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network type, transcriptional-translational models
[7], captures information passage from DNA to
RNA to proteins. Each network-based GEM is built
upon a stoichiometric formalism allowing for the
mathematical representation of biochemical infor-
mation (see [2, 8–10]). The present review focuses
heavily on metabolic GEMs because they are the
most commonly formulated and span a broad range
of applications.

Numerous constraint-based methods are avail-
able to explore the phenotypic potential of the
three GEM types, and by extension the associated
biological systems. To assist in understanding the
case studies discussed herein, we briefly summa-
rize some of these procedures (see [11] for review).
In constraint-based analysis, physico-chemical
and environmental constraints are applied as bal-
ances (e.g. mass, energy) and bounds (e.g. flux ca-
pacities, thermodynamics). These constraints de-
fine a solution space describing all possible func-
tions (allowable phenotypes) of the system. Flux
balance analysis (FBA) determines the distribution
of reaction fluxes that optimize a biological objec-
tive function (e.g. biomass, ATP) [12, 13]. This ca-
pability is particularly useful for simulating the ef-
fect of genetic perturbations (e.g. gene knockouts
or mutations) on the resulting metabolic pheno-
type. Two extensions of traditional FBA, regulatory
FBA (rFBA) [3, 6] and dynamic FBA (dFBA) [14]
enable analysis and hypothesis generation where
external metabolite concentrations and environ-
mental conditions vary with time. Minimization of
metabolic adjustment (MOMA) assumes that, after
a mutation, the organism seeks to minimize the to-
tal metabolic change relative to the wild type (un-
like FBA, which assumes a new optimized network
state) [15]. OptKnock [16] is a computational pro-
cedure used to design strains with enhanced capa-
bilities by identifying gene deletions that align the
cellular objective (e.g. growth) with the engineer-
ing objective (e.g. biofuel production). The effects

of gene additions from related organisms can be in-
cluded in an analogous fashion using OptStrain
[17].

This review provides detailed examples of how
constraint-based GEM analysis has been used for a
broad range of applications in industrial and med-
ical biotechnology (Fig. 2).To date, there are over 50
organism-specific GEM (Table 1) that have been
surprisingly successful in predicting cellular be-
havior (e.g. the effects of gene deletions on growth
or secretion rates). In biotechnology applications,
GEMs are commonly used to guide enhancement of
a particular property of interest (e.g. biofuel or
pharmaceutical production) or to better under-
stand systemic behavior. Hence, two specific uses
for GEMs are addressed: (i) elucidation of the glob-
al properties of network structures and (ii) con-
straint-based modeling for predicting the pheno-

Figure 1. Completed genome sequences and genome-scale models
(GEMs) available to date.

Figure 2. Applications of GEMs in industrial and medical biotechnology.[Milne, 2009]
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biased owing to incomplete mapping or redun-
dant enzyme commission (EC) nomenclature, it 
indicates that current GENREs give incomplete 
coverage of known metabolic reactions.

Many new GENREs are based on existing 
reconstructions. Therefore, analogously to 
mistakes made with automated genome anno-
tation21, the inclusion of an incorrect gene-
protein-reaction association or an incorrect 
reaction in a GENRE can be disseminated to a 
new reconstruction. If the metabolic knowledge 
included in a GENRE reflects the metabolic 
capabilities of the target organism, we would 
expect clustering of GENRE content to reflect 
evolutionary relationships among organisms. 
However, our similarity analysis of GENRE 
reaction content shows that this is not the case. 
Multiple correspondence analysis (MCA) of the 
content of 53 curated GENREs out of the 117 
published by February 2013 (Supplementary 
Tables 1 and 2 and Supplementary Data) (see 
also the University of California, San Diego, 
Systems Biology Research Group (SBRG) web-
site, http://sbrg.ucsd.edu/optimizing-genres/), 
shows a high degree of similarity among many 
existing GENREs, regardless of their location in 
the phylogenetic tree (Fig. 2a). Many GENREs 
cluster close to the center of the diagram, show-
ing that reconstructed organisms as meta-
bolically diverse as Pseudomonas aeruginosa, 
Staphylococcus aureus, Clostridium beijerinckii 
and Synechocystis sp. PCC 6803 have simi-
lar reaction content (Fig. 2b). This clustering 
suggests that the metabolic space of currently 
published GENREs is largely limited to well-
conserved metabolic pathways, rather than 
offering a comprehensive representation of the 
biochemical capabilities of these organisms, and 
there is an over-representation of primary meta-
bolic pathways in GENREs relative to secondary 
metabolic pathways.

to the GENRE for Saccharomyces cerevisiae 
suggested a standard way to describe cellular 
compartmentalization11. These guidelines have 
enabled reconstructions of human metabo-
lism12,13, photosynthesis14 and light-driven 
metabolism15, and have been used in vari-
ous applications2–6. Furthermore, automated 
reconstruction approaches are now available to 
create draft reconstructions, reducing the time 
and effort required to make a metabolic recon-
struction16–18.

During the past five years, the number of 
GENREs has grown rapidly (Fig. 1a) and 
expanded the ‘metabolic space’ that can be ana-
lyzed computationally3. Furthermore, GENREs 
have become accepted as valuable tools to teach 
and analyze biological processes at the systems 
level19. Therefore, more than a decade after the 
publication of the first GENRE, it is timely to 
analyze the metabolic knowledge represented in 
published network reconstructions to assess the 
overall progress and status of this field.

Coverage of metabolic reactomes
Although the metabolic network reconstruc-
tion field might appear to be mature, many 
challenges remain. Our analysis of the num-
ber of new metabolic reactions that have been 
incorporated into new GENREs in recent years 
shows that only a few reconstructions have 
added a substantial number of new reactions 
(Fig. 1) (see Supplementary Table 1 for a list 
of the 117 GENREs analyzed). Therefore, the 
metabolic coverage of GENREs has not pro-
gressed in line with the rising number of publi-
cations. Comparing enzymatic activities found 
in current GENREs to the BRENDA20 enzyme 
database shows that only 33% of the enzymatic 
activities in BRENDA assigned to metabolism 
are included in the group of GENREs that we 
analyzed (Fig. 1b). Although this result could be 

A genome-scale network reconstruction 
(GENRE) is built systematically using 

genome annotation, ‘omics’ data sets and legacy 
knowledge1. Thus, GENREs should provide the 
best representation of the metabolic capabilities 
of a target organism on the basis of the infor-
mation available at the time of reconstruction. 
They allow researchers to test and share new 
hypotheses about metabolic functions in a target 
organism. As a result, interest in network recon-
structions and the scope of their applications has 
grown rapidly2–6.

The first GENRE was built for Haemophilus 
influenza in 1999 (ref. 7) just a few years after the 
first whole genome sequence was published in 
1995 (ref. 8). This initial reconstruction repre-
sented a conceptual basis for building GENREs 
and demonstrated that the genotype-to-pheno-
type relationship of metabolic pathways could 
be discerned mechanistically at genome scale. 
Subsequently, guidance for generating metabolic 
reconstructions was developed and adopted on 
the basis of experiences with well-characterized 
model organisms. For example, in updates to the 
GENRE for Escherichia coli we suggested stan-
dards for modeling the relationships between 
genes, proteins and reactions involved in a par-
ticular biochemical transformation through 
the gene-protein-reaction association9. Next, 
mass and charge balancing for each reaction 
in the network and the addition of thermody-
namic information10 were included. Updates 

Optimizing genome-scale network 
reconstructions
Jonathan Monk1,3, Juan Nogales1–3 & Bernhard O Palsson1

Metabolic reconstructions remain limited in their scope and content, and improvements in biochemical knowledge and 
collaborative research are required.

1Department of Bioengineering, University of 
California, San Diego, La Jolla, California, 
USA. 2Present address: Department 
of Environmental Biology, Centro de 
Investigaciones Biológicas, CSIC, Madrid, 
Spain. 3These authors contributed equally to 
this work. Correspondence should be addressed 
to B.O.P. (palsson@ucsd.edu).
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1. Monk J, Nogales J, Palsson BØ: Optimizing genome-scale network reconstructions. Nat 
Biotechnol 2014, 32:447–452.
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engage expert researchers with the metabolic 
network reconstruction field are needed to 
curate existing content and expand the scope of 
GENREs. One possible mechanism is crowd-
sourcing, in which many individuals can con-
tribute to a reconstruction so that it contains as 
much legacy data as possible.

To form crowdsourced teams, the recon-
struction community must reach out to domain 
experts, many of whom are currently unfamil-
iar with the metabolic reconstruction process. 
Recently, a multidisciplinary team of researchers 
(including experts in pharmaceutical chemistry, 
genomic biology, biochemistry, bioengineer-

and complete GENRE development is a mul-
tidisciplinary activity; it requires the partici-
pation of experts from diverse disciplines. An 
ideal team would include researchers who 
have strong biological knowledge of the target 
organism and access to legacy data. As an ini-
tial attempt, ‘jamboree’ efforts—gatherings of 
multidisciplinary researchers that seek to cre-
ate a high-quality metabolic reconstruction 
for a target organism through intensive col-
laboration39—have led to reconstructions for 
three target organisms (namely, S. cerevisiae40, 
Salmonella typhimurium LT2 (ref. 41) and Homo 
sapiens42). However, more structured efforts to 

gene knockout strains to discover new reac-
tions carried out by phosphofructokinase and 
aldolase, two enzymes extensively studied in 
E. coli glycolysis35. Experimental results were 
compared with computational predictions, 
and disparities suggested missing reactions in 
the reconstruction. The putative reactions were 
then confirmed using metabolome analyses and 
in vitro enzymatic assays. This study shows that 
there is still more to learn, even for extensively 
studied areas of metabolic biochemistry.

Building high-quality reconstructions with 
community participation and buy-in. Accurate 
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Figure 3  Phylogenetic coverage of GENREs. Distribution of GENREs across the phylogenetic tree of life for 78 species with existing GENREs (as of February 
2013). The Bacteria domain has the most organisms with reconstructed GENREs. Within Bacteria the Proteobacteria phylum has the most organisms 
(32) with reconstructed GENREs. There are many phyla for which no GENREs have been reconstructed (red). See the SBRG website (http://sbrg.ucsd.edu/
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INTRODUCTION
Metabolic network reconstruction has become an indispensable 
tool for studying the systems biology of metabolism1–7. The number 
of organisms for which metabolic reconstructions have been cre-
ated is increasing at a pace similar to whole genome sequencing. 
However, the quality of metabolic reconstructions differs consider-
ably, which is partially caused by varying amounts of available data 
for the target organisms and also by a missing standard operating 
procedure that describes the reconstruction process in detail. This 
protocol details a procedure by which a quality-controlled quality- 
assured reconstruction can be built to ensure high quality and 
comparability between reconstructions. In particular, the protocol 
points out data that are necessary for the reconstruction process 
and that should accompany reconstructions. Moreover, standard 
tests are presented, which are necessary to verify functionality and 
applicability of reconstruction-derived metabolic models. Finally, 
this protocol presents strategies to debug non- or malfunctioning 
models. Although the reconstruction process has been reviewed 
conceptually by numerous groups8–11 and a good general overview 
of the necessary data and steps is available, no detailed description 
of the reconstruction, debugging and iterative validation process  
has been published. This protocol seeks to make this process explicit 
and generally available.

The presented protocol describes the procedure necessary to 
reconstruct metabolic networks intended to be used for computa-
tional modeling, including the constraint-based reconstruction and 
analysis (COBRA) approach11,12 (see Box 1 for definition). These net-
work reconstructions, and in silico models, are created in a bottom–
up manner based on genomic and bibliomic data and thus represent 
a biochemical, genetic and genomic (BiGG) knowledge base for the 
target organism9. These BiGG reconstructions can be converted into 
mathematical models and their systems and physiological properties  
can be determined. For example, they can be used to simulate 
the maximal growth of a cell in a given environmental condition 
using flux-balance analysis (FBA)13,14. In contrast, the generation of  
networks derived from top-down approaches (high-throughput 

data-based interference of component interactions) is not discussed  
here, as they do not generally result in functional, mathematical 
models.

The metabolic reconstruction process described herein is  
usually very labor and time intensive, spanning from 6 months for 
well-studied, medium-sized bacterial genomes, to 2 years (and six 
people) for the metabolic reconstruction of human metabolism15. 
Often, the reconstruction process is iterative, as demonstrated by 
the metabolic network of Escherichia coli, whose reconstruction has 
been expanded and refined over the last 19 years7. As the number of 
reconstructed organisms increases, the need to find automated, or 
at least semi-automated, ways to reconstruct metabolic networks 
straight from the genome annotation is growing. Despite the grow-
ing experience and knowledge, to date, we are still not able to com-
pletely automatically reconstruct high-quality metabolic networks 
that can be used as predictive models. Recent reviews highlight 
current problems with genome annotations and databases, which 
make automated reconstructions challenging and thus they require 
manual evaluation8,9. Organism-specific features, such as substrate 
and cofactor utilization of enzymes, intracellular pH and reac-
tion directionality remain problematic and thus require manual  
evaluation. However, some organism-specific databases and 
approaches exist, which can be used for automation. We describe 
here the manual reconstruction process in detail.

A limited number of software tools and packages are available 
(freely and commercially), which aim at assisting and facilitating 
the reconstruction process (Table 1). This protocol can, in princi-
ple, be combined with those reconstruction tools. For generality, 
we present the entire procedure using a spreadsheet, namely Excel 
workbook (Microsoft), and a numeric computation and visualiza-
tion software package, namely Matlab (Mathwork, Natwick, MA, 
USA). Free spreadsheets (e.g., OpenOffice and Google Docs) could 
be used instead of the listed spreadsheet. Alternatively, MySQL 
databases may be used, as they are very helpful in structuring and 
tracking data. Matlab was also used to encode the COBRA Toolbox, 

A protocol for generating a high-quality  
genome-scale metabolic reconstruction
Ines Thiele1, 2 & Bernhard Ø Palsson1

1Department of Bioengineering, University of California, San Diego, La Jolla, California, USA. 2Current address: Center for Systems Biology, Faculty of  
Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland. Correspondence should be addressed to  
B.Ø.P. (palsson@ucsd.edu).

Published online 7 January 2010; doi:10.1038/nprot.2009.203

Network reconstructions are a common denominator in systems biology. Bottom–up metabolic network reconstructions have been 
developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information 
on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a 
mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis 
testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic 
reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However,  
these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. 
Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic 
reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages  
of the reconstruction process.

1. Thiele I, Palsson BØ: A protocol for generating a high-quality genome-scale metabolic 
reconstruction. Nature protocols 2010, 5:93–121.
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COBRApy: COnstraints-Based Reconstruction and
Analysis for Python
Ali Ebrahim1, Joshua A Lerman1, Bernhard O Palsson1 and Daniel R Hyduke1,2*

Abstract

Background: COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale
modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there
is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes.
The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however,
it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an
integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community
effort to promote constraints-based research through the distribution of freely available software.

Results: Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA
methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex
biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however,
it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved
performance, COBRApy includes parallel processing support for computationally intensive processes.

Conclusion: COBRApy is an object-oriented framework designed to meet the computational challenges associated
with the next generation of stoichiometric constraint-based models and high-density omics data sets.

Availability: http://opencobra.sourceforge.net/

Keywords: Genome-scale, Network reconstruction, Metabolism, Gene expression, Constraint-based modeling

Background
Constraint based modeling approaches have been widely
applied in the field of microbial metabolic engineering
[1,2] and have been employed in the analysis [3-5] and,
to a lesser extent, modeling of transcriptional [6-8] and
signaling [9] networks. And, we’ve recently developed a
method for integrated modeling of gene expression and
metabolism on the genome scale [10].
The popularity of these approaches is due, in part, to the

fact that they facilitate analysis of biological systems in the
absence of a comprehensive set of parameters. Constraints-
based approaches focus on employing data-driven physi-
cochemical and biological constraints to enumerate the set
of feasible phenotypic states of a reconstructed biological
network in a given condition. These constraints include

compartmentalization, mass conservation, molecular crow-
ding [11], thermodynamic directionality [12], and transcrip-
tion factor activity [13]. More recently, transcriptome data
have been used to reduce the size of the set of computed
feasible states [14-17]. Because constraints-based models
are often underdetermined they may provide multiple
mathematically-equivalent solutions to a specific
question – these equivalent solutions must be assessed
with experimental data for biological relevance [18].
We have previously published the COBRA Toolbox [19]

for MATLAB to provide systems biology researchers with a
high-level interface to a variety of methods for constraint-
based modeling of genome-scale stoichiometric models
of cellular biochemistry. The COBRA Toolbox is being
increasingly recognized as a standard framework for
constraint-based modeling of metabolism [20]. While
the COBRA Toolbox has gained widespread use and
become a powerful piece of software, it was not designed
to cope with modeling complex biological processes

* Correspondence: hyduke@ucsd.edu
1Department of Bioengineering, University of California, San Diego, 9500
Gilman Drive MC0412, La Jolla, 92093-0412, CA, USA
2Biological Engineering Department, Utah State University, 4105 Old Main
Hill, Logan, UT 84322-4105, USA

© 2013 Ebrahim et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Ebrahim et al. BMC Systems Biology 2013, 7:74
http://www.biomedcentral.com/1752-0509/7/74

1. Ebrahim A, Lerman JA, Palsson BØ, Hyduke DR: COBRApy: COnstraints-Based 
Reconstruction and Analysis for Python. BMC systems biology 2013, 7:74.



outside of metabolism or for integrated analyses of omics
data, and requires proprietary software to function. To
drive COBRA research through this avalanche of omics
and model increasingly complex biological processes [10],
we have developed an object-oriented implementation
of core COBRA Toolbox functions using the Python
programming language. COBRA for Python (COBRApy)
provides access to commonly used COBRA methods in a
MATLAB-free fashion.

Implementation
The core capabilities of COBRApy are enabled by a set
of classes (Figure 1) that represent organisms (Model),
biochemical reactions (Reaction), and biomolecules
(Metabolite and Gene). The core code is accessible through
either Python or Jython (Python for Java). COBRApy con-
tains: (1) cobra.io: an input/output package for reading /
writing SBML [21] models and reading / writing COBRA
Toolbox MATLAB structures. (2) cobra.flux_analysis: a
package for performing common FBA operations, in-
cluding gene deletion and flux variability analysis [18].
(3) cobra.topology: a package for performing structural
analysis – the current version contains the reporter
metabolites algorithm of Patil & Nielsen [22]. (4) cobra.
test: a suite of unit tests and test data. (5) cobra.solvers:
interfaces to linear optimization packages. And, (6)
cobra.mlab: an interface to the COBRA Toolbox for
MATLAB.

Results and discussion
COBRApy is a software package for constraints-based
modeling that is designed to accommodate the increa-
sing complexity of biological processes represented with
COBRA methods. Like the COBRA Toolbox, COBRApy
provides core COBRA modeling capabilities in an ex-
tendible and accessible fashion. However, COBRApy
employs an object oriented programming approach that
is more amenable to representing increasingly complex
models of biological networks. Moreover, COBRApy
inherits numerous benefits from the Python language,
and allows the integration of models with databases and
other sources of high-throughput data. Additionally,
COBRApy does not require commercial software for
commonly used COBRA operations whereas the COBRA
Toolbox depends on MATLAB. As the COBRA Toolbox
is in wide use, it will likely be used as a development and
analysis platform for years to come. To take advantage of
legacy and future modules written for the COBRA
Toolbox, COBRApy includes a module for directly inter-
acting with the COBRA Toolbox (cobra.mlab) and sup-
port for reading and writing COBRA Toolbox MATLAB
structures (cobra.io.mat).
In recent years, a number of software packages have

been developed that employ stoichiometric constraint-
based modeling approaches [23], such as Cell Net Ana-
lyzer [24], FASIMU [25], PySCeS-CBM [26], the Raven
Toolbox [27], and the Systems Biology Research Tool [28].

id: str
notes: dict
annotation: dict

Object

add_reactions()
optimize()
remove_reactions()
to_array_based_model()

compartments: dict
description: str
genes: DictList
metabolites: DictList
reactions: DictList
solution: Solution

Model
elements: dict
formula: str
weight: float

Formula

get_model()
get_reaction()
remove_from_model()

charge: float
compartment: str
formula: Formula
name: str

Metabolite

add_metabolites()
check_mass_balance()
get_coefficients()
get_gene()
get_model()
get_products()
get_reactants()
remove_from_model()
subtract_metabolites()

gene_reaction_rule: str
lower_bound: float
name: str
objective_coefficient: float
reaction: str
upper_bound: float

Reaction
f: float
status: str
solver: str
x: numpy.array
x_dict: dict
y: numpy.array
y_dict: dict

Solution

update()

S: scipy.sparse
b: numpy.array
constraint_sense: list
lower_bounds: numpy.array
objective_coefficients: numpy.array
upper_bounds: numpy.array

ArrayBasedModel

functional: bool
locus_end: int
locus_start: int
strand: str

Gene

get_by_id()
query()

DictList(list)

Figure 1 Core classes in COBRA for Python with key attributes and methods listed. Additional attributes and methods are described in
the documentation.
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A genome-scale metabolic model of the
lipid-accumulating yeast Yarrowia lipolytica
Nicolas Loira1,4, Thierry Dulermo2,3, Jean-Marc Nicaud2,3 and David James Sherman1*

Abstract

Background: Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for
several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also
considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well
studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current
knowledge about its metabolism.

Results: Combining in silico tools and expert manual curation, we have produced an accurate genome-scale
metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but
phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added
species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific
expansion of protein families. We used physiological measures obtained under lab conditions to validate our
predictions.

Conclusions: Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast,
providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other
species in the Yarrowia clade and other oleaginous yeasts.

Background
Even if lipid metabolism is common to all microorgan-
isms, we call oleaginous those that can store at least 20%
of their dry mass as lipids. It is possible to find oleagin-
ous organisms among plants, algae, bacteria and yeasts.
Plants and algae are technically difficult (and controver-
sial) to modify genetically, while oleaginous bateria
present a low growth rate. On the other side, oleaginous
yeasts enjoy well-developed genetic tools for their im-
provement and grow quickly. Also, oleaginous yeasts can
accumulate up to 70% of their dry mass as lipids [1],
making them the best candidates for industrial lipid pro-
duction such as microbial oil for biodiesel.
One of those oleaginous yeasts, Yarrowia lipolytica, nor-

mally found as a food contaminant, has been extensively
studied experimentally. It is easy to modify genetically, and
presents many opportunities for metabolic engineering.
For example, Y. lipolytica has been used as a food

supplement, given its easily modifiable lipid composition.
It is also studied as a potential source of biodiesel [2-4], be-
cause lipids producedby this species are similar to vege-
table oils and fats. While Y. lipolytica is a hemiascomycete
yeast, it is phylogenetically distant from S. cerevisiae and
other well-studied yeasts, manifesting many metabolic dif-
ferences: it is an obligate aerobic yeast, that can use normal
hydrocarbons and various fats as carbon sources; it secretes
diverse hydrolytic enzymes (proteases, lipases, RNases); its
perixosome is constitutive.
Metabolic models are an important tool for metabolic

engineering. Their uses include the guidance of metabolic
engineering, the contextualization of high-throughput data
and helping hypothesis-driven discovery.
Genome-scale metabolic models have up to now been

principally produced for bacterial species and for a few
higher organisms (see [5] for a review). This focus
on model organisms is in part due to the great cost of
obtaining high-quality annotated complete genome
sequences, which requires considerable human effort re-
gardless of the relative low cost of obtaining the genome
sequence. A further need is to produce new experimental

* Correspondence: david.sherman@inria.fr
1Inria / Université Bordeaux / CNRS joint project-team MAGNOME, Talence, F-
33405, France
Full list of author information is available at the end of the article
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Figure 1 Projecting Fatty Acid β-oxidation from S. cerevisiaeto Y. lipolytica. This simplified schematic view shows how the Fatty Acid β-
oxidation scaffold pathway from S. cerevisiae iIN800 [35] was modified to adequately describe Y. lipolyticametabolism. (a) Simplified version of fatty
acid β-oxidation diagram of S. cerevisiae iIN800. (b) Fatty acid β-oxidation in the reconstructed model for Y. lipolytica, with a constitutive
peroxisome compartment and cytosol ↔ peroxisome transport reactions. Species-specific transport mechanisms for long and short fatty acid
chains (PXA1,2 and PEX11) are highlighted in green and blue. Long chains are activated (-CoA) before being transported to the peroxisome. Y.
lipolytica can directly process Octanoic (C8), Hexanoic (C6), Butyric (C4) acid, and C18:2, so they were added to our model (in yellow). Our method
predicted the family expansion of S. cerevisiae POX1/FOX1 into POX1-6, and the reduction of S. cerevisiae family FAA1-4 to FAA1 (YALI0D17864g),
which modified the genome associations of most of the pathway. POX1-6 are written in order of specificity: POX2,5,4 for long chains and POX3,5,4
for short chains [42].
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Bioengineering Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412
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Metabolism is a vital cellular process, and its malfunction is a major
contributor to human disease. Metabolic networks are complex
and highly interconnected, and thus systems-level computational
approaches are required to elucidate and understand metabolic
genotype–phenotype relationships. We have manually recon-
structed the global human metabolic network based on Build 35 of
the genome annotation and a comprehensive evaluation of >50
years of legacy data (i.e., bibliomic data). Herein we describe the
reconstruction process and demonstrate how the resulting ge-
nome-scale (or global) network can be used (i) for the discovery of
missing information, (ii) for the formulation of an in silico model,
and (iii) as a structured context for analyzing high-throughput
biological data sets. Our comprehensive evaluation of the litera-
ture revealed many gaps in the current understanding of human
metabolism that require future experimental investigation. Math-
ematical analysis of network structure elucidated the implications
of intracellular compartmentalization and the potential use of
correlated reaction sets for alternative drug target identification.
Integrated analysis of high-throughput data sets within the con-
text of the reconstruction enabled a global assessment of func-
tional metabolic states. These results highlight some of the appli-
cations enabled by the reconstructed human metabolic network.
The establishment of this network represents an important step
toward genome-scale human systems biology.

constraint based ! metabolism ! model ! systems biology

An individual’s metabolism is determined by one’s genetics,
environment, and nutrition. With the available human

genome sequence and its annotation (1–3), we can hope to
define the human body’s complement of metabolic enzymes. In
addition, numerous metabolic genes and enzymes have been
individually studied for decades, resulting in a collective knowl-
edge base, or ‘‘bibliome,’’ that includes reaction mechanisms and
well characterized interactions. Manual component-by-
component (bottom-up) reconstruction of genomic and bib-
liomic data leads to a biochemically, genetically, and genomically
structured (BiGG) reconstruction (4) that can be mathemati-
cally represented as an in silico model for computing allowable
network states under governing chemical and genetic constraints
(5). The procedure for integrating these diverse data types to
form a network reconstruction and predictive model is well
established for microorganisms (4) and has recently been applied
to mouse hybridomas (6). Such in silico models have enabled
hypothesis-driven biology, including the prediction of the out-
come of adaptive evolution (7–11) and the identification and
discovery of candidates for missing metabolic functions that
were subsequently experimentally verified (12). Because meta-
bolic networks are more complex in mammals than in single-
celled organisms, there is likely to be an even greater opportunity
for the use of computational models to understand the basis of
normal and abnormal cellular function.

Here we present the reconstruction of the global human
metabolic map. Homo sapiens Recon 1 is a comprehensive
literature-based genome-scale metabolic reconstruction that
accounts for the functions of 1,496 ORFs, 2,004 proteins, 2,766

metabolites, and 3,311 metabolic and transport reactions. This
network reconstruction was transformed into an in silico model
of human metabolism and validated through the simulation of
288 known metabolic functions found in a variety of cell and
tissue types. Recon 1 (i) enables the identification of gaps in our
understanding of human metabolism, (ii) facilitates the compu-
tational interrogation of the overall properties of the human
metabolic network, and (iii) provides context for analysis of
‘‘-omics’’ data sets. These examples are described in further
detail herein.

Results and Discussion
Reconstruction and Validation of H. sapiens Recon 1. A well anno-
tated genome sequence is vital for bottom-up reconstruction
because it enables the rapid identification of candidate network
components (4) and the assembly of a preliminary network (13)
that can be used as a starting point for manual curation
[supporting information (SI) Fig. 5]. We used Enzyme Commis-
sion numbers (14) and Gene Ontologies (15) to identify an initial
set of 1,865 human metabolic genes from the November 2004
annotations (Build 35) of Kyoto Encyclopedia of Genes and
Genomes (KEGG) (16), National Center for Biotechnology
Information’s LocusLink (17) [now EntrezGene (18)], and the
H-Invitational Database (19). These genes were mapped to a
rudimentary network of 3,623 metabolic enzymes and 3,673
reactions from KEGG’s LIGAND database and the compart-
mentalized yeast metabolic reconstruction (20). In addition to
establishing initial network scope, LIGAND’s pathway-based
organizational structure also facilitated parallel network assem-
bly. A team of researchers simultaneously curated network
components by evaluation of !50 years of biological evidence
from !1,500 primary literature articles, reviews, and biochem-
ical textbooks. Strict quality control/quality assurance methods
were used throughout the reconstruction (see Materials and
Methods). Manual literature-based reconstruction ensured that
the network components and their interactions were based on
direct physical evidence and reflected the current knowledge of
human metabolism.

Bottom-up reconstructions can be represented mathemati-
cally, enabling the computational interrogation of their proper-
ties (4, 21). We validated the basic functionality of the human
metabolic network by simulating 288 known metabolic functions
in silico (SI Tables 2–4). Like genome sequence assembly and
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tion will not only become a prototype for other mammalian
reconstructions but will hopefully also enable significant di-
mensions in the study of in human systems biology, some of
which we have described herein. The future promise for
individualized medicine and treatment will need a context to
integrate and analyze data, and models resulting from these
reconstructions can play a significant role in fulfilling this
need. However, the development of cell-type or context-
specific models will require the integration of various types of
data, including transcriptomic, proteomic, f luxomic, and
metabolomic measurements. Recon 1 provides the context for
integration and analysis of these data into predictive models.
For example, the developing field of nutrigenomics requires
significant data integration and analysis to elucidate the
inf luence of the diet on an organism’s transcriptome, pro-
teome, and metabolome (45). Achieving these ambitious goals
will require top–down data sets in conjunction with quanti-
tative bottom-up reconstructions such as H. sapiens Recon 1.

Materials and Methods
Reconstruction Procedure. An initial component list was assem-
bled as described in the text. This list was then divided into eight
metabolic subsets (amino acids, carbohydrates, energy, glycans,
lipids, nucleotides, secondary metabolites/xenobiotics, vitamins,
and cofactors) for independent curation by a team of research-
ers. Putative gene assignments were verified based on evidence
collected from genome annotation databases, namely Entrez-
Gene (18), Gene Cards (46), and the scientific literature. Al-
ternative transcripts were identified based on known RefSeq (17)
mRNA transcripts for each locus. Substrate and cofactor pref-
erences were identified from the literature and BRENDA (47).
Metabolite formula and charge were calculated based on their
ionization state at pH 7.2, which for simplicity was presumed to
be constant across all compartments. Reaction directionality was
determined from thermodynamic data or inferred from legacy
data and textbooks. Compartmentalization was determined
from protein localization data, sequence targeting signals, and
indirect physiological evidence. If these data were unavailable,
reactions were modeled as cytoplasmic. The intermembrane
space of double-membrane organelles was also modeled as
cytoplasmic. Gene–transcript–protein–reaction relationships (5,
6) were manually identified from the literature and formulated
as Boolean logic statements. Isozymes (an ‘‘or’’ relationship)
were defined as distinct proteins that catalyze the same sub-
strate- and compartment-specific reaction and could arise from
one gene due to alternative splicing or could be encoded by
independent genes. Cases in which a reaction depended on the
presence of more than one gene/protein (an ‘‘and’’ relationship,
e.g., proteins with multiple subunits/chains or complexes com-
posed of multiple enzymes) were classified as protein complexes.
Confidence scores were assigned based on biological evidence
associated with each reaction. Evidence from classical biochem-
ical or genetic experiments, such as gene cloning and protein
characterization, was given the highest confidence score (3).
Midlevel scores (2) were assigned to reactions based on physi-
ological data or biochemical/genetic evidence from a nonhuman
mammalian cell (typically mouse, rat, or rabbit). Reactions with
the lowest confidence score (1) were included solely based on in
silico modeling because, during the process of model validation,
they were deemed mandatory for a particular metabolic func-
tion. Transport reactions were entirely reconstructed based on
literature reports and biochemistry textbooks because the cur-
rent annotation of transporters is not sufficiently specific with
regard to substrates and mechanisms.

Functional Validation and Gap Analysis. The reconstruction was
assembled in SimPheny (Genomatica, San Diego, CA), and the
stoichiometric matrix was formulated as described (48). Ex-
change reactions (SI Table 6) were added to enable uptake and
secretion of extracellular metabolites for the purpose of simu-
lations. Functional validation was performed by using flux
balance analysis (39), allowing recycled cofactor pairs to enter
and leave the system as needed (SI Tables 2–4). Comprehensive
gap analysis of the stoichiometric matrix was performed after
each round of functional validation. Every ‘‘dead-end’’ metab-
olite that could not be produced or consumed was manually
reexamined by returning to the literature to identify possible
reactions describing its degradation, production, or transport. A
final round of gap analysis was performed upon completion of
H. sapiens Recon 1, and a description of unresolved gaps is
provided in SI Table 9.

Network Analysis. The singular value spectra (26) were computed
for H. sapiens Recon 1, Saccharomyces cerevisiae iND750 (20), and
Escherichia coli iJR904 (48) as the normalized cumulative sum of
the singular values by using Matlab Ver. 6.5 (MathWorks, Natick,

Fig. 4. Integrated analysis of gene expression data from gastric bypass
patients before surgery and 1 year afterward. Expression measurements were
to reactions in the global human metabolic network and then visualized on
Recon 1’s comprehensive collection of human metabolic maps. Reactions are
color-coded based on their corresponding gene expression changes (green,
down-regulated; red, up-regulated; white, no data available or reaction level
conflict). Arrows next to reaction abbreviations indicate the magnitude of
expression changes on a log10 scale (gray boxes indicate no data available). A
high-resolution version of this figure is available in SI Fig. 21.
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and 1 year afterward. Expression 
measurements were to reactions in the global 
human metabolic network and then visualized 
on Recon 1’s comprehensive collection of 
human metabolic maps. Reactions are color-
coded based on their corresponding gene 
expression changes (green, down-regulated; 
red, up-regulated; white, no data available or 
reaction level conflict). Arrows next to reaction 
abbreviations indicate the magnitude of 
expression changes on a log10 scale (gray 
boxes indicate no data available)
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