Course: Optics, Forces and Development Santiago, Chile, January 14th - 30th, 2013

Practical aspects of confocal laser scanning microscopy

Ulrich Kubitscheck

Institute of Physical and Theoretical Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn

Contents

- Point scanning Confocal Laser Scanning Microscopy (CLSM)
- Line-scanning confocal microscopy using scanned sheet illumination
- Setups and construction
- Pros and Cons

The confocal principle

Combination of focussed laser illumination

and detection through in pinhole placed in a conjugated optical plane

yields efficient background subtraction and axial resolution: "Optical Sectioning"

Radial and axial intensity profile of the light distribution in the focus of a lens

3D representation of light focus

Quantitative 3D-intensity profile in the focus of an objective lens with NA = 1.3 at 488 nm

CLSM-point spread function

Objektive 100X NA 1.32 100 nm/division

Scheme of a point scanning confocal microscope

Acquisition of optical sections

Alternatives: shift of object or shift of objective

Role of the detection pinhole

 α : opening angle of the objective lens divided by 2 n the refractive index of the medium in front of the objective lens. $r_{obj,0} = \frac{0.61 \,\lambda}{n \, \sin \alpha}$

 $NA_{Obj} = n \sin \alpha$

Detection yield, axial and lateral resolution as function of detection pinhole diameter

N. Naredi-Rainer, J. Prescher, A. Hartschuh, D.C. Lamb 2013, unpublished

Kinetics of a 3-state system at increasing illumination power

FIGURE 3 Fluorescence saturation of single GFP molecules as a function of the irradiance. Mean fluorescence intensity emitted by single GFP molecules within 10 ms was measured as a function of the incident irradiance (*symbols*). The data were fitted to Eq. 4 (*full line*), resulting in a value of 11 ± 4 kW/cm², at which 50% of the maximum fluorescence is emitted. Arrow, experimental irradiance.

Saturation of Cy5, Alexa633 or eGFP in aequeous solution at **2**, **7** respectively **11** kW/cm²

Comparison

Confocal scanning microscopy

High photodamage.

Active background rejection by pinhole.

Removes also contribution from scattered light.

Light sheet fluorescence microscopy

Reduced photo damage.

No background excitation.

Scattered light is being detected \rightarrow image blurred.

Comparison

Confocal scanning microscopy

High photodamage.

Active background rejection by pinhole.

Removes also contribution from scattered light.

Light sheet fluorescence microscopy

Reduced photo damage.

No background excitation.

Scattered light is being detected \rightarrow image blurred.

Point illumination - pinhole detection line illumination and slit detection

╈

LSFM with confocal slit detection

Scanned Light Sheet Microscopy

Philipp J. Keller, et al., Science 322, 1065 (2008)

Scientific CMOS

Scientific CMOS

First line reset and exposure start .

Inactive pixel rows

Scientific CMOS

Scientific CMOS

Exposure stop + read-out after exposure time has passed.

Reset and exposure start.

Rolling shutter

Band of simultaneous exposure.

Scientific CMOS

Exposure time = $N \times readout$ time for single row

Confocal effect

H. Spiecker (LaVision BioTec), "Method and arrangement for microscopy." PCT Patent 2011/120629

Confocal slit detection: Narrow excitation Slit aperture

Principle of relay lenses

Experimental setup

Experimental setup

Scattered light suppression

Fluorescent beads (Ø 200nm) with fluorescent dye in agarose gel. λ_{exc} = 633 nm. 0,5 particles/µm³

Laser intensity equal for all measurements.

Enhanced sectioning

3D reconstruction from image stack. \rightarrow Effective background suppression.

50 frames, 1 μm step size, 120x120x50 μm

Enhanced sectioning

Extended cleared samples

Embryonic mouse brain by courtesy of Dr. Sandra Blaess, Bonn

Acquisition of a large specimen volume: 3.13mm x 3mm x 612 μm

Mouse brain 3D mosaic

Movie starting from cover slip to 612 μ m inside the sample. Rolling shutter size = beam diameter (~9 μ m). λ ex=532 nm.

Cell nucleus of C. tentans larva

Light sheet illumination of a salivary gland cell nucleus.

Expand illumination beam to gain better sectioning:

I/e ² waist radius	Rayleigh length
2.8±0.2µm	37.6±0.6 μm

Cell nucleus of C. tentans larva

Rolling shutter size = 1/e² beam diameter (~5 μm). λ_{ex} =532 nm. Detection: Nikon objective 40X NA 1.1, W, LWD

Filtering of shadow artefacts

Global shutterRolling shutterRolling shutter destripedImage: Additional state of the state of t

Destriping algorithm based on wavelet and Fourier filtering according to

Münch et al. 2009, Stripe and ring artifact removal with combined wavelet-Fourier filtering, Optics Express 17, 8567-91

C. tentans salivary gland cell

Contrast improvement

Summary

Þ

Scanned Gaussian beam synchronized with sCMOS rolling shutter.

Blocking of scattered light and elimination of background.

Improved contrast and SNR without increase of illumination intensity.

Better sectioning and increased penetration depth.

Particularly suited for imaging uncleared and living samples.

2nd edition just published

To be published in April 2013

Biophysical chemistry group, Bonn

Lisa Büttner c Eugen Baumgart p Tim Kaminski b Florian Kotzur c Xinliang Liu b Claudio Nietzel t Maximilian Schiener c Dr. Karl Schmitz c Katharina Scherer c Ulrike Schmitz-Ziffels c Dr. Jan-Peter Siebrasse b Jan-Hendrik Spille p Andreas Veenendaal p

Former group members

Johannes Anzt c Sarah Benter c Claus Bier c Dr. Corina Ciobanasu c Sandra Cordes c Thomas Dange b Prof. Dr. David Grünwald bp Enno Harms c Dr. Andreas Hoekstra p Constanze Husche c Dr. Birgit Klaiberg c Oliver Kückmann p Dr. Thorsten Kues p Dr. Jörg Ritter p Dr. Daniel Rohleder p Dr. Jasmin Speil b Dr. Beatrice Spottke c Dr. Roman Veith b Werner Wendler t

Karolinska Institutet, Stockholm, Sweden Prof. Dr. Bertil Daneholt Goethe University of Frankfurt, Germany Prof. Dr. Alexander Heckel LaVision BioTec, Bielefeld, Germany Dr. Heinrich Spiecker, Volker Andresen

Funding by BMWi, DFG, EU and Bonn University is gratefully acknowledged