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Metabolic network reconstruction of Chlamydomonas
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Metabolic network reconstruction encompasses existing knowledge about an organism’s
metabolism and genome annotation, providing a platform for omics data analysis and phenotype
prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological
processes from photosynthesis to phototaxis. Recent heightened interest in this species results from
an international movement to develop algal biofuels. Integrating biological and optical data, we
reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling
approach that enables quantitative growth prediction for a given light source, resolving wavelength
and photon flux. We experimentally verified transcripts accounted for in the network and
physiologically validated model function through simulation and generation of new experimental
growth data, providing high confidence in network contents and predictive applications. The
network offers insight into algal metabolism and potential for genetic engineering and efficient
light source design, a pioneering resource for studying light-driven metabolism and quantitative

systems biology.
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Introduction

Algae have garnered significant interest in recent years for their
potential commercial applications in biofuels (Hu et al, 2008;
Hemschemeier et al, 2009) and nutritional supplements
(Spolaore et al, 2006). Among eukaryotic microalgae, Chlamy-
domonas reinhardtii has arisen as the hallmark, model organism
(Harris, 2001). C. reinhardtii has been widely used to study
photosynthesis, cell motility and phototaxis, cell wall biogen-
esis, and other fundamental cellular processes (Harris, 2001).

Commercial use and basic scientific research of photosyn-
thetic organisms could benefit from better understanding of
how light is absorbed and affects cellular systems. The quality
of light sources implemented in photobioreactors largely
determines the efficiency of energy usage in industrial algal
farming (Fernandes et al, 2010). Light spectral quality also
affects how photon absorption induces various metabolic
processes: photosynthesis, pigment and vitamin synthesis,
and the retinol pathway required for phototaxis.

Metabolic network reconstruction provides a framework to
integrate diverse experimental data for investigation of global
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properties of metabolism, and as such, can provide clear
advantages as a mode of studying the effects of light upon a
photosynthetic biological system if light input is accounted for
explicitly. The standardized reconstruction process (Thiele
and Palsson, 2010) yields a biochemically and genomically
structured knowledgebase and, coupled with the standard
simulation approach of flux balance analysis (FBA) (Orth et al,
2010), provides a basis for predictive phenotype modeling;
both contexts have been used for a variety of applications
(Durot et al, 2009; Oberhardt et al, 2009; Gianchandani et al,
2010), among them the design of genetic engineering strategies
for production strains (Bro et al, 2006; Park et al, 2011). To date,
however, photon flux, with associated spectral constraints, has
not been integrated into a metabolic network reconstruction.

Characterizing algal metabolism is key to engineering
production strains and framing the study of photosynthesis.
Extensive literature on C. reinhardtii metabolism, reviewed in
Stern et al (2008), and multiple metabolic mutants (Harris
et al, 2008) provide a solid foundation for detailed character-
ization of its metabolic functions. The availability of complete
genome sequence data for C. reinhardtii (Merchant et al, 2007)
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and its functional annotation have enabled bioinformatic
approaches to inform the presence of genome-encoded
enzymes (Grossman et al, 2007; Boyle and Morgan, 2009;
Manichaikul et al, 2009). We have employed these resources to
reconstruct and experimentally validate a genome-scale
metabolic network of C. reinhardtii, the first network to
account for detailed photon absorption permitting growth
simulations under different light sources. This network
accounts for the activity of substantially more genes with
metabolic functions than existing reconstructions (Boyle and
Morgan, 2009; Manichaikul et al, 2009).

Results

Reconstruction contents and advances

The genome-scale C. reinhardtii metabolic network (Figure 1A;
Supplementary Figure S1; Supplementary Table S1; Supple-
mentary Table S2; Supplementary Model S1) accounts for 1080
genes, associated with 2190 reactions and 1068 unique
metabolites, and encompasses 83 subsystems distributed across
10 compartments. As per convention (Reed et al, 2003), we call
this network {RC1080 based on the primary reconstructionist
and the scope of genomic content. Of the putative protein-
coding genes in the C. reinhardtii genome (http://augustus.go-
bics.de/predictions/chlamydomonas/augustus.u5.aa), an esti-
mated 20% function in metabolism (Supplementary Table S3).
iRC1080 accounts for the activity of >32% of the estimated

genes with metabolic functions, a significant expansion over
existing reconstructions (Boyle and Morgan, 2009; Manichaikul
et al, 2009). iRC1080 is the most comprehensive metabolic
network reconstruction of C. reinhardtii to date based on
inclusion of pathways and a level of detail absent from previous
reconstructions.

A major emergent feature of C. reinhardtii metabolism,
apparent in Figure 1A, is the relative centrality of the
chloroplast and its importance in light-driven metabolism.
The chloroplast, including the thylakoid and eyespot sub-
compartments, accounts for >30% of the total reactions in the
network and 9 of the 10 photon-utilizing reactions. The
thylakoid contains essential pathways for photoautotrophic
growth including photosynthesis, chlorophyll synthesis, and
carotenoid synthesis, producing photoprotective pigments
also valuable as fish feed additives and nutritional supple-
ments for human consumption. The eyespot accounts for
retinol metabolism, the mechanistic basis for phototaxis.
Several pathways are partially duplicated across the chlor-
oplast and other cellular compartments, in agreement with
known biochemistry. A few crucial pathways are divided
between the chloroplast and cytosol, including glycolysis and
glycerolipid metabolism. Among the glycerolipids, triacylgly-
cerides carrying high energy, long-chain fatty acids relevant for
biofuel production accumulate substantially in microalgae.
iRC1080 provides a thorough resource for studying these and
other metabolic products and a basis for strain design for
genetic engineering.
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Contents of the /RC1080 metabolic network reconstruction. (A) Compartmentalized network diagram. The full genome-scale metabolic network is depicted,

denoting compartments. A high-resolution diagram without compartment labels is also available (Supplementary Figure S1). (B) Global transcript verification status. The
graph shows the distribution of transcripts accounted for in the network categorized by their verification status. Color codes correspond to the noted percentage of
transcript sequence verified experimentally. For example, 42% of transcripts in the network were verified experimentally by 100% sequence coverage. (C) Latent
VLCPUFA pathway diagram. Blue nodes represent metabolites included in /RC1080, and orange nodes represent metabolites not included in /RC1080, hypothesized to
be absent in C. reinhardtii. Green edges represent enzyme activities accounted for in our functional annotation, and the red edge represents the VLCFA elongase
missing from our annotation and hypothesized to have been lost in C. reinhardtifs evolution. This pathway diagram also demonstrates the detail of the high-resolution

network diagram (Supplementary Figure S1).
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iRC1080 considerably expands lipid metabolic pathways
over previous reconstructions. We compared the lipid path-
ways of iRC1080 with several previously published metabolic
reconstructions (Duarte et al, 2007; Feist et al, 2007; Boyle and
Morgan, 2009; Mo et al, 2009; Montagud et al, 2010) counting
the number of genes, reactions, and chemically distinct lipid
molecules included in pathways for each lipid class (Table I).
The extent of gene, reaction, and metabolite content of lipid
pathways in i{R1080 is, in general, greater than previous
reconstructions. The coverage of ketoacyl lipid chemical
properties represented in each network was also analyzed
for all metabolites in fatty acyl, glycerolipid, glyceropho-
spholipid, and sphingolipid classes; the fraction of lipid
metabolites in the networks that account for a given applicable
property was determined (Table I). Lower coverage signifies
incompletely specified molecular species and often lumped
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lipid reactions and metabolites. iRC1080 accounts explicitly for
all metabolites in these pathways, providing sufficient detail to
completely specify all individual molecular species: backbone
molecule and its stereochemical numbering of acyl-chain
positions; acyl-chain length; and number, position, and
cis-trans stereoisomerism of carbon-carbon double bonds.
This level of detail enables a significantly higher degree of
precision in lipid studies and in metabolic engineering design
involving these pathways.

Experimental transcript verification

We have analyzed iRC1080 via experimental transcript
verification under permissive growth conditions (Supplemen-
tary Table S4), representing the largest genome-scale trans-
cript validation effort to date. More than 75% of included

Table I Lipid pathway reconstruction properties in {RC1080 in comparison to other metabolic network reconstructions

Reconstructions
iRC1080 C. [INB305] 1Syn669 iMM904 iAF1260 Recon 1
reinhardtii C. reinhardtii Synechocystis S. cerevisiae E. coli Homo sapiens

Ketoacyl lipid chemical properties®

Backbone molecule 1.00 0.94 1.00 1.00 1.00 1.00

Stereochemical numbering 1.00 0.00 0.60 0.85 1.00 0.00

Acyl-chain length 1.00 0.72 0.90 0.91 1.00 0.70

C=C number 1.00 0.72 0.75 0.91 1.00 0.70

C=C positions 1.00 0.00 0.80 0.42 0.91 0.60

E-Z stereoisomerism 1.00 0.00 0.80 0.50 0.42 0.53
Fattg acyls

G 64 7 13 32 26 91

R® 167 41 71 108 139 233

M 104 21 55 55 95 137
Glycerolipids

GP 40 0 0 18 0 27

R¢ 292 4 0 12 0 13

M 135 4 2 4 7 4
Glycerophospholipids

GP 47 0 8 46 22 87

R® 126 5 7 52 227 51

M 56 4 3 4 102 22
Sphingolipids

GP 8 0 0 21 0 54

R¢ 10 0 0 63 0 79

M 6 0 0 31 0 59
Sterol lipids

GP 22 0 1 32 0 87

R® 34 0 3 49 0 156

me 26 0 4 22 0 105
Prenol lipids

GP 37 4 15 9 16 21

R® 59 5 53 17 20 50

mé 43 4 42 15 17 41
Total lipids

GP 218 1 37 158 64 367

R® 688 55 134 301 386 582

mé 370 33 106 131 221 368

“Values are the fraction of lipid metabolites in each network that account for each property, when applicable.

PGene transcripts (can be duplicated across lipid classes).
‘Lipid pathway reactions (non-transport).
dLipid metabolites (unique lipids).
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transcripts were verified at >90% sequence coverage, and
92% of tested transcripts were at least partially validated
experimentally (i.e. a portion of the sequence was recovered in
the sequenced transcripts) (Figure 1B). We also analyzed the
strength of transcript verification by specific metabolic
subsystems (Figure 2, a representative subset; Supplementary
Figure S2, the full set). The full lengths of all transcripts
associated with 10 subsystems were verified, notably includ-
ing biosynthesis of unsaturated fatty acids, histidine metabo-
lism, and phenylalanine, tyrosine and tryptophan
biosynthesis, with 12, 12, and 24 transcripts, respectively.
Many more subsystems were also well verified, 61 out of 76
gene-associated subsystems with >90% of associated tran-
scripts at least partially validated. It should be noted that only
sequencing reads that uniquely map to reference transcript
sequences were counted toward the percentage of length
validation; thus, sequencing reads unique enough to un-
ambiguously specify the corresponding reference transcript
were detected for every transcript with > 0% validation. A few
subsystems stood out as being more poorly verified, including
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Figure 2 Experimental transcript verification by subsystem. The graph
summarizes transcript verification status (see Materials and methods and
Supplementary information for details) for 30 of the 76 gene-associated
subsystems of /RC1080. Identical analysis for the full complement of
76 subsystems is also available (Supplementary Figure S2). The x axis
corresponds to the percentage of subsystem-associated transcripts that were
experimentally verified to the extent noted by the color code.
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chloroplast and mitochondrial transport systems and
sphingolipid metabolism, all of which exhibited <80% of
transcripts validated to any extent. This may reflect low
expression level or imperfect structural annotation of these
genes, particularly compartmental transporters. Low expres-
sion levels or complete deactivation of these genes is
consistent with a hypothesized evolutionary trend (see below)
in the case of sphingolipid metabolism.

Evolution of latent lipid pathways

The comprehensive reconstruction of lipid metabolism in
iRC1080 revealed hypothetical latent pathways, the functions
of which have likely been lost through evolution. Previous
studies established that C. reinhardtii lacks the practically
ubiquitous membrane lipids phosphatidylcholine (Giroud
et al, 1988) and phosphatidylserine (Riekhof et al, 2005).
Similarly, our reconstruction suggests that C. reinhardtii also
lacks very long-chain fatty acids (VLCFAs), their polyunsatu-
rated analogs (VLCPUFAs) (Figure 1C), and ceramides.
Surveys of C. reinhardtii lipid species have not detected
VLCFAs (Giroud et al, 1988; Giroud and Eichenberger, 1989;
Tatsuzawa et al, 1996; Dubertret et al, 2002; Kajikawa et al,
2006; Lang, 2007), likely due to a lack of functional VLCFA
elongase (Weers and Gulati, 1997; Guschina and Harwood,
2006; Kajikawa et al, 2006). No candidate VLCFA elongase was
identified in our comprehensive functional annotation (Sup-
plementary Table S3), and our annotation suggests several
downstream gaps in arachidonic acid metabolism as well,
corroborating this hypothesis. Arachidonic acid, the 20-carbon
parent fatty acid of all VLCFAs and VLCPUFAs, is synthesized
by a VLCFA elongase-catalyzed extension of y-linolenic acid,
which is present in C. reinhardtii (Griffiths et al, 2000).
Notably, C. reinhardtii does encode a fatty acid desaturase that
accepts arachidonic acid as substrate (Kajikawa et al, 2006)
and, based on our functional annotation, encodes several
other enzymes that act upon this substrate, indicating that
algal ancestors likely had a functional VLCFA elongase.
Multiple lines of evidence uncovered during the reconstruc-
tion also support the absence of ceramides in C. reinhardtii.
Our functional annotation did not uncover a convincing
candidate for ceramide synthetase (EC:2.3.1.24), a required
enzyme for ceramide synthesis, nor, to our knowledge, has one
been discovered by previous efforts, including C. reinhardtii
enzyme annotations of the Kyoto Encyclopedia of Genes and
Genomes. Similarly, our functional annotation suggests
substantial gaps downstream in the sphingolipid metabolic
pathway. As aforementioned, C. reinhardtii also lacks VLCFAs,
and VLCFA-CoA is a required substrate for the ceramide
synthetase reaction (Hills and Roscoe, 2006). Finally, our
experimental transcript analysis failed to verify 2 out of 8
transcripts associated with sphingolipid metabolism (Figure 2)
that were included in iRC1080, 1 of 2 serine C-palmitoyl-
transferases and a putative sphingosine 1-phosphate aldolase.
This result may reflect still further gene function loss in this
pathway, perhaps occurring more recently in evolutionary
time given that our functional annotation actually detected
candidate sequences for these enzymes. Considering this
evidence, we suggest that the evolutionary history of
C. reinhardtii includes the loss of ceramide metabolism,
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although this hypothesis remains to be verified. Annotated
enzymes in this pathway separated from the broader network
by gaps may represent multifunctional proteins or proteins
that have evolved to function in a pathway distinct from
ceramide synthesis. These gaps in C. reinhardtii metabolism
not only increase understanding of the evolution of algal lipid
pathways but also represent potential targets for genetic
engineering in an effort to expand the diversity of lipids this
alga can synthesize. Such engineering efforts serve as valuable
test cases for engineering industrial strains and could improve
C. reinhardtii as a model alga for biofuel development.

Modeling metabolic light usage

Our reconstruction accounted for effective light spectral ranges
by analyzing biochemical activity spectra (Figure 3A), either
reaction activity or absorbance at varying light wavelengths.
Defining effective spectral bandwidths associated with each
photon-utilizing reaction enabled our network to model
growth under different light sources via stoichiometric
representation of the spectral composition of emitted light,
which we term prism reactions. The coefficients for different
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photon wavelengths in prism reactions correspond to the
ratios of photon flux in the defined effective spectral ranges to
the total photon flux in the visible spectrum emitted by a given
light source (Figure 3A and B). In this manner, it is possible to
distinguish the amount of emitted photons that drive different
metabolic reactions. We created prism reactions for 11 distinct
light sources (Supplementary Figure S3), covering most
sources that have been used in published studies for algal
and plant growth including solar light, various light bulbs,
and LEDs.

The network reconstruction provides a detailed account of
metabolic photon absorption by light-driven reactions.
Photosystems I and II in {RC1080 stoichiometrically absorb
photons according to the Z-scheme (Berg et al, 2007). The
light-dependent protochlorophyllide oxidoreductases require
a single photon per catalysis as demonstrated in wheat
(Griffiths et al, 1996). Extrapolation of UVB energy require-
ments for spontaneous provitamin D; conversion to vitamin
D; (Bjorn, 2007) based on the average photon energy in the
UVB range suggests a stoichiometric ratio of approximately
one. Two phototactic rhodopsins, reactants of the rhodopsin
photoisomerase reaction, are encoded by C. reinhardtii, one
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Figure 3  Analysis of light spectra. (A) Activity and irradiance spectra. The top graph displays activity spectra for photon-utilizing reactions included in i/RC1080. The
abbreviated reactions are defined as follows: VITD3, vitamin D3 synthesis; OPSIN, rhodopsin photoisomerase; PCHLD, both protochlorophyllide photoreductase and
divinylprotochlorophyllide photoreductase; PSI, photosystem I; PSII, photosystem II. The y axis for the activity spectra is the fraction of maximum-measured activity with
respect to each noted reaction. Four of the eleven sample irradiance spectra (Supplementary Figure S3) are depicted with y axes set as the percentage of total visible
photon flux at each wavelength (x axis). Effective spectral bandwidths are denoted by vertical dashed lines color coded to match the activity spectra for each reaction.
(B) Prism reaction derivation. The photon flux from wavelengths a to b is normalized by the total visible photon flux from 380 to 750 nm to yield the effective spectral
bandwidth coefficient C. The coefficients for each range are compiled into a single prism reaction for a given light source, representing the composition of emitted light as
defined by photon-utilizing metabolic reactions. Equation variables are defined at top.
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requiring a single photon and one requiring two photons for
activation; the average effective stoichiometric photon count
was measured to be 1.6 (Hegemann and Marwan, 1988).

A prismreaction is the intermediate step between light input
and the specific photon-utilizing metabolic reactions men-
tioned above. Flux through the photon exchange reaction
‘EX_photonVis(e)” represents the total metabolically active
photon flux incident upon the cell. Flux passing through this
exchange reaction then passes through a single user-specified
prism reaction, for example ‘PRISM_solar_litho, and is
distributed across specific spectral ranges. These ranges are
specified explicitly in the photon-dependent metabolic reac-
tion formulas (Supplementary Table S2), thereby making these
reactions wavelength specific. Flux through the photon-
dependent metabolic reactions is then propagated through
the network. Excess wavelength-specific photon fluxes that
are not absorbed metabolically leave the system via demand
reactions, for example ‘DM_photon298(c), completing the
pathway of light through the network.

To accurately model metabolic activity of a photosynthetic
organism, it is also important to consider regulatory effects
resulting from lighting conditions. Indeed, light and dark
conditions have been shown to affect metabolic enzyme
activity in C. reinhardtii at multiple levels: transcriptional
regulation (Bohne and Linden, 2002), chloroplast RNA
degradation (Salvador et al, 1993), translational regulation
(Cahoon and Timko, 2000), and thioredoxin-mediated
enzyme regulation (Lemaire et al, 2004). As a preliminary
attempt to incorporate light and dark regulatory effects,
literature was reviewed to identify such regulation upon
enzymes in {RC1080 (Supplementary Table S5), focusing
mainly on thioredoxin regulation of chloroplast enzymes since
most published data relate to this mode. In the absence of
activity spectra for these effects, it is not yet possible to
represent these effects via prism reactions. Therefore, we
modeled regulation with Boolean reaction flux constraints
following published approaches (Covert et al, 2001).

Environmental and genetic validation of /RC1080

Implementing light-regulated constraints and basic environ-
mental exchange constraints (Supplementary Table S6)
yielded photoautotrophic, heterotrophic, and mixotrophic
models from iRC1080. We simulated various growth condi-
tions (Supplementary Table S7) and all gene knockouts for
which phenotypes have been published and are assessable
in our network (Supplementary Table S8) to validate the
predictive ability of the models. All 30 validations involving
environmental parameters displayed very close agreement
with experimental results (Supplementary Table S7).
Of particular note is the ability of our photosynthetic model
in sunlight to accurately recapitulate O,-PAR (photosyntheti-
cally active radiation) energy conversion efficiency, predicting
an efficiency of 2% compared with the experimental result
(Greenbaum, 1988) of 1.3-4.5%. Of the 14 gene knockouts
simulated, 7 were partially or completely validated relative to
experimental results (Supplementary Table S8). The uncon-
firmed gene knockout phenotypes may result from network
errors or an incomplete set of constraints in the model
(e.g. enzyme capacity, regulatory, thermodynamic, or other
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constraints). No internal model reactions were constrained in
the models except indirectly via constraints on the input
exchanges and the few explicitly noted Boolean regulatory
constraints imposed (Supplementary Table S5). The uncon-
firmed knockout phenotypes were investigated through model
analysis and literature search, although in most cases, current
literature evidence could not completely explain these
discrepancies, leaving them to be fully accounted for by future
studies.

Two discrepancies may result from incomplete genome
functional annotation or missing constraints. Knockout of
mitochondrial NADH:ubiquinone oxidoreductase complex I
(EC:1.6.5.3) in the model fails to recapitulate a reduced
heterotrophic growth phenotype (Remacle et al, 2001a). The
NDA2 and NDA3 genes can substitute completely for this
activity in the current model. Sequence-based localization
analysis places both proteins in the mitochondria, but this may
be incorrect as a recent study suggests that both may be plastid
localized (Desplats et al, 2009). Two other network reactions
can also substitute for the reduction of ubiquinone, succinate
dehydrogenase (ubiquinone) (EC:1.3.5.1) and electron trans-
fer flavoprotein-ubiquinone oxidoreductase (EC:1.5.5.1).
The cytochrome c oxidase complex IV (EC:1.9.3.1) knockout
does not result in an obligate photoautotrophic phenotype
(Remacle et al, 2001b) in the model because the cytochrome c
peroxidase (EC:1.11.1.5) reaction is capable of compensating.
The C. reinhardtii CCPR1 protein is homologous to mitochon-
drial cytochrome c peroxidases from a number of species,
but no focused studies have been carried out to provide further
evidence for this enzyme. In the model, the complex IV and
CCPR1 double knockout is an obligate photoautotroph. These
discrepancies point out important genes that should be the
focus of subsequent experimentation in order to more clearly
understand these metabolic phenotypes.

Another discrepancy may result from missing thermody-
namic constraints. The zeaxanthin epoxidase (EC:1.14.13.90)
knockout does not preclude antheraxanthin, violaxanthin,
or neoxanthin production (Baroli et al, 2003) in the model
because violaxanthin de-epoxidase (EC:1.10.99.3) reactions
compensate. This substitution depends on the reversibility of
these de-epoxidase reactions and may point to missing
thermodynamic constraints or to undiscovered regulation
under this condition.

Two discrepancies result from the lack of accounting for
kinetics of the reactions of ribulose-1,5-bisphosphate carbox-
ylase oxygenase (RuBisCO) from the model. Both phospho-
glycolate phosphatase (EC:3.1.3.18) (Suzuki et al, 1990)
and glycolate dehydrogenase (EC:1.1.99.14) (Nakamura
et al, 2005) deficient mutants require high CO, for photo-
autotrophic growth in vivo, not recapitulated in simulations.
This phenotype results from dominance of the oxygenase over
carboxylase activity of RuBisCO under lower CO, conditions,
both reactions sharing the same catalytic site. In vivo, these
two mutants are deficient in the salvage of carbon from
2-phosphoglycolate, a product of the oxygenase activity of
RuBisCO. Although these two reactions are carried out by the
same enzyme in the model, their fluxes are treated as
independent and not competitive; due to an absence of kinetic
parameters in the model, the effect of relative CO, and O,
concentrations upon RuBisCO activity cannot be explicitly
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expressed. Because the carboxylase activity more efficiently
promotes growth, both high and low CO, conditions drive only
this reaction and not the oxygenase reaction in the model;
therefore, the salvage pathway is unnecessary in the model to
achieve wild-type growth rates.

Finally, two mutant phenotype discrepancies in the model
result from complex compensatory pathways that convert an
input carbon source to the mutant-required carbon source.
The high CO, requirement for photoautotrophic growth due to
knockout of the chloroplast carbonic anhydrase (EC:4.2.1.1)
(Spalding et al, 1983; Funke et al, 1997) can be compensated
for in the model by activity of a six-reaction pathway of
pyrimidine metabolism leading from bicarbonate incorpora-
tion via carbamoyl-phosphate synthase (EC:6.3.5.5) to con-
version to CO, via orotidine-5’-phosphate decarboxylase
(EC:4.1.1.23). The chloroplast ATP synthase (EC:3.6.3.14)
deficient mutant (Smart and Selman, 1991; Dent et al, 2005;
Drapier et al, 2007) with an acetate-requiring phenotype can
be compensated for in the model by a complex pathway
consisting of >15 reactions by which CO, is converted to
acetate, which is then used in pathways similar to those
supporting heterotrophic growth. Although this complex
pathway has many branch points, it is notable that chloroplast
malate dehydrogenase (EC:1.1.1.40) and the diffusion of
pyruvate between the cytosol and chloroplast are essential to
coupling the CO, fixation reactions to pyruvate metabolism
and ultimate conversion to acetate but are not essential to
the wild-type photoautotrophic or heterotrophic models. Loss
of either of these conditionally essential reactions prevents the
CO,-to-acetate conversion and recapitulates the acetate-
requiring phenotype. Given the complexity of these compen-
satory pathways, a number of possible missing constraints
could explain their inactivity in vivo under photosynthetic
conditions, and the model offers a starting point to explore
possible targets of regulation under these conditions.

Gene essentiality analysis

To demonstrate the prospective use of iRC1080 in predi-
cting phenotypic outcomes of genetic manipulations of
C. reinhardtii, comprehensive essentiality analysis of all
simulated single-gene knockouts was performed in models
under four basic environmental conditions: growth in sunlight
with and without acetate, aerobic growth in dark on acetate,
and anaerobic subsistence in dark on starch. Phenotypes were
defined as growth equivalent to wild-type, reduced growth
relative to wild-type, or lethal based on the comparative
objective fluxes of the mutant and wild-type models
(Supplementary Table S9). A lethal phenotype was defined
as no flux through the biomass reaction (defined as the
objective function) in the mutant. Simulation results exhibited
distinct metabolic system dependencies under each condition.
There were 201 and 144 lethal knockouts in the model with
sunlight and with and without acetate, respectively. There
were 147 and only 3 lethal knockouts in the aerobic and
anaerobic dark model, respectively. The metabolic processes
associated with essential genes were ranked, and the three
subsystems associated with the essential genes were compared
under each condition. Photosynthesis, porphyrin and
chlorophyll metabolism, and phenylalanine, tyrosine, and

© 2011 EMBO and Macmillan Publishers Limited

Metabolic network reconstruction of Chlamydomonas
RL Chang et al

tryptophan biosynthesis were the most essential subsystems in
light without acetate. Phenylalanine, tyrosine, and tryptophan
biosynthesis, porphyrin and chlorophyll metabolism, and
purine metabolism were the most essential subsystems in
light with acetate. Expectedly, photosynthesis is most crucial
for photoautotrophic growth and not required in the presence
of acetate. The dark, aerobic condition had the same top
ranked essential subsystems as in the mixotrophic condition,
which is also expected as amino acids, chlorophyll, and
nucleotides make up a high proportion of the required biomass
components under both conditions. For subsistence in dark on
starch, glycolysis/gluconeogenesis, starch metabolism, and
starch and sucrose metabolism were the most essential
subsystems, paralleling the expected core pathways for ATP
maintenance with starch breakdown. While these predicted
genotype-phenotype relationships demonstrate a compelling
prospective use of the network, the majority of the mutant
phenotypes remain to be validated experimentally; however,
these predictions could be used to help define the scope
and expected outcomes of such future studies.

Light-source-specific model validations

Next, we performed more extensive validations of light models
grown under specific light sources at varying intensities.
Varying sunlight intensity in our model and evaluating
photosynthetic O, evolution, we observed that the model
reached photosynthetic saturation at light intensity consistent
with experimental measurement (Polle et al, 2003)
(Figure 4A). Our model under red LED light (653 nm) also
showed fair agreement with our experimentally measured
maximum growth rate across the range of unsaturated photon
flux (Figure 4B), despite divergence above the experimental
saturation point. The principal explanation for this divergence
lies in the relative CO, supplies of the experimental setup and
the model. All reported photoautotrophic model simulations
utilize the same maximum CO, exchange constraint corre-
sponding to the maximum-measured cellular uptake rate
under non-CO,-limiting conditions (Supplementary Table S6),
while the CO, supply in our bioreactor setup was clearly
growth-limiting given that the light-saturated maximum
growth rate was 0.01 gDW/h, much lower than the maximum
growth rate of 0.14 gDW/h under non-CO,-limiting conditions
(Janssen et al, 2000). It should also be noted that the linearity
of the simulation trends is a property of steady-state system
modeling, which is incapable of kinetic representation of
growth shifts observable in the in vivo experiments. For further
validation, we present that the maximum biomass yield under
incandescent white light is 5.7 x 107° gDW/mE (Janssen et al,
2000), in close agreement with our analogous prediction of
2.6x107° gDW/mE (Figure 4C). Similarly, our predicted
biomass yield on 674 nm peak LED light of 1.1 x10~*gDW/
mE is on the same order of magnitude as our experimental
results for C. reinhardtii under 660 nm peak LED light near
growth-saturating photon flux, 4.3 x10™*gDW/mE. This
agreement is striking given that the network explicitly
accounts for the spectral photon flux of these light sources
and the subsequent processing of this energy to generate all of
the constituents of biomass without any parameter fitting to
the experimental data. Together, these results constitute an

Molecular Systems Biology 2011 7



Metabolic network reconstruction of Chlamydomonas
RL Chang et al

A O, photoevolution in solar light c
2
0.04
8 g
~ o
7 25 003+
=
T, 6 &2
= 2 2 0024
3 5 z2
? §3
o 4 538 001
° 5
E [ =]
g’ G )
s 2 “
= 1.2x10
S 1 [m)
3 £ 1.0x10%
N 0 = )
-1 = Simulation g 6.0x16°4
0 500 1000 1500 2000 2500 3000 3500 4000 4500 ; 4.0x10°
Photon flux (uE - m™2 - s~ £
(n ) S 2.0x10°
11}
B Growth in red LED light 0 v
0.035
3500
0.03 % 3000
©
- E5 25004
< o
|_ 0025 3E 2000
§ Ef 1500 4
3 002 g5
=) £3 1000
Q £°
® 0,015 = 5009
=
-§ 0 T
& o.01 $55EEsSS5E8EES
t68233828838¢% 8
228582807
0.005 es§22g8ssggu
- Experiment s5c£22% 80 4oz
——— Simulation s8 25§ = ge2
0 7583 s © £
2EQ &
0 50 100 150 200 250 5§66 =
Photon flux (LE - m=2. s'1) Light sources

Figure 4 Photosynthetic model simulation results. (A) O, photoevolution under solar light. Simulated (blue line) and experimentally measured (green dots) O,
evolution are compared. (B) Photosynthetic growth under red LED light. Simulations were performed using the 653-nm prism reaction, and experimentally grown culture
was exposed to 660 nm LED light. Simulated (blue line) and experimentally measured (green dots) growth are compared. (C) Efficiency of light utilization. The minimum
photon flux required for maximum-simulated growth (bottom), biomass yield (middle), and energy conversion efficiency (top) are presented for 11 light sources derived

from measured spectra and for the designed growth-efficient LED.

important validation of our models using three different light
sources.

To quantitatively evaluate the significance of the agreement
between our reported model simulations using prism reactions
derived through analysis of irradiance spectra and experi-
mental measurements under the three light sources reported
above, we compared the reported simulation results for each
of these light sources with an unbiased sample of results
representative of potential solutions achievable using our
network. We sampled the space of possible light models by
generating random prism reactions with the same total
metabolically active photon flux. To obtain stoichiometric
coefficients for a random prism reaction, a set of random
fractions of the sum of stoichiometric coefficients of the
prism reaction representing the evaluated light source was
generated, contingent upon resulting in the same sum of
coefficients. The simulations as reported above for sunlight,
red LED, and white incandescent light were repeated using
such random prism reactions. The Euclidean distance between

8 Molecular Systems Biology 2011

the simulated and experimental results was compared with the
distribution of distances for 10 000 randomly sampled results
(Figure 5). The probability of randomly achieving experi-
mental agreement closer than seen in our simulations was
determined empirically based on these distributions
of distances. Only 77 of 10000 randomized simulations
(Figure 5A) had experimental agreement better than the
simulated oxygen photoevolution under sunlight (Figure 4A),
yielding an empirical P-value of 0.0077, and indicating our
model had experimental agreement statistically significantly
better than a random model constrained to have the same total
metabolically active photon flux. Simulated growth under
665nm peak LED (Figure 4B) had a suggestive P-value of
0.1947 (Figure 5B), although the reported simulation was still
closer to experiment than the mean of randomized simula-
tions. Our simulated growth under white incandescent light
was statistically significantly closer to experiment (Janssen
et al, 2000) than random (Figure 5C) with a P-value of 0.0285.
This analysis shows that the reported model for each of these
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light sources is exceptionally close to recapitulating experi-
mental results and thus serves as an excellent validation.
These results indicate that the network has the capacity to
broadly differentiate light-dependent growth based on spectral
properties and that the formulation of a prism reaction serves
to accurately narrow the space of possible flux distributions
relevant to a specific light source.

Application of /RC1080 to evaluate light source
efficiency and design

Our photosynthetic model was applied prospectively to
evaluate the efficiency of light utilization under different light
sources. The photon energy conversion efficiency (Supple-
mentary Equation 1) and biomass yield on light (Supplemen-
tary Equation 2) were computed for each light source given the
minimum incident photon flux required to achieve maximum
growth rate (Figure 4C); the minimum photon flux for
maximum growth rate is the growth-saturating photon flux
value for a given light source. One clear result is that red LEDs
provide the greatest efficiency in terms of both absorbed
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photon energy and biomass yield, about two and three times as
efficient as can be optimally achieved in sunlight by these
respective measures. Although experimental growth data for
validation is only presented for three light sources, simulation
results are presented for all 11 light sources for which
irradiance spectra were obtainable (Figure 4C). This analysis
demonstrates the prospective extensibility of the network and
modeling approach to any possible lighting condition, natural
or manmade, for which an irradiance spectrum can be
measured.

Given the capability of our photosynthetic model to evaluate
light source efficiency, we applied it to design an LED spectrum
providing maximum photon utilization efficiency for growth
(Supplementary Figure S3). The result was a 677-nm peak LED
spectrum with a total incident photon flux of 360 uE/m?/s
(Figure 4C; Supplementary Figure S3), which is quite close to
the 674-nm LED with a minimum incident photon flux of
362 pE/m?/s for maximum growth. This result suggests that
for the simple objective of maximizing growth efficiency,
LED technology has already reached an effective theoretical
optimum, which is further supported by experimental
measurements of the spectral peak of light absorption for
green algae (Akkerman et al, 2002) and the quantum action
spectrum of land plants (Barta et al, 1992) (Supplementary
Table S7).

Discussion

We have presented a genome-scale network reconstruction of
C. reinhardtii metabolism, well validated in content and
function, and its application for detailed modeling of diverse
light sources. Initial model validations also highlight the need
for more experimental studies to uncover regulatory mechan-
isms in order to expand understanding of the complexity of
light regulation of algal metabolism. This open research topic
presents important challenges and opportunities in enumerat-
ing such effects on a genome scale.

Given the importance of lipid metabolism in biofuel
production, {RC1080 was reconstructed enumerating all lipids
supported by evidence in the literature and genome functional
annotation. The capacity of iRC1080 as a knowledgebase was
demonstrated through analysis of lipid metabolism to generate
novel hypotheses about latent metabolic pathways resulting
from algal evolution. In particular, the exclusion of certain
enzymatic reactions in VLCFA and sphingolipid pathways
from {RC1080 suggests evolutionary recession of these path-
ways in C. reinhardtii, a hypothesis supported by undetected
lipids in experimental measurements, gaps in genome func-
tional annotation for these enzymes, and incomplete transcript
verification for other enzymes included in these pathways. Not
only do these network gaps reflect the relatively simple lipid
biosynthetic capabilities of C. reinhardtii among microalgae,
but their identification suggests gene insertions that could
expand its lipid metabolic repertoire, relevant for industrial
and scientific purposes. Of particular interest may be the
potential for enabling algal synthesis of essential fatty acids for
human health such as docosahexaenoic acid (Yashodhara
et al, 2009). Candidate enzymes for the conversion
of arachidonic acid to essential fatty acids downstream of the
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apparently absent VLCFA elongase reaction are present in our
functional annotation.

The models developed from {RC1080 provide a platform for
prediction of phenotypic outcomes of system perturbations,
light source evaluation and design, and genetic engineering
design for production of biofuels and other commodity
chemicals. We demonstrated an approach applying iRC1080
to the design of an energetically efficient light source
for growth, a novel application of metabolic networks.
Other light sources may be more efficient for other metabolic
objectives or under other environmental conditions or
genetic backgrounds. This result could be of significant
interest to the metabolic engineering and bioreactor-design
communities because it demonstrates that our network
and light-modeling approach are capable of accurately
predicting light source efficiencies in terms of a metabolic
objective.

The prism reactions developed and applied in this study to
quantitatively integrate spectral quality with biological activ-
ity represent a significant integration of diverse data types for
biological system modeling, which hopefully will encourage a
new paradigm for systems biology. This modeling approach
could be used for applications beyond light source design,
including as a metabolic basis for studying and simulating
phototaxis. Given the acquisition of appropriate biological
spectral activity data, this approach could be extended to other
biological light-response phenomena and other organisms.
The importance of understanding how light parameters affect
biological systems may also extend beyond natural phenom-
ena with recent progress in protein engineering leading to
chimeric light-inducible proteins (Shimizu-Sato et al, 2002;
Levskaya et al, 2005).

The {RC1080 network and presented metabolic modeling
represent a milestone in systems biology. Our network
provides a broad knowledgebase of the biochemistry and
genomics underlying global metabolism of a photoautotroph,
and our modeling of light-driven metabolism exemplifies how
integration of largely unvisited data types, such as physico-
chemical environmental parameters, can expand the diversity
of applications of metabolic networks.

Materials and methods

Metabolic network reconstruction

Building from our previously published reconstruction of C. reinhard-
tii central metabolism (Manichaikul et al, 2009), iAM303, the iRC1080
network was reconstructed in a bottom-up manner according
to current standards (Thiele and Palsson, 2010) on a pathway-by-
pathway basis, drawing biochemical, genomic, and physiological
evidence from >250 publications (Supplementary Table S2). The
genomic evidence was derived from our own functional annotation
(Supplementary Table S3) of metabolic enzymes, coenzymes, and
transport proteins. Network gap-filling was performed to make
pathways functional and account for dead-end metabolites. Global
quality control checks were then performed, including elemental
balancing and elimination of as many internal thermodynamically
infeasible loops and new photon-driven, input-only pathways as
possible (Supplementary Figure S4; Supplementary information). We
also accounted for subcellular compartment pH in the protonation
states of metabolites as much as possible.

iRC1080 is publicly available at http://www.ebi.ac.uk/biomodels
(Accession: MODEL1106200000) and as Supplementary Model S1.
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Functional annotation of transcripts

Functional annotation for RC1080 was performed using a consensus
of two separate approaches. In the first approach, gene models (http://
augustus.gobics.de/predictions/chlamydomonas/augustus.u5.aa) from
the Augustus update 5 (AuS) of C. reinhardtii genome assembly
version JGI v4.0 were functionally annotated by assigning enzyme
classification (EC) terms using BLASTP results against UniProt (http://
www.uniprot.org/) and AraCyc (http://www.arabidopsis.org/biocyc/)
enzyme protein sequences and their EC annotations as the basis. The
second approach followed from mapping of Au5 gene models
to annotated JGI v3.1 gene models, for which EC terms and Gene
Ontology annotation were assigned using a combination of BLASTP,
AutoFACT, InterProScan, and PRIAM. The comprehensive annotation
is presented in Supplementary Table S3. See Supplementary informa-
tion for full details.

Growth simulations

Simulation procedures consisted of FBA (Orth et al, 2010) and flux
variability analysis (FVA) (Mahadevan and Schilling, 2003) as
implemented in the COBRA toolbox (Becker et al, 2007), testing
model capabilities while optimizing biomass functions to simulate
growth (Supplementary Table S10) or subsistence on starch by
optimizing ATP maintenance. FBA is a widely used simulation
approach for large-scale, constraint-based metabolic models and has
become a standard method in the systems biology field with a long
history of success (Gianchandani et al, 2010). Different environmental
conditions were modeled by appropriately setting reaction flux
constraints in {RC1080 (Supplementary Table S6) including environ-
mental exchanges, non-growth associated ATP maintenance, O,
photoevolution, starch degradation, and light- or dark-regulated
enzymatic reactions (Supplementary Table S5).

C. reinhardtii strains and growth conditions

For transcript verification experiments, C. reinhardtii strain CC-503
was grown in tris-acetate-phosphate medium containing 100 mg/I
carbamicillin without agitation, at room temperature (22-25°C) and
under continuous illumination with cool white light at a photosyn-
thetic photon flux of 60 pE/m?/s.

For growth experiments under 660 nm peak LED light (Supplementary
Figure S5), C. reinhardtii strain UTEX2243 was grown in a bubble
column photobioreactor at 23-27°C with P49 medium. The total volume
of algal culture was 300 ml, and the gas supply was 180 ml/min air with
2.5% CO,. The 660-nm peak LED light supply was set at 10kHz
frequency and different duty cycles to get varied average photon fluxes.

Transcript verification by sequencing

ORF amplicons were generated from C. reinhardtii cells by RT-PCR
from RNA or PCR from Gateway clones. The Roche 454FLX Titanium
sequencing system was used for sequencing of the generated ORF
amplicons according to the manufacturer’s instructions. The gener-
ated data were processed using the GS FLX data analysis software v2.3.
Minimum overlap length of 40 nucleotides and minimum overlap
identity of 90% were used to align the sequencing reads against the
Aus reference sequences. ORFs encoding transporter proteins were
verified by capillary Sanger sequencing.

Prism reaction derivation

Spectral bandwidths that effectively drive each photon-utilizing
reaction in {RC1080 were determined from published experimental
activity spectral data or absorbance data. Effective spectral band-
widths were defined as the full width half maximum of activity,
denoted by color-paired dashed lines in Figure 3A. The effective
spectral bandwidths were used to derive stoichiometric coefficients of
the prism reactions used to quantitatively represent different light
sources from the composition of their published irradiance spectra,
converted to photon flux units according to Supplementary Equations
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3 and 4. Coefficients for each of the effective spectral bandwidths were
computed based on Equation 1.
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380 nm
Ct = effective bandwidth coefficient (1)
L(A) = photon fluxasa function of wavelength
a = effective bandwidth lower limit
b = effective bandwidth upper limit

Each coefficient represents the ratio of photon flux in the defined
effective bandwidth to total visible photon flux. Definite integrals in
Equation 1 were approximated using the trapezoidal rule. For each
light source, all effective bandwidth coefficients were compiled into a
single reaction in the form of Equation 2.
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Constraints on prism reaction fluxes (Supplementary Table S6) were
derived from the total visible photon flux, the definite integral of the
spectrum from 380 to 750nm. The total experimentally measured
emitted visible photon flux was converted to model units of incident
photon flux using the values in Supplementary Table S11 and
Supplementary Equations 5 and 6. Prism reactions for 11 different
light sources (Supplementary Figure S3) were generated.

Random sampling of prism reaction space and
significance test

For a given prism reaction, first the sum of the stoichiometric
coefficients was calculated, representing the total quantity of
metabolically active photons per incident photon from the specified
light source. Next, to sample the space of prism reactions, 10000
random prism reactions with the same sum of stoichiometric
coefficients were generated and used in growth simulations. In these
simulations, input photon flux was constrained to the reported
experimental values, generating a set of simulated results (biomass
or photosynthetically evolved O, flux, depending on the experimental
parameter) with one value corresponding to each experimental data
point. The Euclidean distance between the sampled and experimental
results was calculated for each of the 10000 randomized prism
reactions (Figure 5). The significance of the experimental agreement
with simulations reported for a given prism reaction derived directly
from analysis of irradiance spectra was established by comparison
between the corresponding Euclidean distance and the distribution of
distances from the randomly sampled prism reactions. Probability of
achieving equal or closer results to experiments by chance was
computed as the proportion of smaller values in the randomly sampled
distribution of 10 000 distances.

Procedure for efficient LED design

Multiple iterations of FVA were used to maximize growth while
minimizing the energy of the sum of individual wavelengths of model
photon flux. The ratios of these individual wavelength photon fluxes to
total photon flux were set as stoichiometric coefficients for a
theoretical maximum-efficiency prism reaction. The Euclidean vector
distance was computed (Supplementary Figure S6) between this set of
coefficients and prism reaction coefficients calculated for an LED
spectrum of the same shape as the experimentally measured 674 nm
peak LED but centered at varying wavelengths across the visible
spectrum, with a total photon flux equal to the total theoretical
maximum-efficiency photon flux. The spectrum corresponding to the
minimum distance was taken as the solution and subsequently tested
through growth simulation.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (Www.nature.com/msb).
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