| Format/technique | Experimental features | Applications and examples | References | |--------------------------|--|--|---------------------------| | Static biofilms | Low or no shearNo replacement of mediumNo cell washout | | | | Microtiter plate | High throughputLimited biomass | Phenotypic screening of mutant
libraries Attachment and early biofilm
development studies Biomass quantification with staining | 26, 81 | | Calgary device
(MBEC) | High throughput Peg material may be modified Biomass may be recovered
from pegs Limited amount of biomass | Phenotypic screening of mutant
libraries Antibiotic susceptibility studies Microscopy with fluorescent probes Biomass quantification with staining | 82 | | Colony biofilm | Large biomass in short amount of time Inexpensive laboratory materials Low throughput | Antibiotic susceptibility and penetration studies Chemical gradient measurements using microelectrodes Heterogeneity studies using microscopy and fluorescent probes Cryosectioning studies for gene expression heterogeneity | 38, 40, 61,
62, 85, 87 | ### Modelos comerciales FIGURE 1 Examples of methods for biofilm cultivation under static conditions. (A) Biofilm cultured at the air-water interface, forming a pellicle. Published with permission from reference 83. (B) Biofilm cultured on a glass coupon under static conditions. Published with permission from reference 84. (C) Example of biofilm growth as a colony biofilm. Published with permission from reference 84. doi:10.1128/microbiolspec.MB-0016-2014.11 # Modelo clásico de screening El biofilm adherido se tiñe con CV Incubación por 48 hs a 37°C Pre-inóculo de cada aislamiento Medida de absorbancia a 590 nm https:// youtube.com/ playlist? list=PLG8B8Uyfh 7-D4oBxTzx0JI4-MhBnET3nq Remoción de bacterias planctónicas ## Clasificación Gran Valores de la absorbancia de acuerdo a la clasificación para la formación de biofilm. para la formación de biofilm. Clasificación DOc=0,21 Valores No formador DO≤DOc ≤0,21 Débil formador DOc<DO≤2xDOc 0,21<x≤0,42 Moderado (2xDOc)<DO≤(4x DOc) 0,42<x≤0,84 (4xDOc)<DO >0,84 ## Evaluación de antimicrobianos Pre-inóculo de cada aislamiento Cultivo de cepas con medio LB Incubación por 48 hs a 37°C El biofilm adherido se tiñe con CV Medida de absorbancia a 590 nm BIOFILMS EN SISTEMAS DINÁMICOS | Continuous
flow biofilms | Continuous supply of fresh
medium Adjustable shear force Low to medium throughput | | | |-----------------------------|---|--|-------------------| | CDC reactor | Special surface materials may be used Multiple biofilms are formed simultaneously Suitable for time-course study May be used for anaerobic cultures | Antibiotic susceptibility/viability
studies Microscopy studies with fluorescent
probes Applicable for omics studies | 88 | | Drip flow reactor | Special surface materials may be used High gas transfer Heterogeneous biofilm Large biomass in short time | Antibiotic susceptibility/viability studies Chemical gradient measurements using microelectrodes Heterogeneity studies using microscopy fluorescent probes Cryosection and laser capture microdissection followed by transcriptomic analysis Biofilm-immune cell interaction | 38, 61, 89 | | Imaging flow cells | Real-time detection Surfaces can be modified Appropriate for short-time experiments | Real-time imaging Monitoring attachment,
development, and detachment
phases Microscopy with fluorescent tags Attenuated total reflection Fourier
transform infrared spectrometry Hydrodynamics in biofilm by nuclear
magnetic resonance | 40, 79, 80,
91 | #### Modelos comerciales FIGURE 2 Examples of continuous-flow reactors for biofilm cultivation. (A) CDC reactor with medium inlet and outlet ports. Biofilms form on coupons arranged on removable Teflon rods. Published with permission from reference 88. (B) Drip-flow reactor with medium inlet and outlet ports and air exchange ports. Biofilms form on removable slides. Published with permission from reference 89. (C) Capillary flow cell for imaging biofilms. Published with permission from http://centerforgenomicsciences.org/research/biofilm_flow.html. doi:10.1128/microbiolspec.MB-0016-2014.f2 ## CARACTERÍSTICAS DEL MODELO Estructura tridimensional y organización espacial Seguimiento en el tiempo Imitación de características fisiológicas Microorganismos enfrentados a flujo y turbulencia No invasivo # **Tinciones** | TABLE 2 Assays applied for | biofilm quantification | and viability determination | |----------------------------|------------------------|-----------------------------| |----------------------------|------------------------|-----------------------------| | Assay or reagent | Quantification ability | Assay combination | Advantage(s) | Disadvantage(s) | Reference(s) | |---------------------------------------|--------------------------------------|---|-------------------------------------|--|---------------| | luorescent dyes | - | | | | | | | Biofilm matrix biomass | | Easy | Dependent on absorption of the
dye into the biomass | 110, 124, 162 | | | | | Inexpensive | Nonspecific to multispecies biofilms | | | | | | Wide applicability | No dimensional information | | | | | | | Sample destruction | | | | | | | Poor reproducibility | | | Congo red | Biofilm matrix biomass | | Easy | Low accuracy for biofilm visual
analysis | 149, 442 | | | | | Inexpensive | pH-dependent binding ability | | | DMMB | Biofilm matrix biomass | Resazurin, XTT, BTA, FDA | Strain specific (S. aureus) | Reagent instability | 154, 162 | | Live/Dead BacLight
(Syto 9 and PI) | Semiquantitative | CLSM | Cell viability assessment | Expensive | 443, 444 | | | | | | Intermediate "unknown" population | | | | | | | Underestimation of living cells | | | | | | | Large no. of samples required | | | AO A | Apoptotic quantification | Ethidium bromide, epifluorescence
microscopy | Time efficient | Lab safety requirements due to
high mutagenicity | 157, 445 | | | | , | DNA and RNA labeling | | | | | | | Detects apoptotic phenomena | | | | DAPI | Live-cell biomass | CTC | Feasible combination with other | Used only for fixed cells | 200, 446 | | DAIT L | | | probes | , | | | | | | Nuclear integrity | High concn is required for live-cell
staining | | | | | | Cell viability assessment | | | | хтт | Counts metabolically
active cells | | Reproducible | Requires highly respirative bacteria | 162, 437 | | | | | Nondestructive | Variations due to biofilm
heterogeneity | | | | | | Cell viability assessment | Time-consuming | | | | | | | Large no. of samples required | | | AB/resazurin | Counts metabolically
active cells | | Reproducible | Heat and light sensitive | 447, 448 | | | | | Cell viability assessment | | | | СТС | Counts metabolically
active cells | DAPI, epifluorescence microscopy | Bright red fluorescence | Detects only highly metabolically
active cells | 166, 449–451 | | | active cells | | Discrimination between active cells | Toxicity | | | | | | and abiotic parts | • | | | | | | Cell viability assessment | Solute-associated inhibition | | | | | | Cen viability assessment | Jointe-associated Illillolition | | | TABLE 2 (Continued) | | | | | | |----------------------------------|--|----------------------------------|---|--|-----------------------| | Assay or reagent | Quantification ability | Assay combination | Advantage(s) | Disadvantage(s) | Reference(s) | | | | | Detects bacteria with low
metabolic activity | | | | SYBR Green I | Multispecies biofilm cell
quantification | Real-time PCR | Cell viability assessment
Reliable and reproducible | Risk of sample contamination | 454, 455 | | | Can synthesize DNA in real time | | No specific probes required | | | | | | | Cell viability assessment | | | | Genetic/molecular
approaches | | | | | | | RT-PCR M | Multispecies biofilm cell
quantification | Gel electrophoresis (DGGE) | Detects uncultivable or
challenging-to-culture species,
live and dead cells, matrix
components | Risk of sample contamination | 456 | | | | | DGGE detects predominant
species, gives early clinical
diagnosis | Expensive and complex procedure | | | Real-time PCR | Can synthesize DNA in
real time
Counts cells in
multispecies biofilms | SYBR green I | Easy, rapid, reliable, and
reproducible
High sensitivity | Risk of sample contamination | 455, 457 | | Next-generation sequencing (NGS) | Quantification of genomic sequences | PCR, RT-PCR° | Cell viability assessment
High sensitivity | Expensive | 458 | | sequencing (1105) | genomic sequences | | Entire transcriptome available in a | | - | | Proteomic analysis | ECM protein component | Mass spectroscopy/NMR | single analysis (RNA-seq) ^e
Biofilm phenotype, protein profile
determinant, and resistance
pattern analysis | Protein expression variations in multispecies biofilms | 187, 190 | | Microscopy
FISH | Semiquantitative | CLSM | Independent of growth conditions | Low permeability of DNA probes | 175, 200,
459, 460 | | | | | Applicable to multispecies biofilms | Low sensitivity | 455, 400 | | | | | Detects all viable microorganisms | Hybridization between
complementary PNA probes | | | | | | Visualization and spatial distribution | Expensive and lengthy multistep
procedure | | | IF | Antibody-antigen
complexes | Fluorescently labeled antibodies | Simple procedure | Less flexible procedure | 461 | | | | | | Costly | | | Assay or reagent | Quantification ability | Assay combination | Advantage(s) | Disadvantage(s) | Reference(s) | |--|---|-------------------------------|--|---|------------------------------------| | CLSM | Quantitative imaging | Fluorescence assay, FISH, FCS | Nondestructive | Probe efficacy dependent on
biofilm EPS complexity | 162, 204,
205, 462,
463 | | | | | 3D imaging
Cell and EPS spatial distribution
Applicable to thick sample | Special equipment required | | | SIM | Live-cell biomass
imaging | Fluorescent probes | 3D imaging of living cells | Specimen instability during
multiple-image recording | 210, 211, 464 | | | | | Enhanced resolution
Computational amplification
Imaging of thick samples | | | | ОСТ | Biomass, structure, and
porosity identification | Ultra-broad-bandwidth lasers | Real-time 3D imaging | No cell-level resolution | 216, 465-467 | | | | | Speedy measurements
Noninvasive
Label-free | Limited penetration depth | | | TEM | Total biofilm matrix
biomass imaging | | High resolution | Sample prepn required | 204, 468, 469 | | 65110 | | rock | Conference to the stand | Special equipment required | | | SEM ^a | Synergy with focus ion
beam for inner
biofilm study | EDS ^b | Surface visualization ^a | Risk of sample distortion due to
dehydration ^a | 162, 220,
223, 227,
470, 471 | | ESEM ⁶ | , | | Detailed 3D visualization ^a | Low resolution ^b | | | Cryo-SEM ^c
ASEM ^d | | | No structural damage ^b
No sample prepn ^b
Imaging of EPS ^b | Artifacts due to sample prepn ^c
Low resolution ^c
Multiple labeling ^d | | | | | | No dehydration required ^c
Nonconductive surfaces ^c
Time efficient ^c | multiple labeling- | | | | | | Nanostructure biofilm surface
visualization in liquids ^d | | | | STXM | Total biofilm biomass | X-ray fluorescence | Macromolecule distribution | Applicable to thin samples | 162, 204,
224, 472,
473 | | | Chemical biofilm components | | Visualization of biological and
environmental components and
spatial distribution | Special equipment required | | | AFM | Chemical biofilm
component imaging | | Real-time 3D imaging | Artifacts and sample damage due
to incorrect tip elections | 227, 228,
474–476 | | | | | Little/no sample prepn
Performed in both air and water
Elucidation of molecular | Deformation of soft samples
Poor image quality in water
Special equipment required | | | | | | interactions
High resolution | | | | | | | resolution | | |