#### Systems Biology

Nicolás Loira Center for Mathematical Modeling November 2014 <u>nloira@gmail.com</u>



#### Intro to Systems Biology

#### Metabolic Models

#### Systems Biology

#### Parts and pieces









## Sub-systems







#### Systemic view of a Cell





#### Signaling networks



#### Regulatory networks



#### Network inference



### Scientific & Biotech Applications



- 1. Contextualization of data
- 2. Guidance of metabolic engineering
- 3. Directing hypothesis-driven discovery
- 4. Discovery of multi-species relationships
- 5. Network property discovery

## Bioinfo. sub-fields

- -- Sequence analysis
- -- Genome annotation
- -- Computational evolutionary biology
- -- Literature analysis
- -- Analysis of gene expression
- -- Analysis of regulation
- -- Analysis of protein expression
- -- Analysis of molecules (metabolomics)
- -- Comparative genomics
- -- Modeling biological systems
- -- High-throughput image analysis
- -- Structural Bioinformatics

# Tools from Math, CS, IT

- ---- algorithms, computational biology
- ---- databases & information system
- ---- web, web services
- ---- software engineering
- ---- HPC (High Performance Computing)
- ---- data mining
- ---- image processing
- ---- modeling and simulation
- ---- discrete mathematics (eg: graphs, logic)
- ---- control and system theory
- ---- statistics

- engineering vs. reverse engineering
- biology: reverse engineering
- systems  $\leftrightarrow$  knowledge
- Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, <u>function</u>, and operation.
- Engineering is the discipline, art, skill and profession of acquiring and applying <u>scientific</u>, <u>mathematical,economic</u>, social, and practical knowledge, in order to <u>design</u> and build structures, machines, devices, systems, materials and <u>processes</u>

# Biology and models

-- biology: reverse engineering

systems  $\rightarrow$  models

- -- text, symbols, standards, language, math
- -- models: static vs dynamic
- ---- static: data and their relationships
- ---- dynamic: fluxes and multi-agent

- -- genomics
- -- prokaryote vs eukaryote



## Descriptive Models





### Predictive Models



### Generic Models



#### Specific model



#### Generic model

# Iterative model improvement



#### Metabolic Models

#### Definition of Metabolic Pathways

A chemical <u>reaction</u> interconverts chemical compounds (analogous to a production rule)

$$A + B = C + D$$

- An <u>enzyme</u> is a protein that accelerates chemical reactions. Each enzyme is encoded by one or more genes.
- A <u>pathway</u> is a linked set of reactions (analogous to a chain of rules)

$$A \longrightarrow C \longrightarrow E$$

#### Pathways



#### What is a Metabolic Pathway?

- A pathway is a conceptual unit of the metabolism
- An ordered set of interconnected, directed biochemical reactions
- A pathway forms a coherent unit:
  - Boundaries defined at high-connectivity substrates
  - Regulated as a single unit
  - Evolutionarily conserved across organisms as a single unit
  - Performs a single cellular function
  - Historically grouped together as a unit
  - All reactions in a single organism

#### Genome-scale Metabolic Networks



#### Elements of Met.Networks



extracellular

Stoichiometry is the measuring of metabolites in a chemical reaction

#### Reaction2: $2 M_1 + 3 M_2 => I M_3 + 4 M_4$ (-2 -3 +1 +4)

#### A network of reactions can be described with an Stoichiometric Matrix



Systems Biology: Properties of Reconstructed Networks (Palsson, 2006)

#### Instantiation of a Reaction



Organism2 (Target)



#### Gene association



#### KEGG <u>http://www.genome.jp/kegg/</u>



#### **KEGG** Color Mapper

http://www.genome.jp/kegg/tool/map\_pathway2.html



# Current metabolic models of S.cerevisiae

| Model ID                  | Publication    | Genes | Reactions | Metabo-<br>lites | Compart<br>-ments |
|---------------------------|----------------|-------|-----------|------------------|-------------------|
| iFF708                    | (Förster, 03)  | 708   | 1,175     | 825              | 4                 |
| iND750                    | (Duarte, 04)   | 750   | 1,489     | 972              | 8                 |
| iLL672                    | (Kuepfer, 05)  | 672   | 1,038     | 636              | 3                 |
| iIN800                    | (Nookaew, 08)  | 800   | 1,446     | 1,118            | 4                 |
| iJM832                    | (Herrgård, 08) | 832   | 1,857     | 2,152            | 15                |
| iJM832 no<br>compartments | (Herrgård, 08) | 832   | 1,573     | 1,748            | 2                 |
| iMM904                    | (Mo, 09)       | 904   | 1,577     | 1,392            | 8                 |

#### SBML

```
beginning of model definition
  <species compartment="c_02" id="s_5012" name="butyrate [cytoplasm]"/>
                                                                                           list of function definitions (optional)
  <species compartment="c_14" id="s_5013" name="butyrate [peroxisome]"/>
                                                                                           list of unit definitions (optional)
  <species compartment="c_14" id="s_5014" name="butyryl-CoA [peroxisome]"/>
                                                                                           list of compartment types (optional)
</listOfSpecies>
                                                                                           list of species types (optional)
<listOfParameters>
                                                                                           list of compartments (optional)
  <parameter id="dummy_flux" units="flux_unit" value="0"/>
                                                                                           list of species (optional)
</listOfParameters>
                                                                                           list of parameters (optional)
<listOfReactions>
                                                                                           list of initial assignments (optional)
  <reaction id="r_0001" name="(R)-lactate:ferricytochrome-c 2-oxidoreductase"</pre>
                                                                                           list of rules (optional)
    <notes>
                                                                                           list of constraints (optional)
      <html:body>
                                                                                           list of reactions (optional)
        <html:p>GENE_ASSOCIATION: (YALI0D09273g and (YALI0E03212g or YALI0C06
                                                                                           list of events (optional)
      </html:body>
                                                                                        end of model definition
    </notes>
    <listOfReactants>
      <speciesReference species="s_0028"/>
      <speciesReference species="s_0679" stoichiometry="2"/>
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="s_0680" stoichiometry="2"/>
      <speciesReference species="s_1277"/>
    </listOfProducts>
    <kineticLaw>
      <ns6:math>
```

#### Visualization tools





#### Cytoscape

#### CellDesigner

#### Current reconstructions



- Genome-scale models are hard and expensive to build
- Most reconstructions are for bacteria
- There are no tools to correctly reconstruct models for eukaryotes

#### [Oberhardt, 2009]

#### de novo reconstruction

#### [Thiele, Nature Protocols, 2010]



#### Auto: Pathway Tools Software: PathoLogic

Computational creation of new Pathway/Genome Databases

- Transforms genome into Pathway Tools schema and layers inferred information above the genome
- Predicts operons
- Predicts metabolic network
- Predicts pathway hole fillers
- Infers transport reactions

[Slides by Peter Karp]

#### Pathway Tools Software: Pathway/Genome Editors

- Interactively update PGDBs with graphical editors
- Support geographically distributed teams of curators with object database system
- Gene editor
- Protein editor
- Reaction editor
- Compound editor
- Pathway editor
- Operon editor
- Publication editor



#### Pathway Tools Software: Pathway/Genome Navigator

- Querying, visualization of pathways, chromosomes, operons
- Analysis operations
  - Pathway visualization of gene-expression data
  - Global comparisons of metabolic networks
  - Comparative genomics
- WWW publishing of PGDBs
- Desktop operation









#### Auto: Pantograph Re-using existing models



We need methods that can use an existing model to provide a base to build models for other organisms

This should decrease the amount of work needed to build a metabolic model

## Auto: Pantograph

#### Model Organism I



Genes organism 2

#### Pantograph Workflow



#### Reconstructions with Pantograph



Yarrowia lipolytica (INRA Micalis, France)

Nannochloropsis salina (AUSTRAL Biotech, Chile)

[Loira et al., 2012]

#### **Biofuels**





Ectocarpus siliculosus (INRIA Dylis, France)







Acidithiobacillus ferrooxidans (MATHomics, CMM, U.Chile)

# Automatic procedures can generate models with gaps



Metabolic network Gaps can exist because:

- The organism doesn't have that reaction
- The tools could not identify an homolog for the genes
- The organism have a different way to produce this enzymatic reaction

# Models reconstructed by automatic methods still require manual curation



- To Fix non-obvious gaps (but obvious for an expert in the organism)
- To Add relevant knowledge from the literature

#### Manual curation



#### Simulation and predictions of metabolism

#### Models can be used to predict behavior



# Fluxes account for the number of times a reaction happens

 Representation of the variation of Metabolites in a time unit, given some flux:

$$S * v = dx/dt$$

- S: Stoichiometric Matrix
- v: Flux Vector
- x: Metabolite vector

 $x=(M_1 M_2 M_3 M_4...)$ 

# Steady-state mean number of internal metabolites is constant in time

$$S * \vec{v} = d\vec{x}/dt = 0$$

 Biological Systems tend to stabilize with time in a Steady State Flux Balance Analysis (FBA)

#### Flux Balance Analysis (FBA) is useful to search fluxes that maximize a function



# FBA solutions are restricted by constrains



# FBA can be used to maximize biomass production

Biomass = 1.134800 1,3betaDglcn + 0.458800 ala + 0.046000amp + 0.160700 arg + 0.101700 asn + 0.297500 asp +59.276000 atp + 0.044700 cmp + 0.006600 cys + 0.003600 damp + 0.002400 dcmp + 0.002400 dgmp + 0.003600 dtmp + 0.000700 ergst + 0.105400 gln + 0.301800 glu + 0.290400 gly + 0.518500 glycogen + 0.046000 gmp + 59.276000 h20 + 0.066300 his + 0.192700 ile + 0.296400 leu + 0.286200 lys + 0.807900 mannan + 0.050700 met + 0.000006 pa + 0.000060 pc + 0.000045 pe + 0.133900 phe + 0.164700 pro + 0.000017 ps + 0.000053 ptd1ino + 0.185400 ser + 0.020000 so4 + 0.191400 thr + 0.023400 tre + 0.000066 triglyc + 0.028400 trp + 0.102000 tyr + 0.059900 ump + 0.264600 val + 0.001500 zymst

# From a constrained flux problem we build an LP problem

Maximize:  $Z = \omega \cdot v$ 

Subject to:

ω definemetabolites inbiomass function

 $\alpha$  and  $\beta$  are bounds to fluxes

 $\alpha \leq v \leq \beta$ 

 $S \cdot v = 0$ 

## We use FBA to measure effects of reaction deletion in biomass



Genetic conditions (Gene KOs)

# Knocking out a gene and measuring growth



Simulation vs experimental evidence



#### Metabolic model accuracy

• Example: Model iND750, Biomass Function iND750

• Against experimental results from (Winzeler, 1999)

| Accuracy=<br>(TP+TN) |  |
|----------------------|--|
| (TP+TN+FP+FN)        |  |

|          | Rich Media | Minimal Media |                                              |
|----------|------------|---------------|----------------------------------------------|
| TP       | 49         | 48            | Accuracy=<br>(Tp+Tn)/(tp+tn+fp+fn)           |
| ΤN       |            | 6             | sensitivity=<br>tp/(tp+fn)<br>specificity=   |
| FP       | 3          | 4             | tn/(tn+fp)<br>geom.mean=<br>sqr(sens*specif) |
| FN       | 9          | 4             |                                              |
| Accuracy | 0.806      | 0.871         |                                              |

#### Accuracy report



#### Detailed validation

| Ref  | Media     | Y. lipolytica<br>knocked locus | S. cerevisiae<br>ortholog | Gene<br>name | Exp.<br>Growth | Simul.<br>Growth | Result        |
|------|-----------|--------------------------------|---------------------------|--------------|----------------|------------------|---------------|
| [36] | Aspartate | YALI0C24101g                   | YGL062W                   | PYC1         | +              | +                | TP            |
| [36] | Glutamate | YALI0C24101g                   | YGL062W                   | PYC1         | +              | _                | $\mathrm{FN}$ |
| [36] | YNBD      | YALI0C16885g                   | YER065C                   | ICL1         | +              | +                | TP            |
| [36] | Ethanol   | YALI0C16885g                   | YER065C                   | ICL1         | -              | -                | TN            |
| [36] | Aspartate | YALI0C16885g                   | YER065C                   | ICL1         | +              | +                | TP            |
| [36] | Glutamate | YALI0C16885g                   | YER065C                   | ICL1         | +              | -                | FN            |
| [36] | YNBD      | YALI0C24101g<br>YALI0C16885g   | YGL062W<br>YER065C        | ICL1<br>PYC1 | -              | -                | TN            |
| [36] | Ethanol   | YALI0C24101g<br>YALI0C16885g   | YGL062W<br>YER065C        | ICL1<br>PYC1 | -              | -                | TN            |
| [36] | Aspartate | YALI0C24101g<br>YALI0C16885g   | YGL062W<br>YER065C        | ICL1<br>PYC1 | +              | +                | TP            |

#### Y. lipolytica Model validation





39 True Positives 16 False Positives 25 True Negatives 18 False Negatives



- COBRA toolbox: for FluxBalanceAnalysis
- Matlab
- glpk/glpkmex: for solving LP
- libsbml/SBMLTools: for SBML handling
- Pantograph

#### Validation and iterative improvement



#### FIN

Nicolás Loira Center for Mathematical Modeling November 2014 <u>nloira@gmail.com</u>