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Essential Math Essential Math

Mathematical Notation 1/2

NAME︸ ︷︷ ︸
name of the mapping

: DOMAIN︸ ︷︷ ︸
input

→︸︷︷︸
maps into

CODOMAIN︸ ︷︷ ︸
output

f : R→ R, for example f (x) = 3− x2

f : R× R→ R, for example f (x , y) = 3− x2 − y2

f : R× R→ RN+, for example I (x , y)

Here × means Cartesian product (i.e. X × Y = {(x , y)|x ∈ X , y ∈ Y }).
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Essential Math Domain examples

Mathematical Notation 2/2

DIFFERENT DOMAINS

Instead of writing f : R× R→ R we can take a short cut and define the
domain as Ω ∈ R× R and write it as f : Ω→ R.
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(b) Ω ∈ [−2 . . . 2]× [−2 . . . 2] (c) Ω ∈ [1 . . .m]× [1 . . . n]
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Essential Math Image as a function

Notation

IMAGE AS A FUNCTION

Indeed, the image I (x , y) can be see as a function I : R× R→ R (i.e.
each pair (x , y) gets mapped to a real value) and this is the basis of
mathematical treatment of images.
What we obtain from a digital camera is a discretised version of the image:
I : +Z×+Z→ +Z

(a) Tsukuba. (b) Tsukuba.
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Essential Math Derivative

Calculus

In calculus derivative is a measure how much a function changes as its
input changes. Let f be a real valued function. Geometrically derivative of
f at a point x is tangent to the graph of the function at (x , f (x)).
Formally, the derivative of the function f at x is the limit:

f (x)′ = limh→0
f (x + h)− f (x)

h

(a) Tangent (b) Secant (c) Limit of secant
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Essential Math Derivative notation

Calculus

x

y

dx

df

Figure : Leibniz’s notation.

NOTATIONS FOR DERIVATIVES

Leibniz’s notation

first order:
dy

dx
,
df

dx
(x),

d

dx
f (x)

higher order:
dny

dxn
,
dnf

dxn
(x),

dn

dxn
f (x)

Lagrange’s notation

first order: f ′

higher order: f ′′, f ′′′, f (4)

Newton’s notation
(
y = f (t)

)
first order: ẏ (with respect to time)
higher order: ÿ (with respect to time)
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Essential Math Partial derivative

Calculus

So far we have seen how to calculate how much a function of one input
variable (e.g. f (x)) changes with respect as its input changes. A partial
derivative tell us how a multi-variable function (e.g. f (x , y)) changes with
respect to one of the variables while the rest are kept constant. The

partial derivative with respect to x can be noted by: f ′x , fx , ∂x f or
∂

∂x
.

For example: 
∂

∂x
3− x2 − y2 = −2x

∂

∂y
3− x2 − y2 = −2y
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Essential Math Gradient

Calculus

GRADIENT

Gradient of a scalar field is a vector field that points in the
direction of the greatest rate of increase of the scalar field.

Gradient as operator: ∇ :=

[
∂

∂x

∂

∂y

]
|~x | means the Euclidean length of a vector ~x

Magnitude of rate of change: |∇(f )| =
√
f 2
x + f 2

y

SCALAR AND VECTOR FIELDS

Function f (x , y) is a scalar field since it maps Ω := R× R to a single
value z = f (x , y)

Gradient of this scalar maps two values (fx and fy ) for every point
z = f (x , y) and, therefore, it is called a vector field
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Essential Math Gradient example

Calculus

Gradient, ∇f =

[
∂f

∂x

∂f

∂y

]
, points in the direction of the greatest rate of

increase.
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(a) 3D plot of ∇f
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(b) Seen from above
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Essential Math Diffusion and Divergence

Calculus

IMAGE DIFFUSION EQUATION

It = DIV (∇I )

where DIV (∇I ) = DIV (∂x I~i + ∂y I~j) and I := I (x , y) refers to the image.
This equation can be read as: a temporal change in the image is due to
‘movement’ of particles due to diffusion. Therefore, the physical
interpretation of the DIV () operator is that of diffusion. If F = U~i + V~j is
a continuously differentiable vector field, then:

DIV (F ) =
∂U

∂x
+
∂V

∂y
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Essential Math Diffusion Example

Calculus

EXAMPLE OF DIFFUSION

(a) Time t = 0 (b) Time t = 1 (c) Graphs
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Level-sets

Level-sets

SEGMENTATION USING LEVEL-SETS
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Level-sets What is segmentation?

Level-sets

Segmentation is the process of joining individual pixels into ‘meaningful’
groups.

(a) Cones left image. (b) Segmentation.

Here each group is assigned a different number and each pixel belonging
to a particular group is displayed using the group’s number.
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Level-sets Segmentation taxonomy

Level-sets

Roughly speaking, segmentation methods can de divided in the following 2
different categories:

Contour based: different segments are identified by closed contours.
Area enclosed inside the contour constitutes as a segment.

Explicit contour representation.
Implicit contour representation (e.g. level-set).

Region based: segments are identified by area of the regions. Contour
is just the outer part of the segment.
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Level-sets Explicit vs implicit

Level-sets

EXPLICIT representation IMPLICIT representation
-Contour is directly available -Contour has to be ‘searched’
-Inside of segment: -Inside of segment:
...searching complicated ...searching trivial
-One segment per contour -Several segments per contour
-Handling of topological changes -Handling of topological changes
...via ad-hoc methods ...implicit
-Numerical stability: -Numerical stability:
...depends on the curve ...depends on derivatives
-Implementation: -Impelementation:
...depends on dimensionality ...extendible upto n-dims
-Numerically efficient -Numerically more complex
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Level-sets Topological change

Level-sets

J.Ralli (University of Granada) Level-set:s 2012 20 / 57



Level-sets What is a set?

Level-sets

A set can be defined by enclosing the set of members in curly brackets,
e.g. C = {4, 2, 1 5}. Instead of explicitly writing down each and every
member, we can identify the members based on a logical statement as
follows:

{x |P(x)}

, which means the set of all x for which P(x) is true. We can use sets for
describing the segments: {x |P(x)} describes the set of points (in the
domain) that belong to the segment in question.
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Level-sets First Example

Level-sets

Using the set notation and a function Φ(x), we can define the set as:

{x |Φ(x) > 0}

, which is a set of values of x where Φ(x) > 0.
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Level-sets Definition, 1D

Level-sets

We can identify the following sets on the domain based on the function
Φ(x):

interface(Φ) := {x |Φ(x) = 0}
outside(Φ) := {x |Φ(x) < 0}
inside(Φ) := {x |Φ(x) > 0}

, where outside is the area outside of the segment, inside is the area
belonging to the segment, and interface contains those points separating
the segments (called the interface).
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Level-sets Implicit representation

Level-sets

EXPLICIT FUNCTION: explicit function is a function where the
dependent variables are given explicitly in terms of the independent
variables. For example f (x) = x2.

IMPLICIT FUNCTION: implicit function is a function in which the
dependent variables are not given explicitly in terms of the independent
variable(s) OR it is a function in which the dependent variables are not
expressed in terms of some independent variables. For example:
x2 + y2 − 3 = 0.

IMPLICIT REPRESENTATION: Φ(x) = 0 is the zero contour of the
function Φ(x). Therefore, the level-set representation is said to be an
‘implicit’ representation.
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Level-sets Implicit representation example

Level-sets

Example of the implicit representation

Suppose that we have an explicit function of the form Φ(x) = 3− x2. The
function Φ clearly is an explicit function. However, the zero level-set is
defined by Φ(x) = 0, where Φ(x) = 3− x2. Therefore, the zero level-set is
given by:

3− x2 = 0

From this we can identify the zero level-set being as x = ±
√

3
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Level-sets Implicit ‘confusion’

Level-sets

Unfortunately, there is a slight ‘confusion’ in the terminology. Even if
Φ(x) = 3− x2 clearly is an explicit function, due to the way it is being
used implicitly, fathers of the level-set theorem have decided to call it
implicit function. In this case, the implicit function is actually 3− x2, since
based on this we detect the interface and the inside and outside as follows:

interface(Φ) := {x | 3− x2 = 0}
outside(Φ) := {x | 3− x2 < 0}
inside(Φ) := {x | 3− x2 > 0}

In this context better notation might be Φ(x) := 3− x2 which means
Φ(x) is another name for 3− x2.
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Level-sets Example 1D

Level-sets

In the case of the explicit function Φ(x) = 3− x2, we can divide the
domain (R) into three ‘significant’ sub-domains, namely (− inf, −

√
3),

(−
√

3,
√

3) and (
√

3, inf).
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Level-sets Closeup, 1D

Level-sets
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Level-sets Definition, 2D

Level-sets

We can identify the following sets on the domain based on the function
Φ(x , y):

interface(Φ) := {(x , y) |Φ(x , y) = 0}
outside(Φ) := {(x , y) |Φ(x , y) < 0}
inside(Φ) := {(x , y) |Φ(x , y) > 0}

, where outside is the area outside of the segment, inside is the area
belonging to the segment, and interface contains those points separating
the segments (called the interface).
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Level-sets Example, 2D

Level-sets

In the case of the explicit function Φ(x , y) = 3− x2 − y2, the domain
R× R can be divided in the following segments based on the level-set
function Φ(x , y) = 0:
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(a) 2D plot
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(b) Seen from above
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Level-sets Image of an implicit function

Level-sets
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Level-sets Topological change

Level-sets

The segmentation process is started with two individual ‘seeds’ (t=0) with
no connectivity. Approximately at t=13 these seeds ‘fuse’ together and,
therefore, the topology has changed.

(a) Left. (b) Disparity.

(c) t=0. (d) t=12. (e) t=14. (f) t=199.
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Dynamic Implicit Surfaces

Dynamic Surfaces

DYNAMIC IMPLICIT SURFACES
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Dynamic Implicit Surfaces Intro

Moving Interfaces

So far we have defined what are level-sets and how these can be used for
our purpose of segmenting. Until now the level-sets have all been static
(i.e. they don’t move). Here, the idea is to define the necessary
mathematical concepts in order to move the level-sets. Hence the name
DYNAMIC IMPLICIT SURFACES.
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Dynamic Implicit Surfaces Example from DRIVSCO

Moving Interfaces

The interface is ‘moved’ automatically towards the borders of the object.

(a) Original interface. (b) Interface after n iterations.
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Dynamic Implicit Surfaces Convection equation

Moving Interfaces

Now that we know how level-sets can be used for segmentation, we want
to know how we can move the interface separating the segments. Here,
~V = u~i + v~j is an externally generated velocity field that we want to use
for moving the interface. This can be achieved using a simple convection
equation:

∂Φ

∂t
+ ~V · ∇Φ = 0

Φt + uΦx + vΦy = 0

, where the t subscript denotes temporal partial derivative, ∇ is the spatial
gradient operator and · is the scalar product. This partial differential
equation (PDE) defines the motion of the interface.
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Dynamic Implicit Surfaces Convection equation II

Moving Interfaces

~V · ∇Φ = 0

(a) ~V (b) ∇Φ

(c) u

∗
(d) Φx

+
(e) v

∗
(f) Φx
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Dynamic Implicit Surfaces Convection intuitively

Moving Interfaces

Convection ‘intuitively’ in 1D. Φt + uΦx = 0, therefore Φt = −uΦx .
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Dynamic Implicit Surfaces External Velocity Field

Moving Interfaces

Here, ~V = u~i + v~j is an externally generated velocity field.

∂Φ

∂t
+ ~V · ∇Φ = 0

Φt + uΦx + vΦy = 0
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Dynamic Implicit Surfaces Normal vector

Calculus

Normal unit vector can be expressed as:
∇Φ

|∇Φ|
(note that |∇Φ| is the

length of the vector).
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(a) 3D plot of ∇f
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Dynamic Implicit Surfaces Movement in the direction of normal I

Moving Interfaces

We can define movement in the direction of the normal of the level-set as
follows:

−2 −1 0 1 2

−2

−1

0

1

2

~N
~T

Φt + (vt ~T + vn~N) · ∇Φ = 0

Φt + (vt ~T︸︷︷︸
=0

+vn~N) · ∇Φ = 0

Φt + vn~N · ∇Φ = 0

, where vn and vt are the velocities
in the direction of the normal and
the tangent.

J.Ralli (University of Granada) Level-set:s 2012 42 / 57



Dynamic Implicit Surfaces Movement in the direction of normal II

Moving Interfaces

We can define movement in the direction of the normal of the level-set as
follows:

Φt + (vt ~T + vn~N) · ∇Φ = 0

Φt + (vt ~T︸︷︷︸
=0

+vn~N) · ∇Φ = 0

Φt + vn~N · ∇Φ = 0

, where vn and vt are the velocities in the direction of the normal and the
tangent. Since ~N = ∇Φ/|∇Φ|, we have:

Φt + vn
∇Φ

|∇Φ|
· ∇Φ = 0

Φt + vn|∇Φ| = 0
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Dynamic Implicit Surfaces Mean curvature motion I

Moving Interfaces

So far we have seen movement in external velocity field and movement in
the normal direction. An interesting case of movement in the normal
direction is so called Mean Curvature Motion (MCM), induced by the local
curvature.

Motion by mean curvature is defined as follows:

vn = −αDIV
(
∇Φ

|∇Φ|

)
, where α is simply a coefficient, typically varying between [0..1], defining
how much of the local curvature is taken into account.
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Dynamic Implicit Surfaces Mean curvature motion II

Moving Interfaces

Movement in the normal direction:

Φt + vn|∇Φ| = 0

By plugging in the the local curvature in the normal movement model, we
obtain the following:

Φt − αDIV
(
∇Φ

|∇Φ|

)
|∇Φ| = 0
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Dynamic Implicit Surfaces Mean curvature motion III

Moving Interfaces

(a) t = 0 (b) t = 100

(c) t = 0 (d) t = 100

J.Ralli (University of Granada) Level-set:s 2012 46 / 57



Algorithm

Algorithm

CONCRETE SEGMENTATION ALGORITHM
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Algorithm Algorithm

Algorithm

‘A GEOMETRIC MODEL FOR ACTIVE COUNTOURS IN IMAGE
PROCESSING’, Vicent Caselles et al., 1993

Φt = g(|∇I |)DIV
(
∇Φ

|∇Φ|

)
|∇Φ|︸ ︷︷ ︸

minimises local curvature

+ g(|∇I |)c |∇Φ|︸ ︷︷ ︸
balloon force

Φt =

(
g(∇I )DIV

(
∇Φ

|∇Φ|

)
+ g(|∇I |)c

)
︸ ︷︷ ︸

normal velocity

|∇Φ|

, where g() is a monotonically descending function, I is the input image
and c is a parameter defining the ‘balloon’ force.
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Algorithm Stopping function I

Algorithm

Function of the g(|∇I |) is to stop movement of the contour once the
contour reaches object edges (i.e. |∇I | obtains ‘big’ value).

(a) Image. (b) |∇I |

(c) Ix (d) Iy
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Algorithm Stopping function II

Algorithm

Therefore, as |∇I | → inf, then g(|∇I |)→ 0. Once such function is:

g(|∇I |) =
1

1 +
(
|∇I |
λ

)2

, where λ is a parameter that controls shape of the function and it is used
for defining what strength (i.e. magnitude) of gradient is considered to be
a border of an object.
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Algorithm Balloon force

Algorithm

The ‘balloon’ force/movement is nothing more than constant movement in
the direction defined by the gradient as seen previously.

Φt = c |∇Φ|

If c > 0 the contour ‘expands’, if c < 0 the contour ‘shrinks’

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1
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Algorithm Balloon force example

Algorithm

Example of the balloon force.

(a) t = 0 (b) t = 50, c = 1.5 (c) t = 50, c = −1.5
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Algorithm Example

Algorithm

J.Ralli (University of Granada) Level-set:s 2012 54 / 57



BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

J.Ralli (University of Granada) Level-set:s 2012 55 / 57



BIBLIOGRAPHY Bibliography

Bibliography

‘Level set Methods and Dynamic Implicit Surfaces’, S. Osher and R.
Fedkiw

www.math.ucla.edu/~sjo/

www.jarnoralli.com

J.Ralli (University of Granada) Level-set:s 2012 56 / 57

www.math.ucla.edu/~sjo/
www.jarnoralli.com


End

End

THANK YOU!
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