

Cell mechanics in Cell Biology

Dr. Roberto Bernal BioPhysics Lab - Physics Department Universidad de Santiago

Why consider physics as an approach to understand biological processes?

- Any phenomena leaves clues from its interactions...Therefore it can be measured.
- From these clues we can obtain information about the mechanism of these interactions.
- Why mechanics and not a more detailed microscopic description?... Cell mechanics is challenging enough to start with.

Let see... mechanics. What we can use to start to play?

Elasticity

Dissipation

Friction element / dashpot

drag coefficient

For a simple bead on a viscous fluid

fluid viscosity

 $\gamma = 6\pi\eta a$

bead radius

Classical combos l

Classical combos II

Classical combos III

A neat example

Newton's Law

 $F = m\ddot{x}_2$

Barnhart et al 2010

Springs and dashpot... there is something else?

Biopolymers

Molecular motors

- Myosin on actin to (+)
- Unconventional myosin on actin to (-)
- Kinesin on microtubule to (+)
- Dynein on microtubule to (-)

TOY Story models

MITOTIC SPINDLE OSCILLATIONS Pecreux et al 2006 Curr Biol

RETROGRADE ACTIN NERVS Chan & Odde 2008 Science

STRESS FIBERS Besser and Schwarz 2010 Biophys J

fue Is

AXONS MECHANICS Bernal 2007 Phys Rev Lett Bernal 2010 Biophys J

FOCAL ADHESIONS Walcott et al 2011 Biophys J

There is a microscopical meaning of these quantities?

The elasticity of a spaghetti network

Entropic elasticity

 $F \neq 0$

F = 0

Simple model: Single ideal chain

constant

Quasi one dimensional biological systems

Macroscopic elasticity

 $n \approx \frac{A}{l_{mot}^2}$ number of proteins in a single slice

$$F = k_{pro}^{(1)}\delta + k_{pro}^{(2)}\delta + \dots + k_{pro}^{(n)}\delta$$

$$F = \bar{k}\delta$$

 $k = nk_{pro}$

Macroscopic elasticity

Macroscopic viscosity

number of protein motors

Force transducer devices

TECHNIQUE	SENSITIVITY	PROS	CONS
MICRO NEEDLES	$0.1{-}10\mathrm{nN}/\mu\mathrm{m}$	Easy to implement	Difficult to calibrate No feedback
MICRO PLATES	$1{-}100\mathrm{nN}/\mathrm{\mu m}$	High accuracy Feedback	Difficult to calibrate Response depends on rigidity
MICRO ASPIRATION	$0.1{-}10^3\mathrm{pN}/\mu\mathrm{m}$	High accuracy Feedback	Difficult to calibrate Feedback too slow
LAMINAR/SHEAR FLOW	10^{-4} – 10^{-3} pN/ μ m	Easy to implement	Difficult to calibrate No feedback
SOFT SUBSTRATES	$0.01{-}1{ m nN}/\mu{ m m}$	Easy to implement	Difficult to calibrate No feedback Difficult to reproduce
SOFTLITHOGRAPHY	$0.01{-}100\mathrm{nN}/\mu\mathrm{m}$	Limited by imagination	No feedback High demands of supplementary equipment
MAGNETIC TWEEZERS	$0.01{-}100\mathrm{pN}/\mu\mathrm{m}$	Easy to implementn Feedback	Non Linear relation Feedback too slow
OPTICAL TWEEZERS	$0.1{-}10\mathrm{pN}/\mathrm{\mu m}$	High accuracy Fast Feedback	Difficult to implement Requires lots of programming and automatization

Cell mechanics in Cell Biology

Dr. Roberto Bernal BioPhysics Lab - Physics Department Universidad de Santiago

