
Send Orders for Reprints to reprints@benthamscience.net 

 Current Molecular Medicine 2014, 14, 1-12 1 

 
 1566-5240/14 $58.00+.00 © 2014 Bentham Science Publishers 

Computational Methods for Analysis of Dynamic Events in Cell 
Migration 
V. Castañeda1,§, M. Cerda1,§, F. Santibáñez1, J. Jara1,2, E. Pulgar3, K. Palma3,  
C.G. Lemus3, M. Osorio-Reich1, M.L. Concha3 and S. Härtel*,1 

1Laboratory for Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute BNI, Program of 
Anatomy and Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile 
2Department of Computer Sciences, FCFM, Universidad de Chile, Santiago, Chile 
3Laboratory of Experimental Ontogeny, Biomedical Neuroscience Institute BNI, Program of Anatomy and 
Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile 

Abstract: Cell migration is a complex biological process that involves changes in shape and organization at 
the sub-cellular, cellular, and supra-cellular levels. Individual and collective cell migration can be assessed in 
vitro and in vivo starting from the flagellar driven movement of single sperm cells or bacteria, bacterial gliding 
and swarming, and amoeboid movement to the orchestrated movement of collective cell migration. One key 
technology to access migration phenomena is the combination of optical microscopy with image processing 
algorithms. This approach resolves simple motion estimation (e.g. preferred direction of migrating cells or path 
characteristics), but can also reveal more complex descriptors (e.g. protrusions or cellular deformations). In 
order to ensure an accurate quantification, the phenomena under study, their complexity, and the required 
level of description need to be addressed by an adequate experimental setup and processing pipeline. Here, 
we review typical workflows for processing starting with image acquisition, restoration (noise and artifact 
removal, signal enhancement), registration, analysis (object detection, segmentation and characterization) and 
interpretation (high level understanding). Image processing approaches for quantitative description of cell 
migration in 2- and 3-dimensional image series, including registration, segmentation, shape and topology 
description, tracking and motion fields are presented. We discuss advantages, limitations and suitability for 
different approaches and levels of description. 
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INTRODUCTION 
 Computational methods for analysis of dynamic 
events associated with cell migration have become 
increasingly important. The combination of light 
microscopy with digital image processing algorithms is 
a powerful tool to quantify dynamic events like cellular 
displacements, rearrangements and morphology 
changes at sub-cellular, cellular, and supra-cellular 
levels (Fig. 1). Migratory events can be observed as 
individual and collective cell displacements, ranging 
from the flagellar driven movement of single sperm 
cells or bacteria [1], bacterial gliding and swarming [2], 
amoeboid movement [3], to the orchestrated movement 
of collective cell migration [4]. Depending on the 
context, different image processing algorithms have to 
be applied in order to quantify trajectories of single 
objects or estimate the motion of organized cell groups 
or tissue. In addition, motion can be  
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coupled with descriptors that characterize the shape or 
topology of single or grouped cells. In order to attain an 
accurate analysis of the biological phenomena under 
investigation, multiple factors need to be addressed. 
Experimental sample and acquisition settings such as 
field of view, sampling intervals (space and time), 
imaging technique, markers, fluorescence characteris-
tics, quality of the microscopic signal, and camera/ 
detector define the quality of the image series. In 
addition, images must be processed and analyzed with 
adequate mathematical and computational tools in 
order to access the desired information. 
 A series of new microscopy techniques has 
emerged over the last years, which have increased the 
demand for advanced computational methods. For in 
vivo observations at sub-cellular levels, fluorescence 
microscopy has become a standard tool for 2D and 3D 
imaging. The use of various markers and filters also 
allows the observation of different structures, using a 
range of fluorescence channels simultaneously. Even 
though the spatial resolution of conventional optical 
microscopy is limited by Abbe’s law of diffraction [5], 
resolution beyond the diffraction limit has been 
achieved with different approaches. Some methods like 
Structured Illumination Microscopy (SIM) [6, 7], 
Stimulated Emission Depletion (STED) [8], or 4!-
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microscopy [9], alter the shape and dimension of the 
basic emission unit of a molecular light source, the so-
called Point Spread Function (PSF). Some techniques 
depend on extensive post processing of the acquired 
image series like Photo Activated Localization 
Microscopy (PALM) [10], Stochastic Optical 
Reconstruction Microscopy (STORM) [11], SIM, and 
Super-resolution Optical Fluctuation Imaging (SOFI) 
[12, 13]. Readers interested in optics and image 
acquisition techniques and possible pitfalls are referred 
to specialized literature [14-16]. 
 At cellular and supra-cellular levels, fast imaging 
techniques based on Spinning Disk Microscopy (SDM) 
[17] or Light Sheet Microscopy (LSM) [18, 19] can 
acquire images over a larger field of view and/or with 
greater depth, compared to conventional confocal laser 
scanning microscopes. In these novel techniques, 
basic image properties such as Signal-to-Noise Ratio 
(SNR), background properties, spatial and temporal 
sampling frequencies, and properties PSFs render very 
different raw materials for subsequent analysis. The 
choice of adequate methods for denoising, segmenting 
Regions Of Interest (ROIs), descriptors of shape and 
topology, tracking, and motion fields, requires a 
combination of backgrounds in mathematics, physics 
and computer science. 
 This review is intended to aid the life scientist 
deciding on whether to choose or adapt the most 
adequate computational strategy when it comes to the 
quantitative analysis of events associated with cell 
migration. The article organization is summarized in 
Fig. (2), which follows the typical pipeline of a 
computational image analysis of migration. In order to 
set a common language for the remaining sections, we 
define a digital image as an array of pixels in 2D 
(voxels in 3D), with numeric values (brightness in color 
channels) associated to each pixel that reflect optic 
properties of the sample. The pixel values are 
determined by the bit depth of the image1. Commonly, 
digital images contain brightfield, phase contrast, or 
fluorescence readings corresponding to direct 
(autofluorescence) or indirect signals from a subjacent 
cellular structure (e.g. marked by fluorescent proteins, 
fluorescent antibodies, or quantum dots). 

RESTORATION AND REGISTRATION 
 The quality of digital image series acquired by light 
microscopy is affected by multiple phenomena. The 
degree of photon noise and the shape of the 
microscopic PSF are a consequence of the optical 
components and the sensitivity of the sensors. In 
addition, sample drifts, rotations, or volumetric changes 
are either related to the mechanical stability of the 
system, such as platform movements in the xyz axes, 
or arise as a result of the evolution of the biological 
specimen during in vivo experiments. Finally, fast 3D 
scanning techniques may produce significant data 

                                                
1The bit depth corresponds to the number of bits used to represent 
the intensity/color values, e.g. 8, 12, 16 bit codes per pixel allow 256, 
4096, 65536 intensity values respectively. 

volumes with empty or irrelevant information [20, 21]. 
This section discusses the related technical and 
experimental factors that need to be considered within 
an image processing framework to address image 
quality issues. 

Restoration: Denoising and Deconvolution 
 The combination of high signal intensities from the 
desired microscopic structure, low signal intensities 
from the background of the image, and low pixel noise 
facilitates quantitative image processing [22, 23]. In 
order to maximize the success and robustness of 
posterior image processing routines, it is important to 
enhance the SNR [15], paying close attention to the 
image acquisition setup and the protocols prior the 
experiment such as labeling, mounting and configura-
tion of the optical system during sample preparation. 
 While signals from non-desired structures (e.g. due 
to autofluorescence, spectral overlap, or unspecific 
labeling) can be minimized during sample preparation 
and acquisition, remaining fluctuations at the single 
pixel level, or so-called photon noise, affect virtually all 
acquired microscopic raw images. Only some super-
resolution techniques like PALM, STORM, SOFI, and 
its derivatives remove pixel noise as a result of their 
intrinsic localization and fluorescence emission profile 
[10, 12, 13]. 
 For all other techniques, pixel-level noise and the 
3D shape of the PSF are the major obstacles for 
correct signal detection [24]. This is especially true 
when weak excitation or fast imaging is required [25, 
26]. In particular, for imaging near the diffraction limit of 
light microscopy, the size of the image pixels (or voxels 
in 3D) must become smaller than the size of the 
microscopic PSF (commonly determined by the Full 
Width at Half Maximum, FWHM). When the pixel-level 
noise becomes smaller than the sample signals which 
distribute as Gaussian PSFs over a vicinity of pixels, 
this spatial difference becomes a key element for 
efficient noise removal through deconvolution. 
 The so-called deconvolution process aims to reduce 
noise and simultaneously correct signal intensities 
using the shape of the PSF. Deconvolution is essential 
for a reliable quantification of fluorescent intensities of 
cellular structures or ion concentrations, especially 
near the resolution limit [20, 24]. Several deconvolution 
methods have been developed. Here we summarize 
classical, non-linear, and some more complex 
approaches. 
Classical deconvolution algorithms [21] are based on 
linear approaches. For instance, the Wiener filter [27] 
was formulated for signal-independent additive 
Gaussian noise models providing a reduction of the 
effect of small coefficients in the Fourier domain. 
Another classical approach is the Tikhonov-Miller filter 
[28, 29], a linear filter which minimizes a functional 
which is the squared difference between the acquired 
image and a blurred estimate of the original object 
regularized by a Tikhonov energy bound. The 
drawback of linear filters is that they cannot restrict the 
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solution domain requiring the incorporation of additional 
constraints, e.g. finite support, smoothness, 
regularization terms, or non-negativity. The non-
negativity constraint is a valid assumption since the 
intensities of the images represent light energy 
(number of photons) which cannot be negative [28]. 
 Non-linear deconvolution approaches incorporate 
solution domain constraints [21] by iteratively minimizing 
the error functions defined between the acquired image 
and blurred estimate of the original object [30]. 
Examples are the Jansson-van Cittert method [21, 31], 
the Classical Maximum Likelihood Estimator (CMLE) 
[32], and the least-squares PSF fitting based on 
realistic 3D PSF models [33]. A common drawback for 
these algorithms is the demanding computational and 
time requirements of the iterative formulations. 
 Alternative deconvolution filtering techniques were 
recently proposed based on Wavelets [34, 35], sparse 
representations [2, 26] or space-variant blur approxi-
mations [36] in order to provide implementations faster 
than the iterative approaches. 
 Deconvolution software exist as custom built 
prototypes, open source projects (e.g. ImageJ [37] and 

its extension FIJI [38]), optional commercial software 
features from microscope vendors, or packages from 
software providers. Deconvolution software should 
offer complete control to set or import parameters used 
during the microscopic acquisition, and be designed for 
easy incorporation into the daily routine of microscopic 
imaging [39, 40]. Some software packages offer batch 
processing functionality that ease the settings of 
different deconvolution parameters for multiple image 
stacks (e.g. Huygens Scripting Software from SVI [41]). 
Batch processing is an important feature for large data 
sets from in vivo observations, especially in long term 
3D experiments that can easily pile up terabytes of 
image data [17, 42]. Alternative providers like Zeiss 
[43] or AutoQuant [44] do not reveal the underlying 
principles of their physical, numerical, or probabilistic 
approaches, while others like SVI follow conventional 
theory. 
 Apart from following guidelines published in studies 
that compare the performance of different commercial 
and open source deconvolution packages (Huygens 
Pro, AutoDeblur, Deconvolution Lab, Parallel Iterative 
Deconvolution and Iterative Deconvolve 3D) on 
synthetic and microscopic images [39, 40], we suggest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (1). Schema of cell migration at three levels: supra-cellular, cellular, and sub-cellular. (A) Epithelial cells tissue 
migrating during a wound healing assay. (B) Single cell migration. (C) Structural reorganization of internal actin fibers during cell 
migration. Cytoplasm (blue), nucleus (white), and directional migration signal (green). 
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direct testing of software demos with typical sample 
images of cellular organelles like membranes, 
mitochondria and endoplasmic reticulum or fluorescent 
beads below the diffraction limit. An adequate 
deconvolution removes pixel noise and maintains 
signals from sub-cellular structures or point sources as 
Gaussian-like profiles reflecting the microscopic PSF 
without blurring. Fig. (3A, B) shows microscopic 
spinning disk images before and after deconvolution on 
a supra-cellular level. Pixel noise, ill-defined membrane 
structures and blebs impede a clear definition of the 
cellular structures in Fig. (3A). Fig. (3B) is virtually free 
of pixel noise and structural details are outlined within 
the signals of the membrane bound fluorescent protein. 
The deconvolution process was carried out with 
Huygens Professional deconvolution software [41]. 

Registration 
 For a precise characterization of the growth and 
migration of cellular structures, spatial and temporal 
data alignment is essential [45]. In this context, image 
registration aims to estimate an optimal transformation 
between two images or volumes in order to minimize 
spatial and temporal misalignment. 
 Misalignment can stem from perturbations of the 
acquisition system, protocols, movement or the 
evolution of the specimens (e.g. restricted growth in 
sealed environments using agarose [46], or large 
migrations that require repositioning the sample) as 
well as from mathematical processing tools used in 
denoising (e.g. median filters with even kernel size). 
Formally, misalignment can be described as affine 
invariant transformations, a combination of translation, 
rotation, scaling, and tilts [47]. It is essential to remove 
drift artifacts in order to obtain precise descriptions of 
growth or shape changes during migration. 
 Cell migration studies may require encapsulation 
protocols that can contribute to misalignment between 
images. For example, in several in vivo studies of 
zebrafish development (e.g. neural crest migration) 
specimens must be embedded in agarose to track 

migration over long periods of times [46, 48]. During 
embryo development, translations and scaling of the 
sample are observed due to the shift of the focal plane 
within the growing embryo. Growth alone can create 
drift, which can be accentuated by encapsulation 
resulting in more complex deformations such as twists. 
Deformations need to be differentiated from cellular 
changes through 3D analysis and using prior 
knowledge of the cells from 2D images [49]. 
 In general, there are two types of registration 
methods: (i) intrinsic methods which try to use the 
information present in the acquired images in order to 
find the best transformation for alignment, and (ii) 
extrinsic methods which use external references that 
can be tracked independently of intrinsic deformations 
[45]. 
 Intrinsic and extrinsic registration methods first need 
to define a similarity metric between reference and 
target images, later they optimize a transformation that 
maximizes the chosen metric [50]. Markelj et al. [51] 
presented similarity metrics classification involving: (i) 
intensity-based analysis (e.g. sum of squared 
differences, normalized cross-correlation coefficients, 
or mutual information) that require normalized 
intensities or the calculation of a joint histogram [49], 
(ii) feature-based analysis (estimation of distances 
between corresponding points or feature metrics) as 
curvature-based registration [52], and (iii) optimization 
methods such as gradient descent [53], conjugate 
gradient descent, multi-resolution search, and 
deterministic annealing. 
 Classical algorithms applied either to intrinsic or 
extrinsic registration methods consider drift and 
movement in the xyz axes through the alignment of the 
centers of gravity in combination with Median, 
Gaussian, or Kuwahara filters [54] (available as z-
correction in an extra-tool for Huygens Deconvolution 
Software or ImageJ-FIJI). Rotational sample alignment 
approaches by rotation invariant moments of 
morphology in combination with rotational axis based 
on Eigenvectors and Eigenvalues have been described 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Image processing pipeline for the analysis of cell migration. 
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in [55-57]. After translational and rotational alignment, 
image borders or irrelevant image sections can be 
removed by digital cutting. 
 Other algorithms have been proposed for 
registration to address more complex conditions of cell 
migration. In this context, we can find curve methods 
that provide a robust registration of images based on 
feature curve extraction modeled by a set of curves 
such as B-splines [58]. In addition, surface methods 
consider the boundaries or surfaces as similarity 
metrics by characterizing high contrast areas as 
references among images. Furthermore, Morphological 
Moments and Principal Axes establish reference 
elements of reduced space dimensionality among 
images. This can simplify the description of the global 
similarities analysis. More advanced approaches 
consider methods based on correlation and mutual 
information [49], Wavelets [35], or Soft Computing [45]. 
 In general, registration processes balance the trade-
off between minimizing misalignment and conserving 
the actual translational, rotational, and volumetric 
changes that occur during cell migration. When 
feasible, the addition of external references helps to 
simplify and optimize the registration process. Some of 
the algorithms used to address image registration are 
available in commercial [41] or open source software 
packages [37]. However, validation processes, 
particularly for non-rigid algorithms, still pose major 
challenges [50, 59]. 

SEGMENTATION 
 Segmentation is the process of identifying ROIs with 
a certain meaning from the rest of an image. 
Segmentation of ROIs is needed for the calculation of 
spatial and some temporal descriptors, including 
shape, topology, and organization (see Shape and 
Topology) as well as motion related descriptors (see 
Motion Estimation). Simple criteria like grouping pixels 
by similarity (e.g. pixel intensity, texture), finding 
discontinuity regions (boundaries), or looking for known 
shapes or patterns can give a fast but rough estimation 
of the total number, size and spatial distribution of 
fluorescent structures like nuclei, vesicles or fibers 
since these structures have relatively homogeneous 
labeling. Images with poor signal quality issues (see 
Restoration: denoising and deconvolution) and/or 
complex structures like membranes and their 
protrusions (e.g. blebs, filopodia) require more 
advanced techniques to detect subtle morphology 
features and patterns among variable image 
conditions. The combination of increasingly large data 
volumes from acquisition techniques, together with the 
variability of cell and tissue characteristics within 
complex scenarios (e.g. densely packed cell 
arrangements or overlaps that impede even visual 
assessment) makes reliable and automated 
segmentation of migrating cells a constant challenge 
for improved computational methods [60]. 
 
 

Filtering and Thresholding 
 Threshold segmentation is based on the selection of 
global or local intensity values (thresholds) that 
separate pixels in ROIs from the background. 
Thresholds can be constant or adaptive as function of 
global or local intensity features. They can be applied 
directly after registration and deconvolution, after 
applying additional filters for image smoothing or 
contrast enhancement, or by enhancing shape, texture, 
or boundaries. Filters are commonly implemented as 
discrete convolutions [56], where the choice of kernel 
size and values determine the enhancement. Popular 
filters like Canny and Sobel target ROI edges [61, 62] 
but, as is the case with many boundary detectors, they 
are prone to local irregularities or residual image noise. 
Following the filtering enhancement and thresholding 
strategy, Rapoport et al. [63] first filters image artifacts 
with a quadratic optimization function with sparseness 
and smoothness regularizations, followed by a simple 
threshold to define the ROIs. In general, the selection 
of filters is completely dependent on the structure of the 
target ROIs, and careful choices and adjustments lead 
to an improved segmentation. For example, the 
majority of nuclei can be segmented by direct intensity 
thresholds; however, a strategic filter choice (e.g. 
Laplace or oval shape filters) can enhance the contrast 
of the nuclei in relation to the background, prior to the 
threshold application, improving the final segmentation. 
To avoid manual thresholding, automatic threshold 
selection has been proposed [64], in order to maximize 
the intensity variance among two groups of pixels. 
More sophisticated threshold election based on 
clustering algorithms has also been proposed, and 
demonstrated superior performance over manual 
threshold selection [65]. 

Segmentation Refinement 
 After thresholding, a rough approximation of the 
ROIs is obtained. Further refinements can be applied to 
connect, disconnect or improve ROI boundaries by 
taking into account morphology features such as 
boundary size, holes, orientation, and area. A popular 
method to separate ROIs is the watershed algorithm, 
which is used in many segmentation pipelines, as 
outlined by Khairy et al. [66]. The watershed algorithm 
interprets image intensities (or ROI distance maps) as 
topographic reliefs where intensity levels are analogues 
of altitude. Then, it simulates a rainfall that leads to 
water accumulations at topographic sinks. Finally, 
lakes are grown against the topographic gradients until 
they reach a saddle point or local maximum which 
separates the catchment area of a neighboring lake or 
region. These watersheds define borders that can be 
used to assign or separate fused ROIs. This method is 
fast, but can lead to over-segmentation when the 
image relief has too many local minima [66]. However, 
the number of local minima can be reduced by 
successively smoothing the image prior to applying the 
watershed. The smoothing approach results in a trade- 
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off between too many ROIs and too many fused ROIs. 
For example, Harder et al. [67] segmented cells with a 
region adaptive threshold scheme, followed by an 
Euclidean distance transform applied to the ROIs in the 
mask image, and then separated the joined regions 
based on the watershed algorithm. 

Deformable Model Fitting 
 Deformable models define high-level ROI 
properties, typically related to morphology and image 
features. They allow final ROI representation 
improvement and segmentation of a wide range of 
shapes while at the same time dealing with issues like 
non-homogeneous ROI intensities or weak image 
contrast. Deformable model segmentation methods are 
commonly based on Partial Differential Equations 
(PDEs) to solve mathematical optimization problems, 
stated as integral functions for minimization or 
maximization. Instead of explicitly defining an 
enhancement filter, these models define higher level 
ROI properties, such as size, boundary smoothness, 
image contrast or region homogeneity, which are 
weighted and balanced in a sum of terms over the input 
and the segmented image [68]. Strategies to solve 
these equations can be implemented with generic or ad 
hoc methods that can include application constraints 
such as interactivity or user clues, parameter flexibility, 
error tolerance, and computational performance. The 
optimization functions are commonly defined over the 
entire image, modeling ROI boundaries with parametric 
or implicit functions. Boundary models are suitable for 
finer representations by using interpolation or 
refinement techniques, and thus are useful for 
obtaining more accurate estimations of ROI shape 
parameters. 
 Parametric models are often referred to as active 
contours or snakes [69-72]. Implicit models are known 
as level-sets or geometric active contours, and have 
been reviewed in [73, 74]. Both models optimized 
energy functionals that included forces and restrictions 
to find contours with a minimum energy while staying 
close to image features (the most common are intensity 
changes). The PDEs are solved by iterative algorithms 
that start from an initial estimation of the ROIs. 
Common problems are initialization sensitivity (local 
optima), contour splitting or merging handling. In 
particular for fluorescence imaging, additional terms 
have to be introduced in the optimization functional to 
deal with boundaries in ROIs with missing information 
in 2D and 3D as in the subjective surfaces approach 
[75, 76]. To tackle sensitivity to initialization, Bergeest 
et al. [77] recently suggested a new term with convex 
energy functionals to find a global segmentation 
optimum with efficient numerical algorithms. Their 
approach does not suffer from local minima bias and 
the resulting segmentation is independent of the 
initialization. Zimmer et al. [78] included texture 
parameters into the snake model which allow cell 
segmentation in the presence of pseudopods; in 
addition, cell interactions were handled with repulsive 
contours.  

 In [17, 79, 80], parametric 2D/3D active contour 
models have been applied to improve the segmentation 
of biological structures with satisfactory results, 
showing the versatility of the approach in general. 

Other Strategies 
 Other methods for segmentation include 
Hierarchical Self-Organizing Maps (HSOM) [81], 
supervised segmentation [82], and geodesic mean 
curvature flow [83]. Zheng et al. [81] proposed a hybrid 
segmentation that combined HSOM, histogram- and 
region-based techniques. Feature vectors of pixels are 
extracted in order to train the HSOM and to learn which 
groups have similar pixel properties used to later define 
preliminary regions. Final segmentation is obtained 
with histogram- and region- based techniques. Zaritsky 
et al. [82] presented a multi-cellular segmentation 
algorithm which is first trained to classify basic image 
features of local patches within an image by using a 
support vector machine approach. Next, a refinement 
step, through a combination of classification and graph-
cut segmentation is applied to optimize the ROIs and 
eliminate errors. Bourgine et al. [83] used a geodesic 
mean curvature flow model to filter noise from the input 
image. Finally, cell nuclei centers are detected and 
segmented with a generalized subjective surface 
method. 

Extension to 3D 
 The advantage of working in 3D is the potential to 
avoid overlapping objects in 2D images. A major 
disadvantage is the increase in computation cost 
(memory and/or calculations) of the algorithms. In 
addition, the resolution of most confocal microscopy 
techniques in the xy-plane is at least three times better 
than in the z-axis [84]. Therefore, special adjustments 
need to be made such as image interpolation or 
anisotropic filtering. Segmentation can be directly 
performed at each xy-plane [83, 85] and extended to 
3D. However, segmentation by processing each xy-
plane requires further computations to connect the 2D 
ROIs along the z-axis (see Fig. 3). The extension from 
2D to 3D requires consistency checkings for ROI 
connectivity, and optionally smoothness, in order to 
deal with the effect of the elongated voxel in the z-axis 
that distort the surface properties (see Fig. 3E; the 
surface representation of the segmented parapineal 
organ cells after refinement with a 3D active surface 
model led to acceptable surface properties). 
Segmentation by extending to 3D also requires defining 
operations over voxel sets. For instance, Amat et al. 
[86] defined 3D ROIs by directly associating voxels into 
a super-voxel using a k-means approach, and obtained 
the final segmentation by identifying connected super-
voxels. 

Segmentation with Temporal Information 
 Melani et al. [85] applied a combination of 
subjective contours (level-sets) and optical flow [87] for 
motion estimation which handled smooth intensity  
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changes in the image over time but was prone to the 
aperture problem2. Later, Mikula et al. [88] used a 
generalized subjective surface model [83] with a time-
regularization constraint in the energy function. They 
assumed smooth contour displacements between 
consecutive time frames and performed a forward 
segmentation by incrementally linking the segmentation 
from previous frames. Then, the obtained trajectories 
were refined through 3D plus time parameterized 
curves. They validated this approach with synthetic 
models and nuclei sequences with spherical shapes 
and smooth motion/deformations. Luengo-Oroz et al. 
[89] presented a method for 3D plus time tracking and 
segmentation using convolution of 4D (3D plus time) 
templates (morphological elements) to represent and 
locate motion from nuclei and membranes. They 
segmented cells and their divisions through time by 
performing morphological operations such as erosion 
or dilation. They also presented a watershed algorithm 
extended to 3D including a viscous term to segment 
cell membranes, and performed tests with 2-photon 
and light sheet microscopy images. However, the 
algorithms performed poorly when segmenting 
membranes in noisy images, when portions of the 
image provide a weak signal, or when segmenting 
objects moving quickly. 

SHAPE AND TOPOLOGY 
 Following segmentation, the next step for 
quantitative analysis of dynamic events in cell migration 
is selecting an adequate representation for the ROIs 
(e.g. the biological structures under study), and 
subsequent quantifications of shape, topology, and 
organization (Fig. 2). Historically, biologists have used 
the term morphology to include both shape and 
topology descriptions [90], whereas in mathematics or 
computer science, morphology only refers to the 
characterization of the object shape. Topology, on the 
other hand, quantifies the existence of tunnels or holes 
within the object 3 . In this section, we review main 
descriptors for object shape and topology and their 
accuracy based on the selected strategy for object 
representation. 

Object Representation 
 A ROI can be seen as a set of image pixels or 
voxels resulting from image segmentation. One of the 
simplest ways to represent the segmented ROIs is to 
construct a mask image of the input, with pixels labeled 
with a common number for each ROI (background 
pixels labeled with zero). A special case is the binary 
mask, where no distinction between ROIs is made and 
there are only two pixel labels: one for the ROIs and 
zero for the background. ROIs can also be represented 
by boundary elements, ordered chain-codes [91], local 

                                                
2The motion of an object larger than the field of view is locally 
ambiguous. Thus, any local motion detector will respond identically 
to multiple types of motions for the object. 
3In the sense of the geometric study of objects. In mathematics, the 
topology encompasses a broader range of properties for spaces 
related to connectedness. 

features in spaces like Fourier descriptors [56], Gabor 
[92], wavelets [93], parametric curves or surfaces that 
encode the volume [94, 95], approximation with 
geometrical primitives like parallelepipeds [96] or 
tetrahedra [97], or boundary regions with triangles [98]. 
In addition, higher level representations such as area, 
perimeter, Cartesian/Zernike [55, 56] moments, or even 
those derived from human cognition models [99] can 
be built. The choice of representation is closely related 
to the desired parameters to be extracted as discussed 
next, but it is also a trade-off between the precision of 
the representation and the computational load (memory 
and/or calculations) required for extracting information. 
Thus, high detail representations like voxel sets can be 
very accurate, but require a significant computational 
load. 

Shape 
 Migration often involves variations of cell shape 
(see Fig. 1). Some key migrational stages can be 
identified by studying the dynamics of cell deformation 
[100-102]. Also, the dynamics of local cell membrane 
deformations like blebs, filopodia, or lamellipodia can 
be associated to specific molecular mechanisms [103]. 
Thus, global cell shape and local membrane events 
carry valuable information about cell migration. 
 Some commonly used shape descriptors for cells 
are: area (or surface area for 3D images), volume, 
center of mass, and bounding boxes [102, 104-106]. 
These descriptors can be understood as low order 
decompositions within the Cartesian moment theory 
[55]. However, higher order descriptions like kurtosis or 
skewness can also be computed analogous to 
statistical moments or mechanical moments of inertia. 
Moments are useful in calculating geometrical 
descriptors such as principal axes, through a 
combination of first and second order moments. Other 
approaches commonly used to compute shape in cell 
migration are descriptors such as the spindle factor 
[107] (relation between the minor and major axis as a 
measure of elongation), roundness [105, 108] 
(explained in detail by [109]), contour descriptors like 
perimeter [105] or convexity [110], and manual 
protrusion counting [111]. All of them rely strongly on 
the basic descriptors that can be extracted from 
Cartesian moments in combination with the convex hull 
[112], as well as contour measurements like perimeter 
[113] and curvature [56]. 
 The computational precision of ROI descriptors 
such as area, principal axes, convex hull, perimeter, 
and roundness is closely related to the ROI 
representation [114]. For instance, calculating a 
perimeter measurement by counting edge pixels in a 
mask image has a 30% mean error using a 45 degree 
rotated square of size 100 pixels per side, but by using 
a polygonal representation, the error can be reduced to 
5%. For the same figure, the 2D area estimation using 
a pixel representation yields less than 5% error. In 
general, the discrete nature (pixels or voxels) of digital 
images requires to implement boundary descriptions 
like polynomials or splines in order to access contour 
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descriptors like perimeter, surface area, convex hull or 
curvature, with a certain degree of accuracy. However, 
description of complete regions like area, volume, or 
moments of morphology can be accurately estimated in 
pixel or voxel representation. 
 

Topology 
 Topological descriptors are rarely mentioned as 
such, but they have been frequently used in biology 
and become increasingly important to characterize 
circuits or tubular networks. For instance, development 
studies describe cell spatial distribution in processes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3). Steps for 3D reconstruction of the parapineal nucleus in the brain of a zebrafish embryo. (A) Fluorescence SDM 
image (40x) of transgenic embryo Tg(flh::EGFP) embryo at 38 hours post fertilization (hpf). (B) Cell membranes of the 
parapineal nucleus after deconvolution. (C) Cell membranes are manually outlined as red lines. (D) 2D active contour models:  
(i) minimize perimeter through an elasticity parameter !, (ii) smooth the boundaries through a bending parameter ", (iii) maintain 
fine structures such as filopodia through a strong gradient vector field weighted by # [72]. (E) Left: 2D active contours are used 
to form a preliminary 3D surface model of each cell. This surface model is a poor representation of the 3D cell morphology since 
it reflects the lower resolution along the z-axis of confocal microscopy. Right: 3D active surface models smooth the cell surface, 
especially along the z-axis, while maintaining fine structures and the boundary bending in the xy-plane [79]. (F) Left: Active 
surface models of 24 parapineal cells with morphological and organizational parameters during morphogenesis (e.g. 3D 
principal rotation axis are shown for each cell) [17]. Right: Orientation of the parapineal nucleus and brain within the zebrafish 
embryo. Scale bar 10 [$m]. 
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like epiboly [115] and formation of brain asymmetries in 
zebrafish [116]. Another example is the reorganization 
of actin fibers during cell migration illustrating structural 
change not captured using global shape descriptions. 
In actin fiber studies, descriptors like the number of 
fibers, intersections, and relative orientations, have 
been proposed as topological-like descriptors [117]. 
Also, dendritic development studies [118] have 
extracted descriptors such as the number and degree 
of branching, the number and length of segments, the 
growing angle (shown in Fig. 4A), and have even 
classified neurons based on their structure [119]. 
 A number of studies involving multi-cellular systems 
like tissues or organs, as well as their temporal 
evolution, require analysis of the spatial distribution of 
cells. For instance, relative distances among cell nuclei 
describe the compactness of the group [121], and 
relative orientation of the main axis reveals information 
about cell alignment [17]. In actin fiber-related studies, 
there are two main approaches to quantify fiber 
topology. The first approach describes fiber structures 
with global numbers such as the mean fiber orientation 
[120] (see Fig. 4B) or mean fiber thickness [122]. The 
second approach identifies each individual fiber [117], 
by reducing a set of fibers into a 1D graph structure 
(line segments in a 2D or 3D space) known as a 
skeleton (Fig. 4A). In neuronal development and 
migration studies, the most common approach to 
describe topology is to manually draw the structure, 
with the help of specialized software/hardware such as 
Neurolucida [123]. Manual drawing is a complex and 
time consuming task that delivers good results by 
allowing the experienced biologist to directly identify 
the structure [124]. Interestingly, recent approaches 
from computer vision have emerged, mainly through 
the (semi) automatic reduction of structures into 
skeletons. These techniques have been applied in 
biological works (for a review see [125]), and semi-
automatic implementation routines are readily available 
in software programs like ImageJ [37], Imaris [126], or 
Neuromorph [127]. Among these works, the direct 
skeletonization by morphological erosion of segmented 
ROIs is frequently reported [128-131]. However, all of 
these approaches require some degree of manual 
intervention, or extremely carefully selection of input 
information [130], due to microscopy resolution 
constraints and segmentation errors. 
 Among the available methods to compute skeletons 
in the computer vision and geometry communities, we 
mainly found approaches based on two object 
representations: point clouds and surfaces. Point cloud 
based methods [132] are among the most widely used 
due to their simple implementation and speed (ROI 
pixels from mask images can be treated as point 
clouds in 2D and 3D). They are very sensitive to noise 
which leads to the generation of spurious branches. 
These methods are accurate for estimating global 
descriptors such as total structure length. However, 
they are not well suited for estimating edge or node 
number due to their noisy results and systematic  
 

underestimation of final segment length. Surface-based 
approaches for 3D objects [129, 133] are much less 
known in biology but have emerged as an alternative to 
stabilize topological descriptor measurements. They 
transform the object into a 1D representation by 
searching for the smallest representation (minimizing 
branches) that best represents the object structure, 
reducing the appearance of spurious objects. These 
methods achieve good estimates for almost all 
descriptors, but are more difficult to implement and 
apply due to their multiple configurable parameters. 
Surface-based methods offer promising new 
applications, beyond semi-automatic methods toward 
fully automatic topology quantification. Other authors 
have proposed elaborated pruning methods by 
measuring the importance of each point in the skeleton. 
For example, Reniers et al.’s method [134] can be 
incorporated into point cloud algorithms to control 
spurious branches by adding a new control parameter, 
the importance threshold. 

MOTION ESTIMATION 
 So far, shape and topology descriptors can be used 
to address quantification of fixed as well as time-lapse 
images. For cell migration, in addition to discerning 
conformational changes, motion analysis is a key issue 
for understanding migrational processes. Migration can 
be seen in embryonic development, wound healing, 
and disease development such as tumor progression 
and tissue degradation, among others. Motion 
phenomena can be addressed for a single cell (Figs. 1, 
5A, B) or groups of cells (Figs. 1, 3). One illustrative 
example is the study of embryogenesis in zebrafish, 
which requires tracking of individual cell nuclei and 
handling of cell division [66]. We distinguish between 
two main approaches for motion estimation: tracking 
and motion fields. The first approach requires ROI 
segmentation and aims to estimate individual 
trajectories, while the second aims to get a general 
estimation of motion patterns upon intensity changes 
over time, without depending on segmentation. 

Tracking 
 In general, the process of identifying and linking 
segmented ROIs between frames in a given image 
sequence is called object tracking (sometimes 
segmented object association), with the linked 
trajectories giving the path of each object. Events like 
object collisions, appearances and disappearances can 
occur, and require to be handled by the algorithms in 
order to obtain correct trajectories. 
 Trajectories can be used to extract straight-forward 
descriptors such as estimated object velocities, as well 
as more complex measurements. We present common 
cell tracking algorithms and trajectory descriptors. 
 Tracking by detection basically consists of two 
stages: object segmentation followed by association. 
First, object segmentation is performed for all time  
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frames. Next, the objects must be linked in time, in 
order to obtain complete paths that represent their 
trajectories. Tracking descriptors characterize each 
trajectory, representing for instance the fate map of 
individual cells. The linking of segmented objects 
frame-to-frame can be made by feature vectors, 
including spatial distance and similarity measures. 
Common features include mean cell intensity level and 
shape descriptors. For example, Harder et al. [67] used 
a feature vector of mean cell intensity, area, and center 
of mass. Next, they established a one-to-one 
correspondence by associating the closest cells, 
evaluating their similarity using the Euclidean distance 
between the corresponding feature vectors. An 

extended review can be found in Khairy et al. [66]. 
Similarity measures such as the Euclidean distance, 
can be effective if the feature vector remains stable 
along the trajectory, i.e. the tracked cells present well 
defined shapes and a good temporal resolution. The 
similarity measure has been also extended to 
trajectories, for instance, by inspecting the 
trustworthiness of the tracking results, as proposed by 
Rapoport et al. [63]. The trustworthiness is measured 
by the ratio between the intersection of adjacent cell 
masks and the area of the cell mask. By using the 
largest forward and backward cell overlap, they 
selected a unique successor cell. From a set of short 
trajectories with high trustworthiness, they deduced the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). Models and descriptors for structure analysis at different levels of organization. (A) Cellular level. Left: Raw 
maximum intensity image projection of an electroporated neuron with mCherry plasmid from the parapineal nucleus of zebrafish 
brain at 48 [hpf], using SDM (63x, z-step is 0.5 [$m], scale bar 9 [$m]). Middle: Surface model after manual segmentation of the 
neuron. Right: Skeleton representation of the neuron (left) and example descriptors such as node depth counted from the soma 
(orange circles). (B) Sub-cellular level. Left: Raw maximum intensity image projection from DITNC1 astrocytes transfected with 
actin-EGFP plasmid, using confocal microscopy (60x, 2.4, 7 z-steps of 1 [$m], scale bar 20 [$m]). Middle: Automatic 
segmentation was obtained by using a Gabor filter bank, similar to [120], and manual thresholding to highlight the actin 
filaments. Right: The segmented image was color-coded using the pixel-level orientation given by the Gabor filter bank max 
value. 
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final trajectory and lineage of the every cell by the 
consistency of movement. A similar approach was 
presented by Chowdhury et al. in [135], based on 
bipartite graph matching and properties of Gaussian 
distributions. These types of methods are used 
primarily when tracking isolated objects where the 
acquisition speed is fast enough to capture the object 
motion resulting in some overlap between the same 
ROI in consecutive frames. Typically, this is the case 
when image acquisition is fast enough to ensure 
individual ROI displacements of less than their average 
diameter between two frames. Some examples include 
imaging nuclei in phase-contrast or moving sperm, 
where tracking performs well and is easy to implement. 
 Tracking by model methods use a model with prior 
knowledge about the motion or feature changes 
through the migration. This implies that assumptions 
have to be made about the expected motion. From 
these, objects are registered frame by frame, 
generating the association among frames and, finally, 
the trajectories. For example, in sperm tracking, the 
assumption of non-cell-division can be made, and 
therefore a simple spatial distance can be used to 
generate the object association. Tracking by model 
approaches assume either a distribution for the feature 
vector, physical constraints, or most likely deformations 
along cell trajectories [136]. Debeir et al. [137] used the 
mean-shift algorithm, assuming a feature distribution 
that incorporates possible variations in cell morphology 
and grey-scale patterns present during cell mitosis. 
Kachouie et al. [138] introduced a probabilistic model 
(Bayesian) to address the spatiotemporal cell 
segmentation-association problem. When model 
knowledge is not directly available, the general tracking 
approach is based on image registration by making 
assumptions about object features, such as color 
conservation or motion constraints, and then trying to 
find a suitable transformation (rigid or deformable) 
between cells at two different or consecutive frames. 
The registration of the objects gives a relation between 
cells at different times. One example is the work of 
Sacan et al. [139] who tracked cell boundaries and 
intracellular points using active contours and optical 
flow estimation. Hand et al. [140] published a detailed 
paper reviewing five methods based on image 
registration, and compared their accuracy and 
computation costs. Yang et al. [141] presented an 
intensity-based non-rigid registration approach, which 
was extended to register 3D plus time image series of 
moving cell nuclei. A hybrid approach by Xie et al. [142] 
addressed E. coli migration in phase contrast images 
with low-contrast boundaries that changed very quickly. 
They proposed dynamically weighted similarity criteria 
by assuming constant speed and motion coherence. 
Using a model approach is more sophisticated than 
simply tracking by detection, and can be applied to 
more complex scenarios, e.g. nuclei tracking in 
fluorescence image sequences without sufficient 
temporal resolution, or nuclei changing shape over 
time. 
 Event handling Event handling is a critical step in 
the tracking pipeline, providing information to prevent 

incorrect object associations. To this end, it is 
necessary to know the kind of events that can occur, 
their characteristic features, and which actions need to 
be taken within the tracking pipeline. Common events 
are objects suddenly appearing or disappearing from 
the field of view, and moving objects that can touch or 
fuse. Biological examples events are: mitosis or cell 
division, cell fusion, fission, or apoptosis. Several works 
have addressed these events in the tracking pipeline. 
Rapoport et al. [63] detected mitosis observing the Y-
shape produced in the trajectory and its characteristic 
spatiotemporal pattern. Kanade et al. [143] detected 
mitosis based on intensity change and handled objects 
coming into or leaving the field of view. Harder et al. 
[67] detected mitosis using an extension of the 
likelihood measure based on size and mean intensity of 
mother and daughter cell nuclei. Huh et al. [144] found 
mitosis events by using a detector based on a 
probabilistic model, which identified a video patch 
containing a mitotic event, and then localized the birth 
event. Amat et al. [145] developed a classifier using 3D 
Haar-like elliptical features which distinguished cell 
division events with high detection accuracy over 
millions of cells from light sheet microscopy images. 
Dufour et al. [22] detected when cells divided, entered 
or left the observation volume based on the location 
and shape of detected cells. Finally, Xie et al. [142] 
handled events in the case of drastic cell appearance 
change, overlapping and occlusion. 
 Tracking descriptors After tracking, the obtained 
set of trajectories is quantitatively analyzed in order to 
calculate descriptors that characterize migration 
dynamics. Some features are: motility, velocity, 
diffusivity, and proliferation. 
 -Motility can be estimated from straightforward 
trajectory descriptors such as length, displacement 
(distance between start and end points), comparative 
reference (maximum length or maximum distance 
traveled) and straightness index [60]. More complex 
descriptors can be calculated like the chemotactic 
index and the McCutcheon index, introduced by 
Meijering et al. [146]. Also, directional descriptors can 
be extracted at each trajectory point or at full trajectory 
level (persistence indicator). 
 -Velocity/speed can be directly calculated from a 
given cell trajectory, including instantaneous, mean, or 
maximum values. The speed can be computed from 
the displacement between two frames divided by the 
timing of the sequence. For example, analysis over the 
instantaneous speeds can be elaborated to obtain an 
arrest coefficient corresponding to the fraction of time 
that the object is not moving. Mean straight speed and 
mean curvilinear speed can be derived from the 
trajectories representing its linearity and 
forward/backward progression. An example with other 
velocity descriptors is shown in Figs. (5A, B). Grouped 
data analysis was created with speed histograms in 
order to obtain statistics of the migration dynamics [60]. 
 -Diffusivity aims to characterize motion with the help 
of Mean Squared Displacement (MSD). This measure 
relates observed movement with underlying physical 
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phenomena. For instance, a linear relation between 
MSD and time implies a random walk motion (free 
diffusion). Other modes of motion that can be identified 
using MSD information are constrained diffusion 
(molecular binding, confined motion, motion impeded 
by obstacles) and motion due to a flux [60]. 
 -Proliferation: cell division detection facilitates 
proliferation analysis by incorporating division counting, 
speed, and cell lineage. One example is the work of 
Harder et al. [67], who analyzed the resulting cell 
lineage from tracking and mitosis detection in order to 
extract mean displacements, calculate average cell 
motility and detect rare events from the cell lineage 
trees. Bhanson et al. [147] quantitatively analyzed cell 
growth rates by area, using the change of cell number 
in small regions as a rough but useful proliferation 
estimation. The review of Khairy et al. [66] illustrated 
how only by identifying proliferation events with color 
images, complex supra-cellular events like peripheral 
cell division waves in zebrafish embryogenesis can be 
visualized. 

Motion Fields 
 Optical Flow (OF) techniques are well established 
methods in computer vision to calculate motion fields, 
and have been proposed for the characterization of cell 
dynamics in recent years. OF methods relax the 
assumption of a conserved quantity (e.g. distance, 
shape and topology) during displacement. They focus 
on variations of intensities at local levels (pixels or 
small regions) to account for motion without requiring 
object segmentation. So far, OF applications in biology 
have been limited, but recent works have illustrated the 
maturation of these techniques for the quantification of 
dynamics in difficult scenarios [86, 151, 152]. In this 
section, we review OF methods and descriptors that 
can be elaborated in the context of cell migration. 
 OF methods in cell migration have been applied at 
sub-cellular, cellular, and supra-cellular levels. At sub-
cellular level, neurotransmitter trafficking [150], calcium 
waves speed [153], and Golgi apparatus migration 
have been measured [154]. These works characterized 
speed and orientation of clearly defined objects: 
GABAB receptor subunits, calcium waves, Golgi (or 
transient Golgi). OF applications at cellular level are 
more frequent. Examples are mean cell motion 
estimation [155], by averaging vector field of voxels 
representing the cells [140, 152, 156, 157], or direct 
motion estimation of a set of voxels [86] or super-voxel 
[158]. Fig. (5B) shows an example of motion estimation 
at supra-cellular level where object segmentation and 
tracking are difficult to obtain. In similar scenarios, OF 
has been applied to assess motion of unlabeled cells of 
Dictyostelium [159], or chick development [160], to 
estimate wound healing speed [161] or tissue flow 
[157, 159]. Tissue level OF applications aim to identify 
global motion patterns (rotation, speed) or clusters of 
moving cell. Other OF variants directly include 
parameters associated to cell migration as attractant 
spatial gradients [162]. 

 OF methods start from the grey value constancy 
assumption [163]: a given object and background provide 
constant light intensity between two consecutive frames. 
The OF algorithm searches for the best vector field that 
explains intensity variations at the pixel level. It is 
implemented as a minimization process resulting in a 
vector field indicating horizontal and vertical motion (see 
Fig. 5B). One of the first methods to compute OF was 
proposed by Lucas & Kanade [164] as a least-squares 
minimization. Their method performed well in corners 
[165] but failed at straight edges due to the aperture 
problem [166]. Horn & Schunck [163] proposed an 
alternative minimization algorithm by introducing an 
additional smoothness constraint. The algorithm diffuses 
information from corners to straight-edge regions with the 
additional cost of smoothing discontinuities. A first review 
was presented by [167], and a general computer vision 
benchmark database was proposed by [168]. In a related 
approach by Bruhn et al. [149], anisotropic diffusion was 
introduced to carry information from corners to edges. 
Bruhn et al.’s approach preserved discontinuities in the 
OF field and extended the range of detectable motion 
through multi-scale analysis [169]. Despite the interesting 
perspective of these methods and their wide use in 
computer vision, very few applications have been 
described in cell migration or even in biology. Mainly the 
complex nature of the methods (optimization problems), 
and multiple adjustable parameters have made the 
adoption of these methods difficult. Our group has 
recently started to systematically investigate the 
performance of different OF techniques for motion 
analysis of fluorescent point signals in microscopic image 
series [150]. So far, OF techniques without multi-scale 
implementations can predict motions within an error 
margin of 3% for small displacements. However, the 
criteria for optimum parameter combinations for the 
vector fields calculation must be chosen carefully and 
depends on the temporal sampling frequencies. These 
methods pose an interesting perspective in quantifying 
cell migration [170] without explicit segmentation. For the 
interested researcher, we suggest some OF 
implementations available from the Image Processing On 
Line (IPOL) repository [171]. 
 Descriptors from OF The output of any of the 
above mentioned OF methods is a vector field: the 
direction of the motion and its speed are available for 
each pixel. The most straightforward information that 
can be computed are mean speed and motion direction 
within ROIs [86, 140, 156, 157]. However, this 
operation requires object segmentation. Another 
approach is to search for simple motion patterns, for 
instance rotational patterns [160], or more complicated 
patterns like protrusion formation [155]. For a general 
pattern analysis, OF can be decomposed into 
translation, rotation, and convergence motions [172], 
an idea that has been applied to quantify wound 
healing dynamics in [161]. 

FINAL REMARKS 
 We have presented principles, features, main 
drawbacks, and advantages of current image processing 
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approaches for the analysis of dynamic events in cell 
migration. We discussed the main criteria in selecting the 
most suitable techniques for a given experimental setup. 
Additionally, we have introduced main pre-processing 
operations for denoising and registration, to allow 
biologists to correctly prepare their raw data for 
subsequent image processing methods like 
segmentation, shape and topology characterization or 
tracking. Altogether, we expect that our review of current 
and emerging methods in computer vision applied to cell 
migration studies stimulates future efforts within this field. 
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Fig. (5). Object tracking versus optical flow (OF) for motion estimation. (A) Human sperm motility analysis performed by 
tracking sperm trajectories for 1[s] at sampling rate of 30 frames per second (fps) with bright field microscopy. Scale bar 46 
[$m]. The first image is shown together with paths that characterize different displacements of more than 67 [$m]. (B) 
Magnification of the white square in (A). Scale bar 9 [$m]. The blue path shows the linear displacement between the starting 
point (x1, y1) and the end point (xf , yf); it is used to calculate the velocity of the straight line (VSL). The black path connects the 
position of the sperm head at each time and is used to calculate the velocity of the curved line (VCL). The green path connects 
the average positions (Xs, Ys) using a 5-frame sliding window, and defines the velocity of the average path (VAP). From VSL, 
VCL, and VAP, a series of additional path descriptors can be derived which characterize human or animal sperm motility for 
scientific or diagnostic purposes (see text and [148]). (C-F) OF motion estimation of enveloping layer, epiblast and yolk cell 
nuclei during zebrafish gastrulation. (C) z-Projection from fluorescence SDM images of zebrafish cell nuclei expressing H2B-
RFP mRNA at 5.3 [hpf], dorsal view (25x, 0.005 [fps]), with vegetal pole to the left and animal pole to the right. (D) Color-coded 
OF vector field (one vector each 8 pixels) for two time steps, calculated by the combined local-global OF method [149, 150] 
(parameters: !=2, &=0). (E) Merged images from (C) and (D). (F) The orientation histogram reveals one primary direction of 
migration to the vegetal pole with two sub-populations: one around 140 and one around 210 degrees, representing epiboly 
movement biased towards the embryo dorsal midline (dotted line) during early zebrafish gastrulation [115]. Scale bar 10 [$m]. 
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