DicomwebTM

la innovación sin fronteras de DICOM!

DicomwebTM es una marca reservada por NEMA (institución responsable del estándar DICOM) antes que empresas privadas lo hagan.

En el pasado, NEMA no había reservado la marca **DicomTM** y tuvo problemas para impedir que una empresa privada registre la marca.

¿Porqué el nuevo nombre DicomwebTM?

Para reflejar que el estándar adoptó recientemente la web como nuevo protocolo **completo** de comunicación para el intercambio de objetos DICOM

Un poco de historia...

■ 1979: TCP / IP v4

■ 1988: ACSE (Association Control Service Element)

* 1993: DICOM v3 (comunicación ACSE)

■ 1994: W3C

■ 1998: XML

× 1999: HTTP 1.1

■ 2002: JSON (alternativa a xml)

2003: DICOM WADO

* 2013 DICOM WADO-RS, QIDO-RS, STOW-RS

Estándares de aplicaciones de comunicación

- DICOM ACSE para imagen médica
- ACSE ... no usado en la web
- HTTP fundación de la web
- DICOMWEB perfectamente integrado con HTTP

Antes de dicomwebTM, los servicios de radiología eran islas desconectadas de la WEB

Con dicomwebTM ACCESO UNIVERSAL

- tabletas
- computadoras comunes
- celulares inteligentes
- integración de las imágenes con otras aplicaciones de la historia clínica electrónica

Lo nuevo de dicomwebTM

Alternativa completa al protocolo ACSE

Protocolo HTTP GET y POST
Servicio REST
Objetos STUDY, SERIES, METADATA, BULKDATA
Formatos XML, JSON

HTTP GET y POST

ACSE

arquitectura

cliente-servidor

servicios

asociación entre

ruteo

dinámico

estático. Ida y vuelta

mantenimiento

realizado por el administrador de red, con la ayuda de herramientas estándares para diagnosticar fallas y mejorar el rendimiento y la seguridad

require conocimientos avanzados de bajo nivel (binario - little/ big endian, etc...)

interoperabilidad

máxima, HTTP es el protocolo por excelencia de la WEB nula. Ningún otro estándar moderno usa ACSE

Servicio REST

≠WEB (pedido XML, respuesta XML) **REST** manda URL pidiendo recursos

http://pacs.cl/qido/hospitalX/studies?StudyDate=\$hoy

REST es más fácil de integrar dentro de HTML

```
<html>
<html>
<head><title>lista estudios</title></head>
<body><a href="$URL">estudios de hoy</a></body>
</html>
```

Versión HTTP de las funciones push, pull, query

```
1979: TCP/IP v4
       1988: ACSE (Association Control Service Element)
      1993: C-STORE
                               C-GET
1999: HTTP 1.1 REST
2013: STOW-RS
                                                  QIDO-RS
                            WADO-RS
```

¿WADO ya existía antés, no?

- WADO significa Web Access to Dicom Objects
- Fue el primer paso, muy bien aceptado, hacía DICOMWEB™.
- Estuvo impulsado por el francés Emmanuel Cordonnier. Tenía la intuición que el acceso web iba a ser un requerimiento universal. Pero Emmanuel no era especialista en tecnologías web.
- Wado usa un comando GET básico, con URL formado para indicar como acceder a un solo objeto DICOM
- Dicho URL contiene los identificadores únicos de estudio, serie e instancia, lo que transforma el URL en camino para encontrar un archivo.
- Fue rebautizado wado-url

Defectos de WADO URL

- demasiado transacciones. Escala mal
- ningún mecanismo de selección
- ningún mecanismo para enviar imágenes al PACS
- recepción de los objetos, o representados con ventana fija, o en formato binario, lo que complica el diseño de visualizadores DICOM web

DICOMHTTP WADO-RS

- El nuevo wado (wado-rs) usa mejor el potencial expresivo de HTTP y permite referirse específicamente a estudios, series, instancias,metadata, bulkdata, frames. Pues permite pedir exactamente lo que uno necesita, y nada más. En otras palabras, permite ahorrar ancho de banda y necesidades de procesamiento.
- El nuevo wado (wado-rs) devuelve respuestas compuestas de multiples objetos en una sola transacción. Escala bien.

```
REST (objetos nuevos, no existen en ACSE)
study
            (UPS)
series
            metadata
                           (KOS)
            bulkdata
instance
```

DICOMHTTP QIDO-RS

- Permite seleccionar imágenes mediante comando HTTP GET
- No existía cuando fue creado WADO-URL, por lo cual había que crear sistemas intermediarios que recibían pedidos web y y los convertían en pedidos DICOM ACSE query/retrieve. Todo eso desaparece.
- QIDO-RS permite recibir la respuesta en formato JSON, pues se integra naturalmente en objetos web, con muy poca programación

DICOMHTTP STOW-RS

- STore Over Web
- Ideal para enviar imágenes y objetos DICOM hacía un PACS CLOUD, porque simplifica los problemas de red
- Ofrece además la posibilidad que el usuario agregue objetos al estudio DICOM a través de internet. Por ejemplo agregar una reconstrucción o el informe al estudio en modalidad de teletrabajo

STOW-RS telediagnóstico

- El médico radiólogo guarda capturas secundarías (gracias a STOW-RS) a medida que informa el estudio.
- El médico radiólogo guarda el informe dicom CDA
- El paciente puede ver primero el informe y las capturas secundarías (pocos datos) y solo si quiere más detalles, puede bajar el estudio completo

Texto estructurado JSON

- JSON tiene principios estructurales muy sencillos:
 - valor "v":w (v es un string y w puede ser un string "s", number n, objet {o}, array [a])
 - objeto o (lista de valores) { "v":w, "v":w,....}
 - array a (lista de objetos y de arrays) [a, ..., o, ..., ...]
- Permite profundidad de estructura infinita y traducción exacta de todas las estructuras DICOM
- Directamente compatible con Javascript

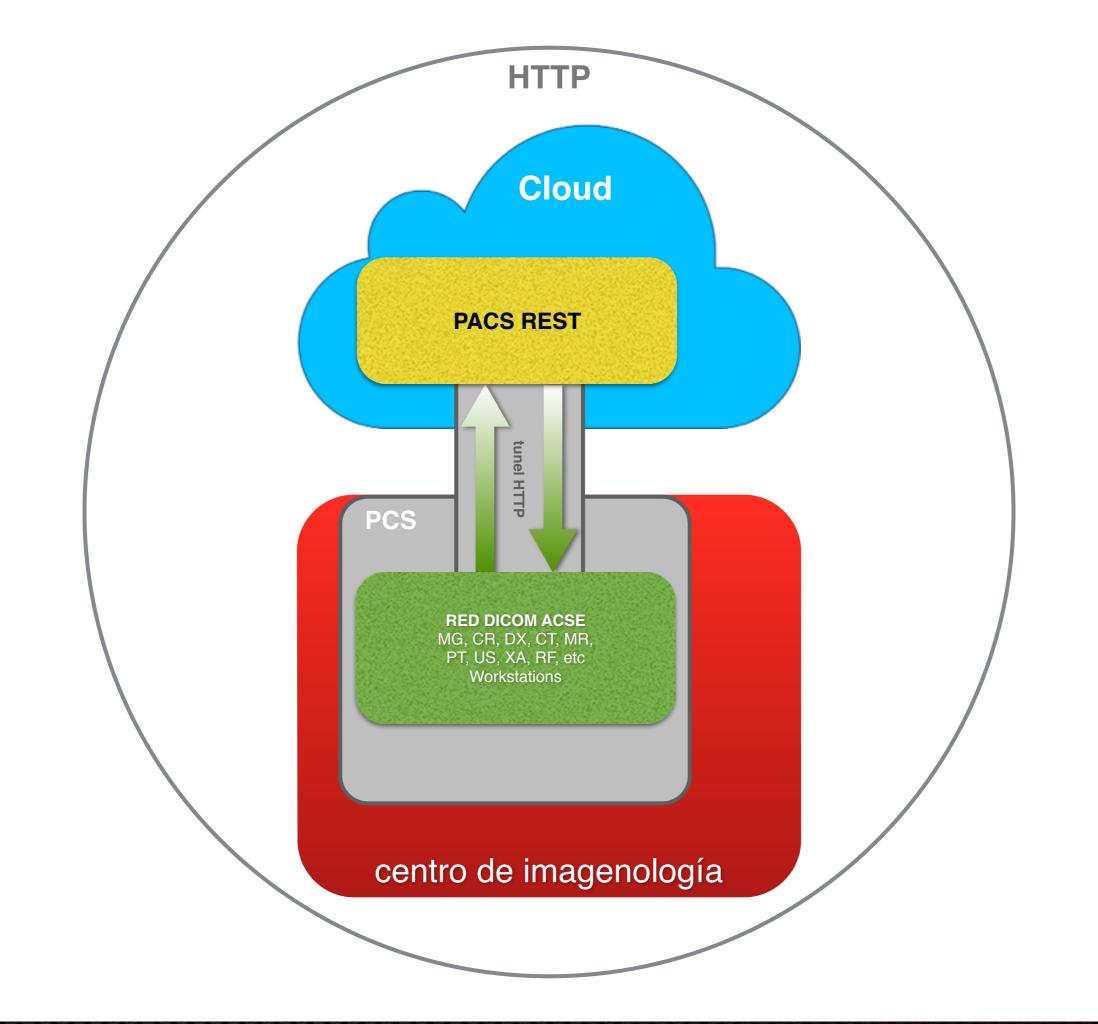
```
Ejemplo de JSON
"00101002": {
 "vr": "SQ",
 "Value": [
   {
    "00100020": {
      "vr": "LO",
      "Value": [ "Hospital B" ]
  },
```

dicomwebTM para la web:

- más sencillo
- más preciso
- más eficaz
- interoperabilidad
- funciona desde teléfono móvil inteligente html5

Ejemplo de uso de dicomweb: PACS CLOUD

- telediagnóstico
- permitir al paciente de acceder a sus imágenes online
- abandonar el CD y la película
- integrar la imagenología médica con el resto de la historia clínica


Seguridad de la información

- requiere diseño original (no está definido en DICOM)
- puede usar herramientas de seguridad preexistentes
- se logra una arquitectura de seguridad eficiente gracias a dicomwebTM

Importante: Diferenciar

- el "cordón ombilical" entre el centro de imagenología y la nube

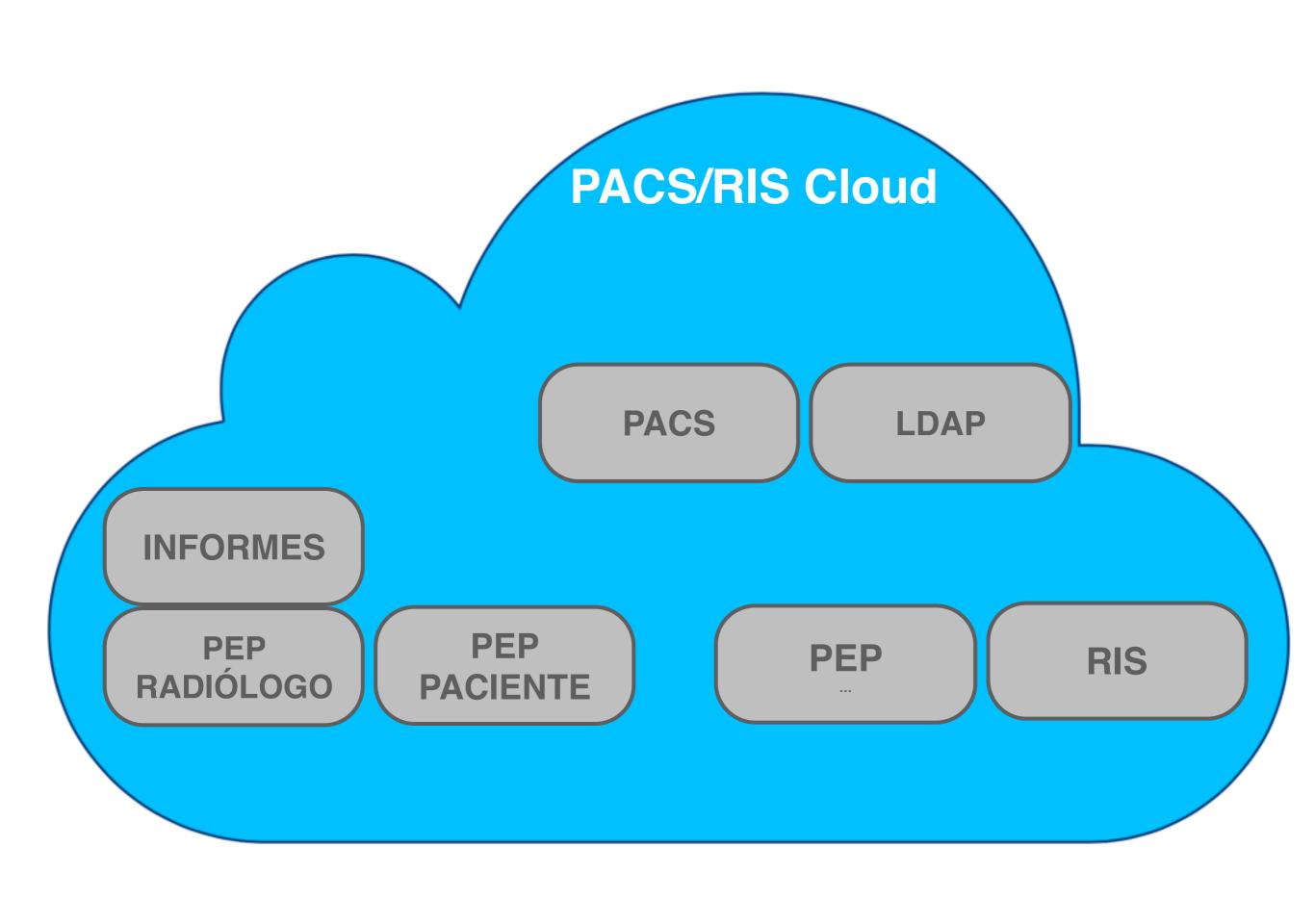
- el acceso web común a la nube

Dentro de la Cloud, proteger los servicios esenciales, escondiéndolos detrás de servicios de frontera PEP

- frontera:

PEP = Policy Enforcement Point sesión continuada (permisos de acceso no eternos) interfaz gráfica (json en tablas dínamicas jQuery) acceso REST público (eventualmente extendido)

- servicios esenciales

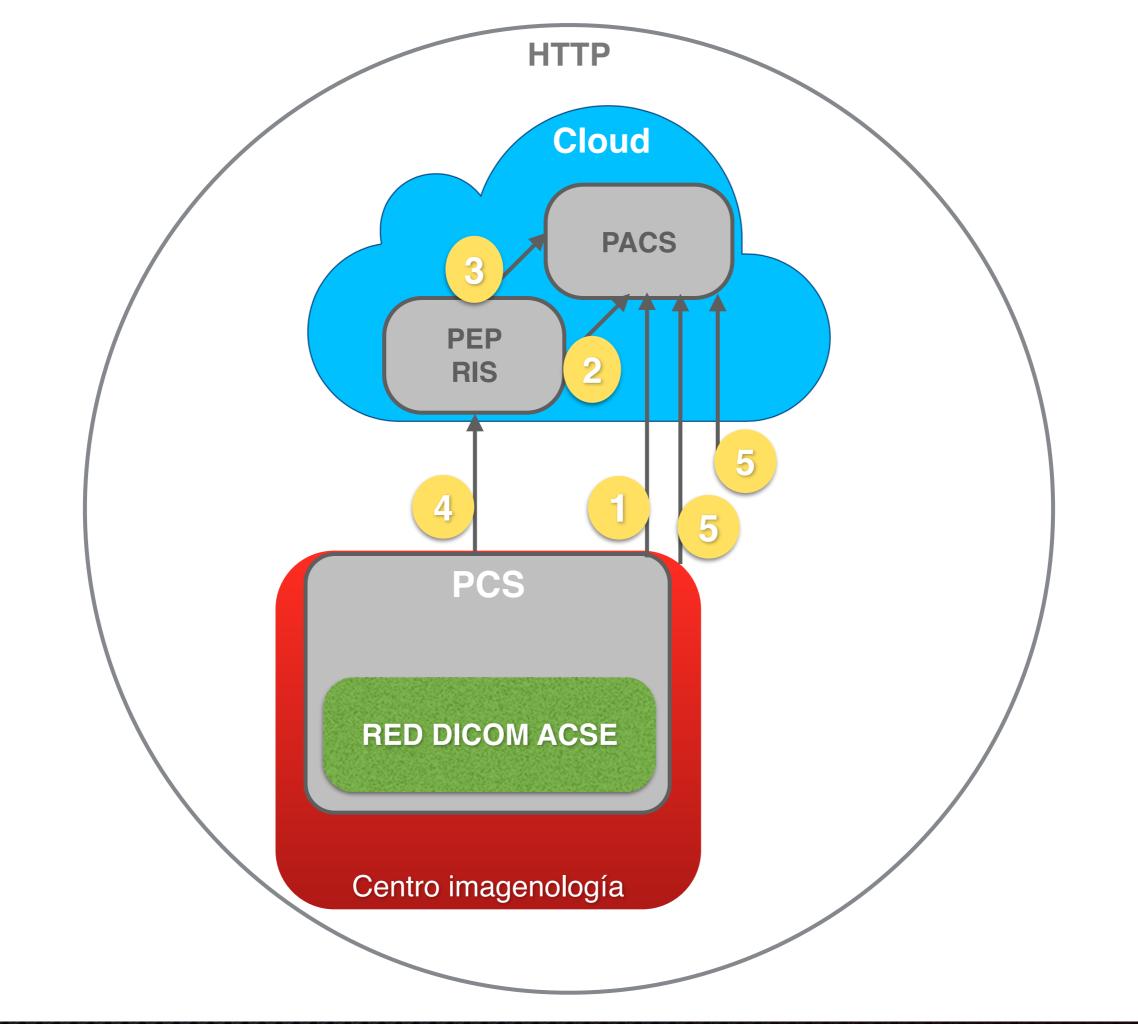

PACS LDAP

¿Como funciona el PEP?

- El PACS no aplica políticas de seguridad. No está previsto en la norma DICOM, porqué el PACS estaba pensado para funcionar dentro de una isla segura
- Pues intercalamos un proxy http inteligente, el PEP, entre los pedidos del usuario y los recursos disponibles en el PACS
- El PEP verifica la identidad del usuario, crea un contexto de sesión, agrega criterios obligatorios a las consultas del usuario (según su categoría) y filtra las respuestas para no entregar recursos para los cuales el usuario no tiene derecho de acceso

¿Cómo se definen las políticas?

- El usuario está registrado en un LDAP que establece su categoría (médico radiólogo, médico, usuario, etc...)
- Según su categoría podrá entrar a la nube por tal o cual punto de acceso
- El LDAP contiene grupos (por ejemplo, servicio de tomografía de institución X). Si el usuario pertenece al grupo, está autorizado a ver la información que corresponde a este grupo.
- Para todas nuevas solicitudes, el PEP matchea las categoría y grupos del usuario con metadata de los estudios (institución, servicio realizador, médico informador, médico solicitante, etc) y entrega solo los resultados que pasan estos filtros



Contextos de acceso al PEP

- **reading**: médico radiólogo informador
- diagnostic: médico solicitante o médico que en razón de su participación a grupo de institución o servicio, tiene acceso a los estudios producidos por este servicio, pero solamente a estudios que incluyen el informe
- requesting: institución solicitante. Util para la venta de servicios a otras instituciones
- patient: acceso a los estudios dónde el usuario figura como paciente

Beneficios de la comunicación entre PEP y PACS por REST

- cero conversión de formato
- coreografía de servicios que hablan el mismo idioma

- (1) PCS -PACS (STOW-RS)
- (2) PEP-PACS (STOW-RS)
- (3) PEP-PACS (QIDO-RS)
- (4) PCS-PEP (QIDO/WADO-RS)
- (5) FIREFOX PEP (POST)

CONCLUSIONES

- DICOMWEB™ es la apertura real de DICOM a la teleimagenología
- No depende de otros estándares médicos (HL7, IHE)
- Es compatible con las mejores prácticas de las aplicaciones web actuales
- Es mucho más simple que DICOM ACSE, pues más fácil de aprender por desarrolladores informáticos juniors

CONCLUSIONES

- Permite hacer el gran salto y olvidarse de la película y del CD, porque permite soluciones dónde el estudio es disponible universalmente
- Es el buen momento para planificar la conversión de los sistemas de imagenología médica de tipo isla con PACS local a PACS WEB
- La ecuación financiera (con el abandono de películas y CD) puede resultar interesante

Muchas gracias por su atención

jacquesfauquex@gmail.com