are the five Platonic solids (Heath and Euclid 1956), and of

these the tetrahedron (4 faces), the octahedron (8 faces) and

icosahedron (20 faces) are deltahedra. Since we generally

want a much finer triangulation, we cannot use a perfectly

regular deltahedron, but only an approximation.

A triangulation with a desired characteristic spacing D is

constructed by first generating a set of points that are

approximately evenly distributed on a spherical surface. In

terms of the spherical coordinates h and / defined in

Fig. 2, the range of h is first subdivided evenly into p
D

� �

discrete values hi, and for each i, the range of / is subdi-

vided into 2p sin hi

D

� �
discrete values.

The triangulation is then calculated as the triangulated4

convex hull of this set of points. The software Qhull

(Barber et al. 1996) was chosen for this purpose. The

resulting triangulation has triangles with internal angles

between 45� and 90� and nearly identical areas. There are a

few notable defects in the form of triangles that are half the

area of the majority. These make up a vanishing fraction of

the total area though. A triangulation with D = 0.06 radi-

ans is shown in Fig. 3.

Using a mesh with these properties provides a uniform

resolution throughout the surface. A local neighborhood

consisting of a triangle and its nearest neighbors (see

Fig. 5) has approximately the same shape and size

throughout the surface, which facilitates simple imple-

mentations of local calculations such as finding gradients

and applying filters, e.g., a Gaussian or a median filter, on

image data on the surface using these small neighborhoods.

It also avoids the risk of numerical stability problems

because of triangles of vanishing area or with a vanishing

vertex angle.

Projection

The objective of the projection is to use the triangles of the

mesh as pixels for an image of the vesicle surface, thus

producing a two-dimensional representation of the image.

This representation, which we will refer to as a surface

image, is suitable for investigating structures, i.e., domains,

that are confined to the geometry of the surface. In order to

produce the surface image, the point cloud is aligned and

scaled as described above, filtered by intensity and

optionally by radial coordinate, e.g., 0.8 R \ r \ 1.2 R,

where r is the radial coordinate, and R is the radius of the

sphere. It is then ‘‘projected’’ onto the triangular mesh, the

details of which are discussed below.

The idea is to integrate the image data that are seen

when looking from the center of the sphere out through a

triangle on the surface and assign it to that triangle (see

Fig. 3). This reduces the dimensionality by integrating out

the radial coordinate. This should be reasonable as the

image stack does not provide a true radial resolution of the

Fig. 3 Conceptual diagram of

the projection of a point cloud

(bottom left) onto a triangulation

of a sphere (top left). A

triangular cone is defined by the

center of the sphere and a

triangle on the surface. The

integral of the intensity over the

enclosed volume is assigned to

this triangle in the projection.

The resulting projection on the

right is using a finer

triangulation than depicted on

the left, so the individual

triangles cannot be seen here

2 The triangulation is obtained as the radial projection of the

deltahedron onto the sphere, so the triangles become curvilinear

polygons on the sphere. We will, however, refer to the approximating

deltahedron directly as a triangulation.
3 Having identical, regular polygons as faces.
4 It happens that four nearby points are coplanar, resulting in

quadrilateral faces. These need to be divided into triangles to obtain a

triangulation of the sphere.
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membrane, since it is much thinner than the resolution limit

of the microscopy technique by a factor of *50.

In the first attempts, each voxel is treated as a point

located at the voxel center, and the intensity value for each

channel of the voxel is simply added to the triangle that

intersects the line from the the center of the sphere to this

point. In other words, for each channel the intensity value

assigned to a triangle is the sum of the intensities of the

voxels with centers inside the triangular cone with its apex

at the center of the sphere and the triangle as its base (see

Fig. 3).

This approach produces good results for coarse trian-

gular meshes, where the side lengths of the triangles are

large compared to the voxel depth (Dz). However, for finer

meshes, which are needed to utilize the available resolution

throughout the surface, this approach breaks down, since

the triangles become small enough that their corresponding

cones may completely miss any points from the point cloud

and thus not get any intensity information. This is partic-

ularly the case near the equator, where the gaps between

points from adjacent slices can be seen from the center of

the sphere and result in black bands on the surface. To

prevent this, each voxel of the point cloud is instead treated

as a box with side lengths equal to the voxel separation for

each dimension rather than just a single point in space. In

this way, every point in the imaged volume is part of some

voxel and has intensity data. For a given channel, the

intensity value assigned to a triangle is now the integral of

the intensity over the corresponding triangular cone.

Calculating this integral involves calculation of the

volumes of the intersections between the box-shaped

voxels and the triangular cone. This region is a convex

polyhedron and can be represented by a set of linear

inequalities. A point r is inside the triangular cone if and

only if it is on the internal side of each of the three planes

containing the center of the sphere and one edge of the

triangle:

r � v1 � v2ð Þ[ 0; r � v2 � v3ð Þ[ 0; r � v3 � v1ð Þ[ 0;

ð3Þ

where vis are the position vectors of the vertices.5 The box-

shaped voxel is described by inequalities that are simply

constant bounds on x, y and z.

The algorithm used for this volume calculation (Ong

et al. 2003) recursively constructs polynomials as inte-

grands and bounds in integrals over different parts of the

volume, while the inequalities are regarded one at a time.

Due to the number of branches that typically occur and the

corresponding number of polynomials that are constructed,

this volume calculation is by far the most computationally

demanding part of the projection.

The voxels are stored as a list of coordinates and

intensities in order to allow for the coordinate displace-

ments in the aligning step and the removal of individual

voxels in the filtering step. Since the voxels are thus not

easily located by their coordinates, the projection is carried

out by looking at the voxels one at a time and for each

locating the triangles to project it to. First, a triangle is

located by walking the surface mesh towards increasing dot

product between the position vectors of the voxel center

and the triangle center. The volume of intersection with the

cone of this triangle is calculated, and the channel inten-

sities of the voxel are added to the triangle using this

volume as a weight. The nearest neighbor triangles are then

recursively tested for intersection between their corre-

sponding cones and the voxel, and the projection is carried

out for these as well in case of non-zero intersection.

Analysis on the surface

Once the image is represented on a surface, we can start

doing image manipulation and analysis in this geometry. The

image is stored in the OFF format of the geometry language

OOGL used by the program Geomview (Amenta et al.

1995), which can be used to visually inspect the surface

image. Figure 3 shows an example of such a visualization,

and Fig. 12 shows a derived surface image in six different

orientations. Another way of visualizing the surface is a (h, /
) map, i.e., an equirectangular projection, as exemplified in

Fig. 4. This has the advantage that the whole surface can be

seen at once at the cost of shapes being distorted.

Correction of photoselection effect

A problem with fluorescence microscopy of GUVs is that

some probes are subject to a photoselection effect because of

their orientation with respect to the polarization of the

incoming laser light (Bagatolli 2006). Since the orientation of

the probe is correlated to the orientation of the surface (and

therefore the position on the surface), the result is an angular

dependence of the intensity response of the fluorophore.

The surface representation of the image data makes it

possible to correct for this effect if it can be modeled as a

function of the spherical coordinates h and /. Say the

concentration of a fluorophore is c(h, /), and there is an

orientation specific factor, F(h, /), due to photoselection

for this molecule, such that the measured intensity becomes

iðh;/Þ ¼ Fðh;/Þcðh;/Þ: ð4Þ

This factor can be approximated as a linear combination of

a number of spherical harmonics (see ‘‘Appendix 2’’):

5 If the vertex order is v1, v2, v3 as we move counterclockwise when

looking from outside the sphere.
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where we have taken the mean value to be given by

Fh i ¼ F0
0Y0

0 :If we can determine the factors f m
‘ ; we can

correct for the photoselection effect:

~iðh;/Þ � hFicðh;/Þ � iðh;/Þ
1þ

P
‘[ 0;m f m

‘ Ym
‘ ðh;/Þ

: ð6Þ

The coefficients f m
‘ can be determined using a reference

vesicle that is expected to have a constant concentration c of

the fluorophore by taking the inner product of the measured

intensity with the corresponding spherical harmonics:

cFm
‘ ¼ im‘ �

ZZ

S

iðh;/ÞYm
‘ ðh;/ÞdX; ð7Þ

from which we get

f m
‘ ¼

im
‘

i00Y0
0

: ð8Þ

Figure 4 shows an example of correction for such a photo-

selection effect. Before the correction, the surface image has

two regions where the intensity in the red channel is high, and

the structure in the green channel characteristic for the rest of

the surface cannot easily be seen. After the correction, the

representation of the structure in these regions on the surface

image is significantly improved.

Noise reduction

A noisy image can be problematic for the various image

analysis techniques. In segmentation and domain

identification, it may lead to many very small domains

consisting of only a few triangles to be erroneously iden-

tified, e.g., near the edges of the proper domains. In edge

identification (see Sect. ‘‘Edge map’’) the noise is amplified

by taking gradients and may dominate the signal from the

actual edges.

The effect of noise can be reduced by applying filters,

e.g., a Gaussian or a median filter, to the surface image. For

simplicity these are implemented by only looking at very

small neighborhoods including a triangle and its three

nearest neighbors. The non-normalized convolution mask

used for a Gaussian filter is shown in Fig. 5. This way of

applying the filter is directly applicable to general (not

necessarily spherical) triangular meshes as long as the

shapes and areas of the triangles are within a satisfyingly

narrow distribution. In order to increase the spread, the

filter can be applied multiple times, thus gradually

smoothing the image.

Histograms and segmentation

Information about the distribution of the fluorophores on

the membrane can be gained from histograms of the

channel intensities (see Fig. 6). Since we have the image

data represented on a spherical surface, the histogram can

be calculated over the surface rather than the imaged

retfAerofeB

φ

θ

Fig. 4 An example of correction of a photoselection effect. The images are (h, /) maps of the surface with the poles at the left and right (see

Fig. 2). Spherical harmonics with (‘, m) = (0, 0), (2, 0), (2, ±2), (4, 0), (4, ±2), (4, ±4) have been included in this case

Fig. 5 A small neighborhood

consisting of four triangles

showing the non-normalized

convolution kernel used for an

approximately Gaussian filter
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volume. This is desirable when investigating the lateral

structure of the membrane.

In general, the fluorophores are expected to have dif-

ferent affinities to the different thermodynamic phases of

the lipid membrane. This results in the phases occupying

different positions in the intensity histogram. Thus, for a

two-phase system we expect to see two peaks in the his-

togram as is the case in the example shown in Fig. 6.

The image can now be segmented into phases by fixing a

threshold, which for a two-channel image takes the form of

a curve that divides the (ir, ig)-space into two regions. The

choice of threshold is guided by the observed behavior of

the histogram and the criterion that the threshold curve

should have one peak on either side and preferably pass

through a low-valued region of the histogram so that the

sensitivity of the segmentation to small variations of the

curve is low. Once a choice has been made, it can be

evaluated by visual inspection of the resulting segmenta-

tion of the surface image.

Ideally the phases give rise to sharp peaks such that the

threshold curve can easily be chosen to pass through a

zero-valued region of the histogram. However, typical

histograms show rather broad peaks that overlap in the tail

regions as in Fig. 6, so the threshold has to be chosen with

care. A number of effects may cause such broadening,

including noise, the area near domain boundaries (if the

transition across them is smooth) or effects such as the

photoselection effect that may lead to position specific

variations of the recorded fluorescence intensity, if these

effects are not perfectly corrected.

If for simplicity the curve is chosen as a straight line

through the origin, it is defined by only one parameter: the

angle / ¼ tan�1 ig
ir

from the red axis, where ir and ig are the

red and green intensities. A histogram of this value over the

surface is also shown in Fig. 6. On this one-dimensional

histogram, two peaks corresponding to the two coexisting

phases are easily seen, and the local minimum between

them is a good candidate for a threshold that satisfies the

above considerations. This minimum is identified by first

smoothing the histogram by convolution with a Gaussian

kernel and then walking the curve in the direction of

decreasing value.

This method provides a systematic means of segmen-

tation for a variety of vesicles with these general properties

with a reasonable tolerance to differences in the positions

and sizes of the peaks. It can, however, also be unstable in

cases where there is a wide non-zero ‘‘floor’’ between the

two peaks, such that small differences in this region may

cause the threshold to end up in vastly different locations.

Thus, for comparison of a number of vesicles, where care is

taken to keep the experimental conditions equal except for

the varied parameter (e.g., composition), it may be a better

choice to simply fix the threshold value of / to a constant,

since this approach is simpler and more stable.

The information in the histogram along with a choice of

threshold yields the total area of one of the phases and hence

provides a measure of the degree of transition between them.

The area fraction of the red phase is also shown as a function

of the threshold in the / histogram in Fig. 6. By measuring

this value for a range of compositions, the anatomy of the

coexistence region in the phase diagram can be characterized

in detail. Such a study is being worked on by the authors for

the liquid-ordered/liquid-disordered coexistence region of

the DOPC/DPPC/cholesterol mixture.

Domain characterization

The segmentation described in the previous section pro-

vides a way to determine the phase of each triangle and
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Fig. 6 Top A two-dimensional histogram of the channel intensities of

a two-channel surface image (the one shown in Fig. 3). Bottom A

histogram of the value / ¼ tan�1 ig
ir

� �
; the angle from the red axis in

the two-dimensional histogram, over the surface. The local minimum

indicated at / = 0.679 on the / histogram is found using the

smoothed curve. This value as well as / ¼ p
4

is also represented as

lines (possible choices of threshold) on the two-channel histogram.

Finally, the total red area as a function of the chosen threshold value

of / is shown. The areas are on the unit sphere, i.e., solid angle
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thus trivially a way to calculate the total area of the indi-

vidual phases coexisting on the membrane. If we are

interested in more specific information about the lateral

structure, such as the size distribution or morphology of the

domains, we need a way to identify the individual domains.

This is achieved by finding the connected regions of the

same phase on the surface. In this section we present

examples of quantitative characterization of the domains

on the vesicle in Fig. 3.

Domain size distribution

The histograms of the surface image of the example vesicle

(Fig. 3) are shown in Fig. 6. Since the histograms show a

clear separation into two phases, the example is suitable for

this analysis. The threshold determined by the local mini-

mum in the / histogram was used for segmentation of the

surface image into the two phases. The segmentation pro-

duces a set of 286 domains in total (red and green domains

combined), but many of these are most likely due to noise

or below-resolution structures leading to an incorrect sub-

division into many very small domains of only a few tri-

angles. In Fig. 7 the areas of the green domains are sorted

by decreasing area and plotted on a logarithmic scale.

Despite the limited number of domains, it appears we

can still say something about the area distribution.

Apparently the areas of the first 20 domains follow an

exponential decay when plotted against their index in the

ordering, i.e.,

AðnÞ ¼ ae�bn: ð9Þ

Inverting this function gives

nðAÞ ¼ 1

b
ln

a

A
: ð10Þ

The area distribution of the domains can now be

approximated by

dn

dA

����

���� ¼
1

bA
: ð11Þ

This distribution can only apply for a limited range of

areas, as it is not normalizable for the range A 2 ½0 : 4p�;
and an upper bound of the domain area is given by the total

area of the phase.

Figure 7 also shows histograms of the domain areas (for

domains with A [ 0.01) generated by kernel density esti-

mation (Rosenblatt 1956; Parzen 1962) using a Gaussian

kernel, i.e.,

q̂ðAÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2
p

X

i

e
ðA�AiÞ2

2r2 ; ð12Þ

along with the distribution from Eq. 11. Equation 12 pro-

vides an estimate of the probability distribution of the area

of a domain picked at random from an ensemble of vesicles

with the same size and composition. The histogram seems

to follow the model distribution somewhat, but it is clearly

a very small sample of domains to produce a reliable his-

togram. A proper statistical analysis of domain areas would

require a large sample of vesicles with the same size and

composition.

Domain morphology

Apart from domain sizes, our method also allows investi-

gating the morphology of the domain boundaries. Domains

in a lipid bilayer with liquid-liquid phase separation are

expected to be circular because of minimization of the

interfacial energy, while textures in more ordered phases

can give rise to different shapes (Bernchou et al. 2009).

Due to the high mobility of domains in liquid-liquid sep-

arated systems, we have not been able to reliably
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characterize the boundary morphology from confocal

images of these systems.6 We will thus continue with the

vesicle in Fig. 3, in which the red phase is a percolated gel

phase, to give examples of boundary characterizations.

On this vesicle, the boundaries of many of the domains

appear to be curvilinear polygons (i.e., they have vertices),

so we would like to characterize them as such. This

involves identifying the vertices, characterizing the edges

between them (e.g., their geodesic curvature) and mea-

suring the vertex angles. This characterization requires

good fidelity in the domain shape in order to unambigu-

ously identify the vertices and to reliably fit simple curves

(e.g., circles) to the edges. The triangular domain shown in

Fig. 8 is quite adequate for this purpose.

After the segmentation, the domains are provided as sets

of triangles of the same phase on the triangular mesh. The

domain boundaries can then be obtained as lists of vertices

from the mesh, defining the boundaries as closed space

curves. These curves suffer from noise as well as artifacts

from the mesh (they follow the triangle edges of the mesh)

and from the original voxel lattice, which gives rise to

staircase-like curves near the equator. Therefore, geometric

properties should be measured over sufficiently large

length scales to overcome these effects.

We can estimate the curvature at a point of the curve by

fitting a parabola to a small segment surrounding the point

(Lewiner et al. 2005). The resulting curvature estimate is

shown in Fig. 9. Since we are interested in characterizing

the curve as a curvilinear polygon (in this case a triangle),

we wish to identify the vertices of this polygon. This is

done by applying a threshold to the curvature estimate and

identifying the positions of peaks of large curvature as

vertices and the segments between them as edges.

Figure 8 also shows approximations of the edges by

simple curves and estimates of vertex angles and geodesic

curvature. The three green curves are geodesics, while the

blue curve is a non-geodesic circle on the spherical surface.

A geodesic approximating an edge is determined by simply

connecting two points on the edge by a geodesic. The blue

circle was found by least-squares minimization of the

distance of the edge to the osculating plane of the circle,

i.e., the least squares solution of the system

ri �
rc

jrcj2
¼ 1; ð13Þ

where {ri} is the collection of position vectors of the

boundary segment, and rc is the vector from the center of

the sphere to the center of the circle and hence also defines

the osculating plane by r � rc ¼ jrcj2:
The latter method suffers from not minimizing the dis-

tance to the model circle but to a plane, and therefore tends

to favor a near-tangential plane when applied to short

segments, where the deviation from a tangent plane due to

the curvature of the sphere is small compared to the noise.

However, for longer segments it can provide good results

and has been chosen for the blue curve in the figure, since it

clearly provides a better fit than the geodesic. For the

remaining two edges of the triangular domain the geodesics

96.6°

54.8°

65.5°

Fig. 8 A rather simple, triangular domain. The green curves are

geodesics (great circles) approximating the edges of the triangle. The

leftmost edge is apparently better approximated by the blue curve,

which is a non-geodesic circle on the sphere, while the remaining two

edges cannot be concluded to deviate from the geodesics from this

data. The radius of the blue curve (on the unit sphere) is r = 0.87, and

hence its geodesic curvature is jg = 0.56
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Fig. 9 The local curvature of the domain boundary depicted in Fig. 8
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6 This might be possible using faster imaging techniques.
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were found to be the best fits. The measured angles are

between the tangent vectors of the model curves at their

intersections.

Area and perimeter

Figure 10 shows a surface image of a vesicle prepared from a

mixture of egg sphingomyelin and egg ceramide. The vesicle

shows an intriguing domain structure with flower-shaped

domains and is thus a good candidate for morphological

characterizations of domain boundaries. Since only one

fluorophore was used in the preparation, the image has only

one channel, and the segmentation is achieved using a con-

stant threshold value, ir,0, for this channel. The value is

chosen such that the segmentation captures much of the

morphology of the domain boundaries while producing a

reasonable identification of domains.

A simple characterization facilitated by our method is

the relationship between the domain perimeter p and

domain area A. Figure 11 shows these these variables

plotted against each other in a double-logarithmic coordi-

nate system. The domain areas were determined by simply

adding up the areas of the triangles constituting a domain.

For the perimeter calculation, the boundaries were first

smoothed in order to avoid the artifact imposed by the

triangular mesh. The two straight lines indicate separate

power law behaviors, which apply at two different regimes

of domain sizes with a cross-over at a perimeter around

p & 1 or equivalently A & 0.05. If we define the fractal

dimensions Dp and DA for the perimeter and area respec-

tively by

p ¼ CpLDp

A ¼ CALDA ;
ð14Þ

where L is measure of the linear extent of a domain, our

identified power law behavior provides an estimate of the

ratio DA

Dp
:

For the small domains, this ratio is DA

Dp
� 1:93; which is

approximately the characteristic value for compact two-

dimensional regions, for which the fractal dimensions are

Dp = 1 and DA = 2. For the larger domains, however, the

ratio is only DA

Dp
� 1:15; i.e., a non-compact behavior. This

parameter is easy to measure using our method and pro-

vides a means of testing models of the growth dynamics

and underlying textures of the domains.

Fig. 10 Surface image of a

GUV prepared from a mixture

of egg sphingomyelin and egg

ceramide. Also shown are the

identified domain boundaries,

when using the threshold

ir,0 = 0.15
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Edge map

Another means of investigating the domain morphology is

an edge map, which is any scalar field on the surface that

takes high values near domain boundaries and low values

elsewhere. This map can be used to overcome the lattice

artifact when determining tangent vectors along the

boundary: By taking the edge map as the density, a

moment of inertia tensor can be constructed in a neigh-

borhood of a small boundary segment, and the local ori-

entation of the boundary can thus be determined as the

principal axis with the smallest moment of inertia. The

edge map might also be used for setting up an active

contour method (Kass et al. 1988; Xu and Prince 1997) on

the spherical surface as another means of investigating

domain morphology.

One approach for defining an edge map is to first define

a suitable scalar field (say, the ‘‘greenness,’’ g) on the

surface as a map from the channel intensities, which will

have a large gradient near the edges of domains. For a two-

channel image with two phases as in the histogram in

Fig. 6, this could be the signed distance to the threshold

line in the two-channel histogram or the angle from the red

axis (/ in Sect. ‘‘Histograms and segmentation’’). For this

example, we will use the latter. In order to make this

function change more rapidly when crossing the threshold

line compared to changing within either side, it can be

wrapped in the inverse tangent function:

g ¼ tan�1 kð~g� ~g0Þð Þ ð15Þ

where k is a constant, ~g is the original greenness function,

and ~g ¼ ~g0 represents the threshold line in the histogram.

This reduces the gradients due to noise or structure within

the individual domains. This trick requires some confi-

dence in the proper location of the threshold, though, as it

can make domains appear smaller or larger on the edge

map depending on the value of ~g0: A Gaussian filter can

also be used to reduce noise at the cost of broadening the

edges in the edge map.

To complete the definition of an edge map of the vesicle

in Fig. 3 we have used the square norm of the gradient of

this field:

e ¼ jrgj2; g ¼ tan�1 5ð/� 0:718Þð Þ; / ¼ tan�1 ig
ir

� 	
:

ð16Þ

This value at a triangle is calculated by first evaluating

the components of the gradient along the vectors from the

triangle to to its three nearest neighbors. The position of a

triangle is here taken as its barycenter, i.e., the mean of the

three vertex positions. Pairwise these determine the

gradient vector, so an average is taken of the square

norms obtained using the three possible pairs. For the

purpose of this calculation, the four-triangle neighborhood

is first flattened by rotating the outer triangles around their

common edge with the center triangle, such that the three

distance vectors become coplanar.

The difference in the scalar field between the triangle

and its ith nearest neighbor is to first order

Dgi � vi � rg; ð17Þ

where vi is the distance vector between the centers of the

two triangles. For two directions i and j, we get a system of

linear equations

Arg � b; ð18Þ

where

A ¼ vix viy

vjx vjy

� 	
and b ¼ Dgi

Dgj

� 	
; ð19Þ

where the vectors have been represented in an orthonormal

basis of the plane of the flattened surface patch. The

solution of the system is

rg � A�1b

) jrgj2 ¼ rg>rg � b> A�1

 �>

A�1b ¼ b> AA>

 ��1

b:

ð20Þ

Since

AA>¼
jvij2 vi � vj

vi � vj jvjj2

 !

) AA>

 ��1¼ 1

det AA>ð Þ
jvjj2 �vi � vj

�vi � vj jvij2

 !

; ð21Þ

we get

jrgj2

� eij �
jvjj2Dg2

i þ jvij2Dg2
j � 2ðvi � vjÞDgiDgj

jvij2jvjj2 � ðvi � vjÞ2
: ð22Þ

The distance vectors are coplanar 3-vectors, but since the

result is expressed in terms of dot products of the vectors,

we avoid the need to transform them to a two-dimensional

orthonormal basis.

The edge map is now given by

e ¼ e12 þ e23 þ e31ð Þ
3

: ð23Þ

An example edge map is shown in Fig. 12.

Conclusion

We have presented a methodology to perform detailed

analysis of the lateral domain characteristics of GUVs

imaged by confocal fluorescence microscopy. A starting
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point for the analysis is the construction of a surface image

from the confocal imaging stack, which faithfully repre-

sents the variations of fluorophore concentrations over the

membrane. This construction takes into account the

experimental setup, i.e., optical resolution, confocal

stacking distance and orientation, lateral motion of the

vesicle during image acquisition and photoselection effect.

The surface image is triangulated to provide a discretiza-

tion that allows for analysis of morphological characteris-

tics of lateral domain structures. The domains are identified

using image intensity histograms, which provide effective

determinations of domain areas and boundaries. We show

that the approach provides characterization of global

properties of the lateral structure, e.g., domain size distri-

bution, and single domain characterization, e.g., lengths,

angles and geodesic curvatures of domain boundaries.

The rapid development in confocal fluorescence

microscopy techniques with respect to stack acquisition

time (e.g., spinning disk confocal microscopy), fluorophore

development and GUV preparation techniques (e.g., fixa-

tion of vesicles) continues to improve the quality of con-

focal imaging stacks. Our method facilitates a very detailed

characterization of the lateral structure of near-spherical

vesicles based on the stacks and thus helps close the

increasing gap between the level of detail available in

confocal imaging of vesicles and the quantitative charac-

terization the lateral structure obtained from it.
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Appendix 1: Linear least squares fitting

Least squares is a method for finding an approximate

solution to an overdetermined system of equations. Spe-

cifically, the least squares solution to the system is the one

that minimizes the sum of the squares of the residuals,

which are defined as the difference between the right- and

left-hand sides of each equation. The method is used for

fitting a model equation with n adjustable parameters to a

set of m data points, where m [ n.

If the system is linear, it can be written in matrix form as

Aq ¼ b; ð24Þ

where A is an m 9 n matrix with m [ n. The vector q

contains the unknowns, i.e., the parameters to be determined.

The vector of residuals for a given choice of q is given by

rðqÞ ¼ b� Aq: ð25Þ

The problem of minimizing the sum of squares of the

residuals can be written as

Fig. 12 An edge map of the

vesicle shown in Fig. 3. For this

image, the greenness is chosen

as g ¼ tan�1 5ð/� 0:718Þð Þ;
where / ¼ tan�1 ig

ir

� �
is the

angle from the red axis in the

histogram. The same vesicle is

depicted in six different

orientations
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0 ¼ o

oqi
r>r

 �

¼ o

oqi
q>A>Aqþ b>b� b>Aq� q>A>b

 �

¼ 2
X

j

A>A

 �

ij
qj � 2

X

j

A>ijbj ¼ 2
X

j

A>Aq� A>b

 �

i
;

ð26Þ

so the least squares solution to the overdetermined system

is the solution to the corresponding ‘‘normal equations’’:

A>Aq ¼ A>b ð27Þ

Circle fits

For the circle fits, the overdetermined system is

ðxi � xcÞ2 þ ðyi � ycÞ2 ¼ r2; ð28Þ

which can be rewritten as

x2
i þ y2

i ¼ r2 � x2
c � y2

c þ 2xcxþ 2ycy; ð29Þ

or

1 2x1 2y1

..

. ..
. ..

.

1 2xN 2yN

0

B@

1

CA
r2 � x2

c � y2
c

xc

yc

0

@

1

A ¼
x2

1 þ y2
1

..

.

x2
N þ y2

N

0

B@

1

CA

ð30Þ

defining A, q and b in equation (24). From the least squares

solution for q, the desired parameters can be found as

xc ¼ q2; yc ¼ q3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 þ q2

2 þ q2
3

q
ð31Þ

Sphere fit

For fitting a sphere using the radii ri of the circle fits, the

overdetermined system is

r2
i þ cð~zi � ~zcÞð Þ2¼ R2; ð32Þ

where c = Dz/Dx is the scaling factor for the z-direction,

and R is the radius of the sphere. The system can be

rewritten as

r2
i ¼ R2 � c2~z2

c þ 2c2~zc~zi � c2~z2
i ð33Þ

or

1 2~z1 �~z2
1

..

. ..
. ..

.

1 2~zN �~z2
N

0

B@

1

CA
R2 � c2~z2

c

c2~zc

c2

0

@

1

A ¼
r2

1

..

.

r2
N

0

B@

1

CA: ð34Þ

From the least squares solution, the parameters are:

c ¼ ffiffiffiffiffi
q3
p

; ~zc ¼
q2

q3

and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 þ
q2

2

q3

s

ð35Þ

Appendix 2: Spherical harmonics

The spherical harmonics are defined on the unit sphere

using spherical coordinates (see Fig. 2) as

Ym
‘ ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4p
ð‘� mÞ!
ð‘þ mÞ!

s

Pm
‘ ðcoshÞeim/;

‘ ¼ 0; 1; . . .; m ¼ �‘;�‘þ 1; . . .; ‘� 1; ‘;

ð36Þ

where Pm
‘ is the associated Legendre polynomial of degree

‘ and order m. They are orthonormal, i.e.,
ZZ

Ym
‘ ðh;/ÞYm0

‘0 ðh;/ÞdX ¼ d‘‘0dmm0 ; ð37Þ

where dX ¼ sin hdhd/:They form a complete basis for the

set of square-integrable functions on the unit sphere, i.e.,

any such function can be written as

f ðh;/Þ ¼
X1

‘¼0

X‘

m¼�‘
f m
‘ Ym

‘ ðh;/Þ: ð38Þ

If the coefficients f m
‘ decrease rapidly with ‘; the function

can be approximated as a linear combination of only a few

spherical harmonics. The least squares fit of a linear

combination of some number of spherical harmonics is

found by minimizing the integral of the square of the

residual

ZZ
f ðh;/Þ �

X

‘;m

f m
‘ Ym

‘ ðh;/Þ
 !2

dX ð39Þ

with respect to the coefficients f m
‘ :

0 ¼ o

of m
‘

ZZ
f ðh;/Þ �

X

‘0;m0

f m0

‘0 Ym0

‘0 ðh;/Þ
 !2

dX

¼ 2

 
X

‘0;m0

f m0

‘0

ZZ
Ym
‘ ðh;/ÞYm0

‘0 ðh;/ÞdX
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d‘‘0dmm0

�
ZZ

f ðh;/ÞYm
‘ ðh;/ÞdX

!

¼ 2 f m
‘ �

ZZ
f ðh;/ÞYm

‘ ðh;/ÞdX

� 	
ð40Þ

So the coefficient for a particular spherical harmonic is

simply the inner product of the function with the spherical

harmonic:
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