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Introduction Diffusion

Diffusion

Effect of non-linear diffusion upon image

(a) Orig. (b) t = 0.5. (c) t = 1.0.

Artificial time t defines how ‘much’ the image is diffused. As it can be
understood, diffusion ‘simplifies’ the image.
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Introduction Image Correspondences

Image Correspondences

Image domain Ωh

(a) First image.

Image domain Ωh

(b) Second image.
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Introduction Stereo

Image Correspondences

(a) Left image. (b) Disparity. (c) 3D.

Figure : A robotics related disparity example. In the case of the disparity map,
gray-level codifies the disparity: objects with dark tones are closer to the cameras,
while objects with light tones are further away from the cameras.
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Introduction Optical-flow

Image Correspondences

I (x , y , k , t) : R× R× [0,∞)→ R3, where k = 1 . . . 3 is the channel (i.e.
RGB).

(a) I (x , y , k, 0) (b) I (x , y , k, 1) (c) I (x , y , k, 2) (d) I (x , y , k, 3)

(e) Flow, 0 . . . 1 (f) Flow, 1 . . . 2 (g) Flow, 2 . . . 3
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Essential Math

Essential Math

MATH PRIMER
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Essential Math Essential Math

Mathematical Notation 1/2

NAME︸ ︷︷ ︸
name of the mapping

: DOMAIN︸ ︷︷ ︸
input

→︸︷︷︸
maps into

CODOMAIN︸ ︷︷ ︸
output

f : R→ R, for example f (x) = 3− x2

f : R× R→ R, for example f (x , y) = 3− x2 − y 2

f : R× R→ RN+, for example I (x , y , k) (i.e. image with k channels)

f : R× R× [0,∞)→ RN+, for example I (x , y , k , t)

Here × means Cartesian product (i.e. X × Y = {(x , y)|x ∈ X , y ∈ Y }).
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Essential Math Domain examples

Mathematical Notation 2/2

DIFFERENT DOMAINS

Instead of writing f : R× R→ R we can take a short cut and define the
domain as Ω ∈ R× R and write it as f : Ω→ R.
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(b) Ω ∈ [−2 . . . 2]× [−2 . . . 2] (c) Ω ∈ [1 . . .m]× [1 . . . n]
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Essential Math Derivative

Calculus

In calculus derivative is a measure how much a function changes as its
input changes. Let f be a real valued function. Geometrically derivative of
f at a point x is tangent to the graph of the function at (x , f (x)).
Formally, the derivative of the function f at x is the limit:

f (x)′ = limh→0
f (x + h)− f (x)

h

(a) Tangent (b) Secant (c) Limit of secant
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Essential Math Derivative notation

Calculus

x

y

dx

df

Figure : Leibniz’s notation.

NOTATIONS FOR DERIVATIVES

Leibniz’s notation

first order:
dy

dx
,

df

dx
(x),

d

dx
f (x)

higher order:
dny

dxn
,

dnf

dxn
(x),

dn

dxn
f (x)

Lagrange’s notation

first order: f ′

higher order: f ′′, f ′′′, f (4)

Newton’s notation
(
y = f (t)

)
first order: ẏ (with respect to time)
higher order: ÿ (with respect to time)
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Essential Math Partial derivative

Calculus

PARTIAL DERIVATIVES

So far we have seen how to calculate how much a function of one input
variable (e.g. f (x)) changes with respect as its input changes. A partial
derivative tell us how a multi-variable function (e.g. f (x , y)) changes with
respect to one of the variables while the rest are kept constant. The

partial derivative with respect to x can be noted by: f ′x , fx , ∂x f or
∂

∂x
.

For example: 
∂

∂x
3− x2 − y 2 = −2x

∂

∂y
3− x2 − y 2 = −2y
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Essential Math Gradient

Calculus

GRADIENT

Gradient of a scalar field is a vector field that points in the
direction of the greatest rate of increase of the scalar field.

Gradient as operator: ∇ :=

[
∂

∂x

∂

∂y

]
|~x | means the Euclidean length of a vector ~x

Magnitude of rate of change: |∇(f )| =
√

f 2
x + f 2

y

SCALAR AND VECTOR FIELDS

Function f (x , y) is a scalar field since it maps Ω := R× R to a single
value z = f (x , y)

Gradient of this scalar maps two values (fx and fy ) for every point
z = f (x , y) and, therefore, it is called a vector field
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Essential Math Gradient example

Calculus

Gradient, ∇f =

[
∂f

∂x

∂f

∂y

]
, points in the direction of the greatest rate of

increase.
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(a) 3D plot of ∇f
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(b) Seen from above
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Essential Math Approximating derivatives

Calculus

So, how can we calculate/approximate derivatives in images? Typically we
use so called ‘finite differences’, which can be derived from the formal
definition of the derivative seen before:

f (x)′ = limh→0
f (x + h)− f (x)

h

Since in our approximation h has a value that is considerably bigger than
0, we have error in the approximation of the derivative.
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Essential Math Finite Difference

Calculus

1 First order forward difference is given by:

D+
x f (x , y) = f +

x (x , y) =
f (x + ∆x , y)− f (x , y)

∆x
(1)

2 First order backward difference is given by:

D−x f (x , y) = f −x (x , y) =
f (x , y)− f (x −∆x , y)

∆x
(2)

3 First order central difference is given by:

D0
x f (x , y) = f 0

x (x , y) =
f (x + 1

2 ∆x , y)− f (x − 1
2 ∆x , y)

∆x
(3)

4 Second order central difference is given by:

DD0
x f (x , y) = f 0

xx(x , y) =
f (x + ∆x , y)− 2f (x , y) + f (x −∆x , y)

∆x2
(4)
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Essential Math Discretisation

Discretisation

We consider the image to be a continuous function/mapping with
I (x , y , k) : R× R→ RK+, where the domain of the image is Ω ⊂ R× R
and K defines the number of channels. The kind of images that we are
dealing with are, in fact, discretised versions that we receive from the
imaging devices, such as digital- or thermal cameras. We define a
discretisation grid as:

Gh := {(x , y) | x = xi = ihx , y = yj = jhy ; i , j ∈ Z}

where h = (hx , hy ) is a discretisation parameter. With the discretisation
grid, the domain of the discretised images can be defined as Ωh = Ω ∩ Gh.
Instead of I (x , y) = I (ihx , jhy ), we typically use Ii ,j when pointing to the
pixels.
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Diffusion

Diffusion

DIFFUSION

J.Ralli (University of Granada) PDE based image treatment 2012 18 / 67



Diffusion Linear diffusion

Diffusion

LINEAR IMAGE DIFFUSION EQUATION

It = DIV
(
∇I
)

where ∇I =

[
∂I

∂x

∂I

∂y

]
, which is the same as ∇I = ∂x I~i + ∂x I~j . This

equation tells us how each and every ‘pixel position’ evolves with respect
to an artificial time t. Linear diffusion is as called homogeneous diffusion.

Here, physical interpretation of the divergence operator is that of diffusion.
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Diffusion Non-linear diffusion

Diffusion

NON-LINEAR IMAGE DIFFUSION EQUATION
(Perona&Malik, 1990)

It = DIV
(
g(x , y , t)∇I

)
where ∇I =

[
∂I

∂x

∂I

∂y

]
, which is the same as ∇I = ∂x I~i + ∂x I~j . This

equation tells us how each and every ‘pixel position’ evolves with respect
to an artificial time t.

Here we have a function g(x , y , t) that controls the diffusion between the
pixels as we shall see later on.
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Diffusion Non-linear vs. linear

Diffusion

Linear- vs. non-linear diffusion

(a) Non-linear (b) Linear
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Diffusion Linear diffusion and convolution

Diffusion

Linear (homogeneous) diffusion It = DIV
(
∇I
)
, stopping the evolution at

time T , is equivalent to convoluting the image by:

I (x , y ,T ) =
(

K2
√
T ∗ I

)
(x , y)

where Kρ(x , y) =
1

2πρ2
exp

(
−x2 + y 2

2ρ2

)
is a Gaussian kernel and ∗

denotes convolution.

It other words, linear diffusion is equivalent with convoluting the image
with a Gaussian kernel, meaning that the image borders also get ‘diffused’,
whereas in the case of non-linear diffusion the object borders remain ‘crisp’.
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Diffusion Stopping function I

Diffusion

Function of the g(|∇I |) is to stop diffusion at borders (i.e. where |∇I |
obtains a ‘big’ value).

(a) Image. (b) |∇I |

(c) Ix (d) Iy
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Diffusion Stopping function II

Diffusion

Therefore, as |∇I | → inf, then g(|∇I |)→ 0. Once such function is:

g(|∇I |) =
1

1 +
(
|∇I |
λ

)2

, where λ is a parameter that controls shape of the function and it is used
for defining what strength (i.e. magnitude) of gradient is considered to be
a border of an object.
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Diffusion Semi-implicit method

Diffusion

In order for use to use the diffusion equation in a computer, we need to
discretise it first. In order to calculate a new value of I at t + 1 we use a
backward Euler (semi-implicit) method, and obtain the following:

I t+1 − I t

τ
= DIV

(
g t∇I t+1

)
(5)

where τ is size of the time step, subscripts t and t + 1 refer to the time
(i.e. not exponent) and g t = g(x , y , t). In other words, the idea is to
calculate new values of I at t + 1 (i.e. I t+1) using Equation (5). However,
we still have to discretise the DIV operator before we have a model that
we can use.

J.Ralli (University of Granada) PDE based image treatment 2012 25 / 67



Diffusion Divergence

Diffusion

Mathematically, for a differentiable vector function F = U~i + V~j ,
divergence operator is defined as:

DIV
(

F
)

=
∂U

∂x
+
∂V

∂y

In other words, divergence is a sum of partial derivatives of a differentiable
vector function. Therefore, in our case, we have the following.

DIV
(
∇I
)

=
∂

∂x

(
Ix
)

+
∂

∂y

(
Iy
)

=
∂2I

∂x2
+
∂2I

∂y 2
= ∆I

DIV
(

g(x , y , t)∇I
)

=
∂

∂x

(
g(x , y , t)Ix

)
+

∂

∂y

(
g(x , y , t)Iy

)
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Diffusion What is divergence?

Diffusion

Here the physical interpretation of divergence is diffusion:

r rrrW C E

S

N

W C E

S

N

- �
?

6

gw ge

gn

gs

When we are calculating a new value for the central pixel (C), the values
of the surrounding pixels are taken into account. Weights g{w ,n,e,s} (based
on the stopping function g(x , y , t) define how much the surrounding pixels
influence.
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Diffusion Divergence discretisation I

Diffusion

In order to discretise the divergence terms, first we apply the central
difference and then forward- and backward differences. Since the distance
between the pixels is one (∆x = ∆y = 1), we have the following:

D+
x f (x , y) = f +

x (x , y) = f (x + 1, y)− f (x , y)

D−x f (x , y) = f −x (x , y) = f (x , y)− f (x − 1, y)

D0
x f (x , y) = f 0

x (x , y) = f (x +
1

2
, y)− f (x − 1

2
, y)
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Diffusion Divergence discretisation II

Diffusion

Here we show how the term
∂

∂x

(
Ix
)

can be discretised. As it was

mentioned earlier, first we discretise the operator
∂

∂x
using a central

difference (D0
x ) and obtain the following:

∂

∂x

(
Ix
)
≈ Ix(x +

1

2
, y)− Ix(x − 1

2
, y)

where Ix(x + 1
2 , y) means that we have to approximate the derivative Ix at

position (x + 1
2 , y). Visually this would be equivalent to:

r rcentral

= rIx
- rIx

+
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Diffusion Divergence discretisation III

Diffusion

In order to approximate the derivatives Ix(x + 1
2 , y) and Ix(x − 1

2 , y), we
can use the forward- and backward finite differences (i.e. D+

x and D−x )
and, therefore, we have:

Ix(x +
1

2
, y) ≈ I (x + 1, y)− I (x , y)

Ix(x − 1

2
, y) ≈ I (x , y)− I (x − 1, y)

Discretising
∂

∂y
is essentially done in the same way.
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Diffusion Divergence discretisation IV

Diffusion

Discretisation of DIV (∇I ):

∂

∂x

(
Ix

)
(x, y) +

∂

∂y

(
Iy

)
(x, y) =

(
Ix

)
(x + 0.5, y)−

(
Ix

)
(x − 0.5, y)

+
(
Iy

)
(x, y + 0.5)−

(
Iy

)
(x, y − 0.5)

=I (x + 1, y)− I (x, y)

+ I (x − 1, y)− I (x, y)

+ I (x, y + 1)− I (x, y)

+ I (x, y − 1)− I (x, y)

=∇E I +∇W I +∇S I +∇N I

For more information, see http:

//www.jarnoralli.fi/joomla/images/pdf/diffusion_and_aos.pdf
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Diffusion Divergence discretisation V

Diffusion

Discretisation of DIV (g(x , y , t)∇I ):

∂

∂x

(
gIx

)
(x, y) +

∂

∂y

(
gIy

)
(x, y) =

(
gIx

)
(x + 0.5, y)−

(
gIx

)
(x − 0.5, y)

+
(
gIy

)
(x, y + 0.5)−

(
gIy

)
(x, y − 0.5)

=g(x + 0.5, y)
(
I (x + 1, y)− I (x, y)

)
+ g(x − 0.5, y)

(
I (x − 1, y)− I (x, y)

)
+ g(x, y + 0.5)

(
I (x, y + 1)− I (x, y)

)
+ g(x, y − 0.5)

(
I (x, y − 1)− I (x, y)

)
=gE∇E I + gW∇W I + gS∇S I + gN∇N I

For more information, see http:

//www.jarnoralli.fi/joomla/images/pdf/diffusion_and_aos.pdf
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Diffusion Divergence visually

Diffusion

Due to heavy use of indices, the discretisation shown in the above slides
can be better understood visually:

r rrrW C E

S

N

=

r∇W I

W C

+

r
∇N I

C

N

+

r∇E I

C E

+

r∇S I

C

S

where:
gW := g(x − 0.5, y), ∇W I := (I (x − 1, y)− I (x , y))

gN := g(x , y − 0.5), ∇N I := (I (x , y − 1)− I (x , y))

gE := g(x + 0.5, y), ∇E I := (I (x + 1, y)− I (x , y))

gS := g(x , y − 0.5), ∇S I := (I (x , y + 1)− I (x , y))

The dots indicate where the g{W ,N,E ,S} are calculated.
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Diffusion Resolvable model

Diffusion

The only thing left to do is to plug in the corresponding discretisation in
Equation(5), re-order the terms, and now we have a discretised version
that we can solved in a computer:

I t+1
i ,j

(
1 + τ(g t

N + g t
S + g t

W + g t
E )
)

=I ti ,j

+ τg t
N

(
I t+1
i−1,j

)
+ τg t

S

(
I t+1
i+1,j

)
+ τg t

W

(
I t+1
i ,j−1

)
+ τg t

E

(
I t+1
i ,j+1

)
(6)
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Diffusion Resolvable model II

Diffusion

Basically, Equation (6) tells us how I evolves in the case of a single pixel.
Therefore, for each and every pixel in the image, we have a similar
equation. Another complication is that when solving for I t+1, from
Equation (6), the term I t+1 appears on both sides of =.

What we do is write the system as a system of equations of the form
Ax = b (matrix-vector format), where one solves for x (in our case I t+1) .
In this case the system matrix A contains the information about the
interactions (i.e. diffusion coming from the DIV term) between the pixels.
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Diffusion Matrix format

Diffusion

MATRIX-VECTOR FORMAT

If the domain of the discretised image is Ωh : [1,m]× [1, n] (discrete image
with m columns and n rows), the system matrix A is defined on
[m · n]× [m · n] (here · denotes multiplication). Now, we can write the
Euler forward, semi-implicit formulation in a vector/matrix format as
follows:

It+1 − It

τ
= A

(
It
)

It+1 (7)

where I := (I )I with I = [1 . . .N] and N = mn (i.e. all the pixels in the
image).
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Diffusion Solving diffusion

Diffusion

In order to simplify the notation, we write A instead of A
(

(Ik)t
)

. Id refers

to the identity matrix. Therefore, we have:

It+1 = It + τAIt+1 (8)

From which It+1 can be solved as follows:

It+1 =

(
Id − τA

)−1

It (9)

Typically we don’t directly calculate the inverse of the
(

Id − τA
)

, but we

use iterative numerical methods, such as Gauss-Seidel method, to solve for
It+1.
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Diffusion Results

Diffusion

Effects of non-linear diffusion upon image

(a) Orig. (b) Diffused.
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Correspondences

Correspondences

IMAGE CORRESPONDENCES

J.Ralli (University of Granada) PDE based image treatment 2012 39 / 67



Correspondences Stereo

Correspondences

Figure : C1 and C2 are the camera centres of the respective cameras. X is the
point of interest in 3D world coordinates, while x and x′ are the images of the
same on the respective camera planes. Disparity is d = x − x ′.
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Correspondences Epipolar geometry

Correspondences

(a) Stereo-cameras.

(b) Epipolar geometry.

(c) Not rectified. Image information does
not match on horizontal lines.

(d) Rectified.
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Correspondences Stereo, Tsukuba

Correspondences

(a) Left. (b) Right.

(c) Left-right. (d) Disparity.

Figure : Intensity level codifies depth of the objects in the disparity image.
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Correspondences Stereo

Correspondences

(a) Left image. (b) Disparity. (c) 3D.

Figure : A robotics related disparity example. Based on the 3D ‘image’, the
system detects the object and the decides upon how it can be manipulated etc.
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Correspondences Optical-flow example

Correspondences

(c) System scheme.

(d) Image. (e) Flow. (f) Dir.

P. Guzmán, J. D́ıaz, J. Ralli, R. Aǵıs, and E. Ros, ‘Low-cost Sensor to Detect Overtaking Based on
Optical-flow’, Machine Vision and Applications.
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Correspondences Constancy Assumption

Correspondences

We assume that any observed change in pixel intensity level is due to
movement (x − u, y − v) in the image plane as time changes from t to
t + 1.

-

(a) I(x,y,t)

-

(b) I(x+u,y+v,t+1)

Mathematically this constancy assumption can be formulated as:

op-flow: I (x , y , t) = I (x − u, y − v , t + 1)

stereo: IL(x , y) = IR(x − d , y)
(10)
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Correspondences Taylor’s approximation

Correspondences

In order for to use the constancy assumption, we need to linearise it. To
this end we use Taylor expansion: if a real-value function f is differentiable
at the point a then it has a linear approximation at the point a. This
means that there exists a function h1 such that:

f (x) = f (a) + f ′(a)(x − a) + h1(x)(x − a), lim
x→a

h1(x) = 0

−0.5 0 0.5 1

0.5

1

1.5

2

2.5

x

f
(x

)
=

e
x
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Correspondences OFC

Correspondences

The gray-level constancy seen previously reads: The gray-level constancy is
as given by equation (11), while first order (linear) approximation is given
by equation (12). By plugging (12) into (11) we obtain (13):

I (x , y , t) = I (x + u, y + v , t + 1) (11)

I (x + u, y + v , t + 1) = I (x , y , t) + Ixu + Iyv + It (12)

Ixu + Iyv + It = 0 (13)

Equation (13) is called the Optical-Flow Constraint (OFC).
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Correspondences Lucas-Kanade

Correspondences

In the Lucas-Kanade (1981) method the optical-flow vector is assumed to
be ‘constant’ in a certain neighbourhood. Neighbourhood is typically
defined by convolving with a Gaussian Kρ having a standard deviation ρ.
This allows estimating the optical-flow, at each point, by minimising the
energy function:

E (u, v) =
1

2
Kρ ∗

(
(Ixu + Iyv + It)

2
)

A minimum (u, v) of E satisfies ∂uE = 0 and ∂vE = 0, therefore:[
Kρ ∗ I 2

x Kρ ∗ Ix Iy
Kρ ∗ Ix Iy Kρ ∗ I 2

y

]
︸ ︷︷ ︸

A

[
u
v

]
=

[
−Kρ ∗ Ix It
−Kρ ∗ Ix It

]
(14)

where ∗ denotes convolution.
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Correspondences Lucas-Kanade stability

Correspondences

In order for Equation (14) to have a solution, determinant of the system
matrix A must be nonzero:

det(A) = (Kρ ∗ I 2
x )(Kρ ∗ I 2

y )− (Kρ ∗ Ix Iy )(Kρ ∗ Ix Iy ) (15)

Determinant is nonzero if and only if both Kρ ∗ Ix and Kρ ∗ Iy are nonzero.
In other words, we can solve for optical-flow only if both the derivatives
∂I

∂x
and

∂I

∂y
are nonzero!
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Correspondences Lucas-Kanade pros/cons

Correspondences

1 Pros
1 Simple, easy to understand
2 Fast
3 Sparse, approximations only where information is available

2 Cons
1 Sparse, obtained (u, v) might not cover the whole image
2 Local solution
3 Basic model is not very robust
4 Can only detect small displacements
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Correspondences Horn-Schunck

Correspondences

The Horn-Schunck (1981) model includes a smoothness term that
penalises changes in the optical flow field:

E (u, v) =

∫
Ω

(
(It − Ixu − Iyv)2︸ ︷︷ ︸

data term

+α
(
|∇u|2 + |∇v |2

)︸ ︷︷ ︸
smoothness term

)
dx (16)

where Ω is the image domain, i.e. this model is global in a sense that we
seek (u, v) that minimises the energy E for the whole image. The
Tikhonov regulariser penalises deviations in the optical-flow field.
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Correspondences Horn-Schunck minimiser

Correspondences

A necesary condition for a minimum (or maximum) of (16) is that the
related Euler-Lagrange equations equal to zero:

(It − Ixu − Iyv) Ix + DIV (∇u) = 0

(It − Ixu − Iyv) Iy + DIV (∇v) = 0
(17)

Discresation of Equation (17) leads to a sparse linear system of equations
that can be solved using iterative methods, such as Gauss-Seidel,
Successive-Over-Relaxation etc.
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Correspondences Euler-Lagrange equation

Correspondences

’Because a differentiable functional is stationary at its local maxima and
minima, the Euler–Lagrange equation is useful in seeking the
function that minimizes (or maximizes) it. This is analogous to
calculus: a differentiable function attains its local extrema where its
derivatives are zero’ (Wikipedia)

S(f ) =

∫ b

a
L(x , f (x), f ′(x)) (18)

where f (x) is a function of a real variable x and L is the functional. The
corresponding Euler-Lagrange equation is given by:

∂

∂f
L− d

dx

∂

∂f ′
L = 0 (19)
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Correspondences HS formulation

Correspondences

If we solve the coupled PDE (17) in elliptic, semi-implicit form, after
discretisation we have:

[
(Ii ,j)

2
x + 4α (Ii ,j)y (Ii ,j)x

(Ii ,j)
2
y + 4α (Ii ,j)y (Ii ,j)x

] [
ul+1
i ,j

v l+1
i ,j

]
=[

(Ii ,j)t(Ii ,j)x + α(ul
i−1,j + ul

i+1,j + ul
i ,j−1 + ul

i+1,j)

(Ii ,j)t(Ii ,j)y + α(v l
i−1,j + v l

i+1,j + v l
i ,j−1 + v l

i+1,j)

] (20)

When solving for the whole image, we end up with a linear system of
equations of the form Ax = b, where A is a sparse matrix. As was
mentioned earlier, this can be solved using iterative methods, such as
Gauss-Seidel, Successive-Over-Relaxation etc.
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Correspondences HS pros/cons

Correspondences

1 Pros
1 Global solution, in theory more robust
2 Linear, therefore easy and quick to solve
3 Smoothness of the solution

2 Cons
1 Only works with small displacements
2 Global solution, propagates even erroneous solutions
3 Quadratic error function emphasises occlusions etc.
4 Tikhonov regulariser propagates solution accross object boudaries
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Correspondences Robust Horn-Schunck

Correspondences

In order for the HS model to take into account ‘outliers’ (i.e. model
errors), we can embed both the data- and the smoothness term in a robust
error function:

E (u, v) =

∫
Ω

(
Ψ
(

(It − Ixu − Iyv)2
)

︸ ︷︷ ︸
data term

+αΨ
(
|∇u|2 + |∇v |2

)
︸ ︷︷ ︸

smoothness term

)
dx (21)

where Ψ(s2) is a robust error function, e.g. Ψ(s2) =
√

s2 + ε2.
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Correspondences Robust HS, Euler-Lagrange

Correspondences

Again, a necesary condition for a minimum (or maximum) of (21) is that
the related Euler-Lagrange equations equal to zero:

ED = It − Ixu − Iyv

ES = |∇u|2 + |∇v |2

Ψ
′
(

ED

)(
It − Ixu − Iyv

)
Ix − αDIV

(
Ψ
′
(ES)∇u

)
= 0

Ψ
′
(

ED

)(
It − Ixu − Iyv

)
Iy − αDIV

(
Ψ
′
(ES)∇v

)
= 0

(22)

where Ψ
′
(s2) (derivative of Ψ(s2)) is the influence function (i.e. how

much weight is given to each approximation).
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Correspondences

Table : Error functions used in the smoothness term.
ERROR AND CORRESPONDING INFLUENCE FUNCTIONS

ΨR(s2) = s2 Ψ′R(s2) = 1 quadratic (blue) not robust

ΨR(s2) =
√
s2 + ε2 Ψ′R(s2) = 1/

√
s2 + ε2 TV (red) robust

ge(s2) = ln(1 + s2/λ2)λ2 g(s2) = 1/(1 + s2/λ2) ln (green) robust
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(a) Error functions.
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(b) Influence functions.
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K∑
k=1

Ψ
′(

(E l )D

)(
It Ix − I 2

x u
l+1
i,j − Iy Ix v

l+1
i,j

)
+KαΨ

′
i,j (E

l
S )N (ul+1

i−1,j − ul+1
i,j )

+KαΨ
′
i,j (E

l
S )S (ul+1

i+1,j − ul+1
i,j )

+KαΨ
′
i,j (E

l
S )W (ul+1

i,j−1 − ul+1
i,j )

+KαΨ
′
i,j (E

l
S )E (ul+1

i,j+1 − ul+1
i,j ) = 0

K∑
k=1

Ψ
′(

(E l )D

)(
It Iy − Ix Iy u

l+1
i,j − I 2

y v
l+1
i,j

)
+KαΨ

′
i,j (E

l
S )N (v l+1

i−1,j − v l+1
i,j )

+KαΨ
′
i,j (E

l
S )S (v l+1

i+1,j − v l+1
i,j )

+KαΨ
′
i,j (E

l
S )W (v l+1

i,j−1 − v l+1
i,j )

+KαΨ
′
i,j (E

l
S )E (v l+1

i,j+1 − v l+1
i,j ) = 0

For more information, see http://www.jarnoralli.fi/joomla/images/pdf/thesis_jralli.pdf
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Correspondences Robust HS pros/cons

Correspondences

1 Pros
1 Global solution, in theory more robust
2 Non-linear, more complicate to solve
3 Smoothness of the solution
4 Non-quadratic data term: the model takes into account outliers
5 Non-quadratic smoothness term: the model does not propagate

optical-flow field from one object to another

2 Cons
1 Only works with small displacements
2 Global solution, propagates even erroneous solutions
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Correspondences

No background information, object moving to right

(a) I (:, :, 1) (b) I (:, :, 2) (c) I (:, :, 3)
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Correspondences

(a) HS α = 0.1 (b) HS α = 10

(c) HS robust α = 0.01 (d) HS robust α = 0.05
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Correspondences Results II

Correspondences

With background information, object moving to right

(a) I (:, :, 1) (b) I (:, :, 2) (c) I (:, :, 3)
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Correspondences Results II

Correspondences

(a) HS α = 0.1 (b) HS robust α = 0.01

(c) HS robust α = 0.05 (d) HS robust α = 0.1
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Correspondences

Results related to DRIVSCO project

(a) Disparity (b) Optical-flow
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End

THANK YOU FOR LISTENING!
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