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In neurobiology, the 3D reconstruction of neurons followed by the identification of dendritic spines is
essential for studying neuronal morphology, function and biophysical properties. Most existing methods
suffer from problems of low reliability, poor accuracy and require much user interaction. In this paper, we
present a method to reconstruct dendrites using a surface representation of the neuron. The skeleton of
the dendrite is extracted by a procedure based on the medial geodesic function that is robust and topol-
ogy preserving, and it is used to accurately identify spines. The sensitivity of the algorithm on the various
parameters is explored in detail and the method is shown to be robust.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In neurobiology, 3D reconstruction of neuronal structures such
as dendrites and spines is essential for understanding the relation-
ship between their morphology and functions (Dima et al., 2001)
and helps us understand neuronal circuitry and behaviour in neu-
rodegenerative diseases. Dendritic spines, or spines in short, play a
significant role in many neurological conditions (Kasai et al., 2003;
Nimchinsky et al., 2002). These conditions include Alzheimer’s dis-
ease (Spires et al., 2005), Parkinson’s disease (Comery et al., 1997),
tuberous sclerosis complex syndrome (Tavazoie et al., 2005), and
other neurological diseases. Dendrites are tree-like structure of a
neuronal cell and spines are small protrusions formed on the sur-
face of a dendrite. Spines can assume different shapes and appear
and disappear totally (Hering and Sheng, 2001) and their morpho-
logical changes have been proven to be associated with synaptic
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plasticity (Yuste and Bonhoeffer, 2001). Important aspects of cog-
nitive function, such as experience-based learning (Engert and
Bonhoeffer, 1999), attention and memory (Moser et al., 1994) are
correlated with variations in dendritic arborescence and with spine
density and distribution (Glantz and Lewis, 2000; Zito et al., 2004).
It is hypothesized that the dendritic spine structure affects the
physiological properties of synapses located on them (Harris
et al., 1992; Benshalom and White, 1988; Harris and Stevens,
1988). The topology (branching structure) of neuronal dendrites
and their spines underlie the connectivity of neural networks and
may therefore be important predictors of their function (Koh
et al., 2002) (see Fig. 1).

3D light microscopy images of neurons have a significant
amount of information that is lost when projecting to 2D. For
example, structures that are orthogonal to the imaging plane, or
structures that overlap each other along the imaging axis cannot
be identified. See Fig. 2 for an illustration of this. The preferred
method for detailed study of cell morphology and topology is from
3D reconstructions (Stevens and Trogadis, 1984; Wilson et al.,
1987). Automatic reconstruction aids in the analysis of a large
number of neurons and the mapping of the spatial relationships
between different tracts and neuropiles, such that detailed
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Fig. 1. (a) 2D maximum intensity projection of a 3D neuron image, in which information along the imaging axis is lost. (b) Full 3D reconstruction. The 3D reconstruction
captures the branching structure and the morphology of the dendrites with much greater accuracy, and is used as the basis for spine identification.

Fig. 2. (a) and (b) 2D projections of the neuron images, with the backbone (blue) and spines (red) identified by the algorithm overlaid on them. From these images, it can be
seen that in 2D a large amount of the neuron structure is lost.
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mathematical and physical models can be constructed to estimate
those physiological parameters which can not be otherwise mea-
sured easily (Dima, 2002). Graph models (dendrograms) of the neu-
ron, which concisely capture the neuron geometry and topology,
are extremely valuable for analyzing the structure of the neuron
backbone and the dendritic spines (Weaver et al., 2004) and eluci-
date their synapses and neurological functions (Zito et al., 2004).
As discussed above, many neuronal functions are observed to be
correlated with the appearance or disappearance of neuronal
structures and the morphology of the spines. It is therefore impor-
tant to develop robust 3D reconstruction method to trace the den-
drites and detect the dendritic spines on them. There has been
extensive research in the field of neuron reconstruction, dendrite
tracing and spine identification. However, most of these methods
suffer from low reliability and poor accuracy and have heavy
requirements of manual supervision.

In a related work (Mosaliganti et al., 2006), we developed a
method to perform automatic temporal tracking and matching of
spine evolution. Our method, however, suffered from poor spine
detection, and the inadequacies of existing methods to meet these
needs has motivated our current work on developing robust algo-
rithms for spine identification and morphometry, whereas existing
methods for neuron reconstruction treat the neuron as a volume,
we choose to represent the dendrite and the spines as a surface
(2-manifold). The advantages of a surface representation are that
it lets us enforce physically plausible smoothness constraints on
the shape of the neuron, and it facilitates the extraction of the neu-
ronal skeleton. There are a large number of algorithms and heuris-
tics in literature for skeletonisation, each of which produce
different results and do not provide guarantees of correctness
(Cornea et al., 2005; Ma et al., 2003). We use a geometric skeleton-
isation method by Dey and Sun (2006b) based on the medial geode-
sic function. This algorithm has been proved to be well-posed and
robust against noise, and produces curve-skeletons that preserve
the topology of the original object (homotopic equivalence). The
surface model of the dendrite along with the information
computed by the skeletonising procedure allows for the accurate
identification of spines, and for morphological measurements like
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the spine diameter and eccentricity at the base and tip, spine
length, volume, etc. The parameters in the spine identification pro-
cedure are intuitive, easy to understand, robust, and are motivated
by the biology of the neuron being studied.

This paper is organized as follows: in Section 2, we review some
important contributions in neuron reconstruction, tracing, dendro-
gram construction and spine identification. Next, we describe the
data-set, image acquisition and processing methods in Section 3
(see Fig. 3a). The surface extraction, neuron reconstruction, skele-
tonisation and spine identification pipeline is explained in Section
4 (see Fig. 3b). In Section 5 we demonstrate the results of our
method applied on the data-set, and quantitatively evaluate the
accuracy of spine detection and morphometry. We also explore
the implications of the various parameters in detail and make rec-
ommendations for selecting their values. Finally, in Section 6 we
conclude by discussing some thoughts on our current method
and directions of future work.

2. Related work

Most of the current methods of reconstruction are semi-auto-
matic and require user guidance to identify salient structures and
deal with ambiguities in each confocal microscopy data-set inde-
pendently (Glaser and Glaser, 1990; Garvey et al., 1973; Carlbom
et al., 1994). These techniques demand several weeks of a special-
ist’s time for one neuronal reconstruction, and do not have the
objectivity of automated methods. The goal of decreasing the ex-
pense of user interaction often acts contrary to that of ensuring
the accuracy and the topological correctness of the result. Conse-
quently, a few recent methods (e.g. Schmitt et al., 2004) seek for
an optimal compromise been automatic segmentation and manual
reconstruction.

Some reconstruction methods represent neuronal (and other
tubular branching) structures as a tree of connected cylinders or
similar mathematical objects (Urban et al., 2006; Al-Kofahi et al.,
2002; Uehara et al., 2004; Tyrrell et al., 2006; Schmitt et al.,
2001; Herzog et al., 1997; Herzog et al., 1998), which detracts from
the capability of the model to provide accurate quantitative mea-
surement of the underlying cellular morphology, and require
strong assumptions about the objects of interest. Due to the mor-
Fig. 3. Algorithm overview: (a) image processing pipeline and (b) reconstruction
and analysis pipeline.
phologic complexity and variety of neuronal cell types, no general
models are suggested in literature.

Other methods (Cohen et al., 1994; Goldbaum et al., 1990a;
Goldbaum et al., 1990b; Clark et al., 1992; Chaudhuri et al.,
1989; Dima et al., 2001; He et al., 2003; Can et al., 1999; Gerig
et al., 1993) employ curve-skeleton methods to build a linear graph
representation of dendritic structures. These methods conform to a
weak model, which implies that only very weak assumptions are
made about the shape of the objects of interest. However, the
curve-skeletonisation algorithms employed tend to be very
sensitive to small changes in the object shape, and moreover do
not provide topological guarantees about the resulting 1D skeleton.
We discuss this some more in Section 4.2.

The analysis of dendritic structure and morphology is largely
accomplished manually and is extremely time consuming, not
reproducible, and its accuracy is dependent on the skill of the user.
A few spine identification and quantification techniques of varying
degrees of automation have been suggested to reduce manual la-
bour and improve the accuracy and reproducibility of the result,
none of which has apparently been used and verified on large
data-sets. Some authors (Rusakov and Stewart, 1995; Weaver
et al., 2004; Mosaliganti et al., 2006) use the medial axis to identify
spines in 2D as protrusions relative to dendritic skeleton. We have
noticed from our earlier work that there is significant information
in the 3D image which is lost when projecting to 2D, and the accu-
racy of such methods is limited. Others (Watzel et al., 1995; Koh,
2001) use 3D medial axis-based strategies to extract a skeleton,
and identify spurs as potential spines. Medial axis-based methods
suffer from the general problems of sensitivity to noise and spuri-
ous spine detections, and have to use heuristics to eliminate false
positives. Model based spine identification techniques (Herzog et
al., 1998; Al-Kofahi et al., 2002) have trouble detecting thin-necked
and short spines and have to be manually supervised. In Koh et al.
(2002), the authors devise a 3D technique in which spines are not
detected using the medial axis branches emerging from the
backbone, but instead, as geometric protrusions relative to the
backbone. The method contains several parameter settings that
require extensive fine tuning.

3. Image acquisition and processing

In this section we describe the data-set (Section 3.1), followed
by the image processing pipeline that corrects for the anisotropy
in the sampling resolution (Section 3.2) and segments out the neu-
ronal cytoplasm from the background phase (Section 3.3). This is
followed by a step to join the floating spine heads and to remove
spurious tissue fragments in the sample (Section 3.4).

3.1. Data-set

3D images of pyramidal neurons in rat hippocampi expressing
GFP were acquired by the digitization of neuronal cultures using
a two-photon laser scanning microscopy with a 40� objective
and 0.8 NA (Zito et al., 2004). The image stacks have dimension
512� 512� 12 voxels at 0.07 lm � 0.07 lm � 1 lm resolution.
For high content neuron screening green fluorescent protein
(GFP) is used to mark neurons in vitro. GFP absorbs blue light
and converts it to green light which is of lower energy. The emitted
green light is then captured by an optical microscope such as a
two-photon laser scanning microscope (2PLSM).

To correct the images for the microscope’s point spread function
(PSF), which causes out-of-focus objects to appear in the optical
slices, we use the de-convolution package AutoDeblur1 to restore
1 AutoDeblur is a product of AutoQuant Image Inc.



Fig. 4. Volumetric renderings of GFP stained pyramidal neurons from rat hippo-
campi before (a) and (b) and after (c) and (d) de-convolution. The data-set
resolution is 512� 512� 12 at 1:1:10 voxel aspect ratio (0:07 lm� 0:07 lm�
1 lm).

Fig. 5. Results of non-linear diffusion de-noising with anisotropic regularization.
The left column shows a section of 2D slice of the 3D neuron image, and the right
shows the corresponding Monge map. (a) and (b) Image before smoothing, (c) and
(d) results for non-linear diffusion, while (e) and (f) result of Gaussian smoothing.
We can see that the non-linear diffusion method de-noises the image while
preserving edges. Both Gaussian and non-linear filtering were carried out in 3D.
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the image. Fig. 4 shows raw and deblurred images. The deblurred
image was obtained after 10 iterations. The parameters of the de-
convolution algorithm depend on the setup of the microscopy.

The nature of the image acquisition process and photo-bleach-
ing effects introduces the following types of artifacts: (i) photon
shot noise; (ii) presence of unrelated structures; and (iii) floating
spine heads. These artifacts require the additional processing steps
described next.

3.2. De-noising and re-sampling

The intensity profile in neuronal regions exhibits noise and
sharp variations in contrast, especially along the cell boundaries.
Fig. 5a and b shows a small portion of an X � Y slice from a 3D neu-
ron image, and the corresponding Monge map (intensity map). To
de-noise the image, non-linear diffusion filtering (Perona and
Malik, 1990) is used, which removes high-frequency noise while
avoiding the blurring and localization problems of linear Gaussian
smoothing (Witkin, 1983). If X denotes the domain of the image
gðxÞ : X! R then the filtered image uðx; tÞ is the solution to the
non-linear diffusion equation

ou
ot
¼ divðDðjruj2ÞruÞ on X� ð0;1Þ; where ð1Þ

Dðjruj2Þ ¼ 1

1þ jruj2=k2
nl

ðknl > 0Þ ð2Þ

with the original image as the initial condition uðx;0Þ ¼ gðxÞ on X,
and Neumann boundary conditions @nu ¼ 0 on oX� ð0;1Þ.2 Here
knl plays the role of a contrast parameter (Weickert, 1996) smoothing
low contrast areas (jruj 6 knl) and enhancing high contrast areas
(jruj > knl).

Unfortunately, this diffusion equation is numerically unstable
and Catté et al. (1992) propose a regularization by convolving u
2 @n denotes the derivative normal to the image boundary.
with a Gaussian Kr to compute the gradient rur. To account for
the 1 : 1 : 10 anisotropy in the imaging resolution, we modify the
Catté filter to use an anisotropic Gaussian kernel KR with a
10 : 10 : 1 ratio of scales rx;ry;rz. The non-linear diffusion equa-
tion with anisotropic regularization has the form

ou
ot
¼ divðDðjruRj2ÞruRÞ on X� ð0;1Þ; ð3Þ

where R ¼ r diag 1;1;
1

10

� �
;

uR ¼ KRHu: ð4Þ

Here, H represents convolution. Fig. 5c and d shows a 2D section
of the results of (3D) non-linear filtering. For comparison, the re-
sults of standard Gaussian filtering (with anisotropic scales) are
shown in Fig. 5e and f. We see that the non-linear diffusion method
has effectively removed noise, while preserving tissue boundaries.

After smoothing, the image is re-sampled to 1:1:1 resolution by
down-sampling by three in the X and Y, while up-sampling by a
factor of 3.5 in the Z directions. We found that quartic (fourth or-
der) B-spline interpolation provides the best results, by visually
examining the Monge maps before and after interpolation. Fig. 6a
and b shows the results at the end of the de-noising and re-sam-
pling stage.

3.3. Segmenting the neuron

Because of the edge enhancing property of non-linear
diffusion, global thresholding of the intensity field gives a reliable



Fig. 6. Neuron volumes after de-noising and re-sampling (Section 3.2) to 1:1:1 voxel aspect ratio.
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and accurate segmentation of the neuron. This is because the vari-
ations in the intensity field outside the neuron become almost
zero and hence any threshold X above zero is very effective sup-
pressing the artifacts from random intensity fluctuations in the
background image. At the same time, the filter sharpens edges
at the boundaries of the neuronal objects thereby making the seg-
mentation more robust to variations in the threshold parameter
X. The conditioning of the thresholding operation is quantified
by the relative change in the size of the segmented object with re-
spect to a relative change in X. Assuming that the neurons are
approximately cylindrical objects, the condition number condðXÞ
is given by

condðXÞ ¼ dr=r
dX=X

; ð5Þ

where r is the radius of the cylinder. The value of dr=r is approxi-
mated by

dr
r
�

ffiffiffiffiffiffi
dV
V

r
; ð6Þ

where V is the volume of the segmented dendritic tissue. We pres-
ent our investigation into the sensitivity of X in Section 5.2. Fig. 7
shows volumetric renderings of segmented neuronal objects from
two data-sets.

3.4. Floating spine heads

The neuron images contain floating spine heads, separated from
the main dendritic backbone, due to photo-bleaching effects and
limited microscope resolution. The neuron sample also contains
unrelated tissue fragments that show up as disconnected blobs
during imaging (Fig. 7). While the spurious fragments should be re-
moved, the floating spine heads must be identified and connected
Fig. 7. Volumetric rendering of segmented neuronal objects: (a) neuron
back to the main dendrite. An important consideration when mak-
ing this join is that the true topology of the dendrite be recreated as
best as possible. At the same time, approximating the morphology
of such spines is acceptable, since this information is fundamen-
tally not present in the acquired images.

It has been observed that the floating spine heads tend to point
towards the dendrite, while the dendrite too has a protrusion
pointing towards the spine, and both are in close proximity of each
other. Fig. 8a shows a 2D projection of a segmented neuron image
with three detached spine heads (circled in red) and a few spurious
fragments. For spine heads 1 and 3 locating the closest point on the
main backbone is sufficient to determine the connection between
the two. However, for case 2, a join to the closest point (yellow
arrow) is incorrect. Here, along with the orientation of the spine
head itself, the protuberance in the dendrite (green arrow) must
used to guide the connection. This suggests a method of connecting
floating spine heads by growing the spine and the dendrite along
the directions in which they protrude. If a join occurs within a cer-
tain number of time-steps it is a valid spine, else it is spurious
fragment.

Active contour shape models (Malladi et al., 1995) are a level-
set approach that enables us to achieve these goals, by using shape
information to control the evolution of iso-contours. The boundary
fðtÞ ¼ fxjwðx; tÞ ¼ 0g of the neuron at time t is encoded as the zero
level-set of the field wðx; tÞ. The update equation of the level-set is
given by

ow
ot
¼ gðwÞðc þ jÞjrwj; where gðwÞ ¼ 1

1þ jwj2
: ð7Þ

The parameter j is the curvature along the normal to the level-
set contour and c is a balloon force that evolves the level-set front
outwards. The term jjrwj guides the evolution of the front using
the local curvature.
image 1 after segmenting and (b) neuron image 2 after segmenting.



Fig. 8. Illustrative example (in 2D) of the floating spine head problem and its
solution: (a) neuron image after segmentation with floating spine heads and
spurious tissue fragments in 3D; (b) speed function that controls the level-set
evolution; and (c) floating spine head connected to the backbone.
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Therefore, the complete algorithm to connect floating spine
heads and discard fragments is as follows:

(i) From the segmented image I, identify dendrites and poten-
tial floating spines by thresholding the volume of the con-
nected components with respect to a reference volume #

(see Section 5.2 for more details).
(ii) Set the signed distance map DðIÞ of the neuron image as the

level-set function wðx;0Þ.
(iii) Evolve the level-set (Eq. (7)) to move in the directions of

high curvature for a specified number of time-steps sgac

(Fig. 8b).
Fig. 9. Surface model of dendrite: (a) original iso-surface of the segmented neuron
(iv) If the level-sets originating from spine heads and dendritic
backbones meet within sgac, then determine the location of
their join point and connect them up at that point (Fig. 8c).

(v) Tag all remaining fragments as spurious, and discard them.

Because of the proximity constraint, the level-set needs to be
evolved only over a very few number of time-steps (sgac � 5) for
a valid join to occur. The distance transform, too, needs to be com-
puted only in the close vicinity of the edges and can be done very
efficiently in linear time (Breu et al., 1997). Therefore, the overall
computation cost is of this procedure is relatively low.

4. Neuron reconstruction and analysis

After the image processing pipeline, the connected components
are identified as separate dendrites and are analyzed indepen-
dently. Existing neuron reconstruction methods use signal process-
ing and image processing techniques, followed either by model
fitting or skeletonisation for neuron reconstruction (Section 2).
We represent the dendrite by a surface model because (a) it allows
us to control the smoothness of the neuron surface thereby impos-
ing a physically plausible constraint on the reconstruction and (b)
it lets us perform detailed morphological measurements.

4.1. Surfacing and surface fairing

The surface of the segmented dendrite is obtained by iso-surfac-
ing at any value between (0,1), using extended marching cubes
(Nielson and Hamann, 1991). This surface is over tesselated and
suffers from artifacts of staircase noise (Fig. 9a). In signal process-
ing terms, we need to first low-pass filter the surface to remove the
high-frequency noise, and then down-sample it to a sufficient
resolution.

Low-pass filtering is effected using the two-step surface fairing
method described by Taubin (1995). Let x ¼ ðx1; x2; x3ÞT be the 3D
coordinates defined at the vertices of a polyhedral surface. The
Laplacian of the a point xi on the surface is defined by the weighted
average over its neighbourhood Ni as

Dxi ¼
1
jNij

X
j2Ni

wijðxi � xjÞ: ð8Þ

The fairing process is a smoothing step that also causes surface
shrinkage (Eq. (9)) followed by an expansion step (Eq. (10)),
applied iteratively N times:
object and (b) surface after low-pass filtering and quadric error decimation.
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x0i ¼ xi þ aDxi for 0 < a < 1; ð9Þ
x00i ¼ x0i þ lDxi; where l < �a: ð10Þ

The transfer function f ðkÞ of the filter, with respect to surface
frequency k, has the following property:

lim
N!1

f ðNÞðkÞ ¼
1 0 6 k 6 1

aþ 1
l ;

0 1
aþ 1

l < k 6 2:

(
ð11Þ

Here ð1=aþ 1=lÞ > 0 is the cut-off frequency and N the number
of iterations, controls the rate of decrease in the stop-band. This
algorithm is fast (linear time), produces smoothing without shrink-
age, and quickly achieves a stable solution with respect to N.

Next, the tessellation density is reduced by decimating the
mesh using the quadric error metric (Garland and Heckbert,
1998). Here, every edge is assigned a cost function, namely the er-
ror resulting from its contraction, and the lowest cost edges are
iteratively selected and collapsed. Each vertex is associated with
a set of planes, and the error at the vertex is defined to be the
sum of squared distances from it to all the planes in its set. Each
set is initialized with the faces incident to the vertex in the original
surface. When an edge is contracted into a single vertex, the result-
ing set is the union of the two sets associated with the endpoints.
The cost of contracting an edge ðv1; v2Þ to a single vertex �v is now
the error at �v. This decimation technique does not prevent changes
of topology in the mesh, and it suffers from small inaccuracies.
However, given the simple topology of a dendrite, and the speed
and simplicity of the algorithm, this method is very appropriate
for our application. Fig. 9b shows the result of this decimation step.

Increasing the surface decimation factor q has two benefits: (i)
it simplifies the model and makes further computations more effi-
cient and (ii) it allows us to impose smoothness constraints on the
model. The smoothness of the surface is measured by the average
dihedral angle (/M) of the edges in the mesh. This is further elab-
orated upon in Section 5.2.
4.2. Curve-skeletonisation

A curve-skeleton is a 1D curve, possibly with branches, in the
‘center’ of the shape. A related and much more well-defined con-
cept is the medial axis which is also referred to as the skeleton.
For a 3D shape, however, the medial axis has two-dimensional
components (medial surface). Therefore, the medial axis cannot
be a substitute for a 1D skeleton. Another disadvantage of the med-
ial surface (axis) is its intrinsic sensitivity to small changes in the
object’s surface (Choi and Seidel, 2002). Essentially, any curve-skel-
eton should satisfy the following basic properties (Cornea et al.,
2005):

(1) Homotopic to the original object (topology preservation).
(2) Invariant under isometric transformations.
(3) Allow recovery of the original object (reconstruction).
(4) 1D (thin).
(5) Centered within the object.
(6) Visibility of every boundary point on the object from at least

one curve-skeleton location (reliable).
(7) Ability to distinguish different components of the original

object, reflecting its part/component structure (junction
detection).

(8) Preservation of the connectedness of the original object.
(9) Small changes in the skeleton for small changes in object

surface (robust).

We use the definition of curve-skeletons based on the medial
geodesic function by Dey and Sun (2006b), which combines the
intrinsic property of the surface (the geodesic distances) along
with its embedding in R3 (the medial axis) thereby capturing
the shape information comprehensively. The medial geodesic
function gives the shortest geodesic distances between the points,
where the maximal balls centered at the medial axis touch the
surface. Formally, if O � R3 is a space called shape bounded by a
connected 2-manifold surface S, then the medial axis M � O is
the set of centers of the maximal balls inscribed in O. Let
M2 � M be the set of points on the medial axis whose maximal
balls touch the surface S at two distinct points. It can be shown
that M2 is also a 2-manifold and covers most of M (i.e. M nM2

has measure 0). For a point x 2 M2, let Bx be the maximal inscribed
ball centered at x and ax and bx be the two touching points where
Bx meets S. Then f ðxÞ, the length of the geodesic path on S between
ax and bx, is the medial geodesic function (MGF). The curve-skele-
ton is defined as the singular set (maxima or saddle points) of f ðxÞ
for x 2 M2.

It is mathematically shown that this definition of a curve-skel-
eton has properties of homotopic equivalence, isometric invari-
ance, thinness (1D), centeredness, junction detection, stability
(robustness) and connectedness. The MGF values at each point
on the skeleton give the size information of the shape. Also the ra-
tio � between the geodesic and Euclidean circles passing through
the touching points quantify how different the shape is from a
tubular one (eccentricity).

The algorithm has one parameter �1:1 6 h 6 0:0 that controls
the strictness for selecting points from the medial axis M2 as
being skeleton points. As h decreases the curve skeleton becomes
less detailed. Formally, if SKh

S is the curve-skeleton for surface S
extracted with parameter h, then SKh1

S # SKh2
S if h1 < h2. The selec-

tion of this parameter is explained in Section 5.2. Fig. 10a–c
shows the results of curve-skeleton extraction for a few values
of h.

4.3. Dendrite tree model

The curve-skeleton SKh
S of the neuron is represented by an

attributed tree structure D � fV;Eg which compactly encodes
the geometry and topology of the dendrite. The set of vertices is

V ¼ vijv � ðx;dÞf g; ð12Þ

where x 2 R3 are the spatial coordinates and d 2 N is the degree of
the vertex. The set of edges is

E ¼ eje � ½vi; vj�; c½a;b�; r; f ; �
� �� �

; ð13Þ

where vi; vj 2V are its vertices, c is the length of the edge,
½a;b� 2 R3 are the touching points of medial ball with the surface,
r is the radius of the medial ball, f 2 R is the medial geodesic length
for the edge, and � is the eccentricity.

The dendrite tree has two types of chains of edges fe1ðv1; v2Þ;
e2ðv2; v3Þ; . . . ; enðvn; vnþ1gÞ:

(1) Branch chains that start at leaf node ðv1jdðv1Þ ¼ 1Þ and end
at a branch node ðvnþ1jdðvnþ1Þ > 2Þ.

(2) Backbone chains that run between two branch nodes.

Fig. 10d shows the graph of the dendrite in Fig. 10b. The den-
drite tree is pruned of those branch chains whose cumulative
length

Pn
i¼1ci is less than a threshold length Cmin. This step elimi-

nates spurious branches in the curve-skeleton by imposing restric-
tions on the minimum length of potential spines in the dendrite.
4.4. Morphometry and spine identification

For each branch b in the dendrogram model we compute the
following morphological features:



Fig. 10. (a)–(c) Curve-skeletons for h ¼ 0:0;�0:2;�0:5, respectively; (d) dendrite graph (before pruning) for the skeleton in (b). The green curve is the skeleton, the blue lines
indicate backbone edge chains, and red lines are branch chains.
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� length cb as the cumulative lengths
Pn

i¼1ci of the edges e1; . . . ; en

from the base (branch nodes) to the apex (leaf nodes),
� radius rb

0 of the medial ball and eccentricity �b
1 at the base of the

branch,
� maximum radius rb

max ¼maxn
i¼1ri,

� minimum radius rb
min ¼minn

i¼1ri,
� average weighted radius rb ¼ ð1=cb

i Þ
Pn

i¼1ciri,
� volume Vb as the cumulative volume of the edges

Pn
i¼1pr2

i ci

(approximating each edge by a cylinder),
� the angle /b the branch chain makes with the backbone edge at

the base,
� the curvature jb of the backbone at the base of the branch chain.

To distinguishing between branch chains that belong to end
segments of the dendritic backbone and those that belong to the
spines (see Fig. 10d) in the pruned dendrite tree, we use the follow-
ing decision sequence:

(1) If b is a branch chain of cumulative length cb greater
than a threshold length Cmax, then mark it as dendritic
backbone.

(2) Else:

(2i) If the average weighted radius rb is greater than

a threshold Rmax, mark it as a backbone chain
bbb.

(2ii) Else mark it as spine chain bs.
The threshold Cmax enforces a maximum length constraint on
valid spines, while Rmax enforces a maximum radius constraint.
While this framework allows for more sophisticated morphological



Fig. 11. (a) and (b) 3D visualizations of two dendrites, their backbones (blue) and spines (red).
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models when checking for spines, we find that the above model
performs well for our data-sets.

5. Results

Our method was implemented in a combination of MATLAB�,3

C++, ITK4 and VTK.5 We used the CurveSkel software package (Dey
and Sun, 2006a) to calculate the curve-skeleton of the dendrites.
Our algorithm was deployed on a PC with an Intel� Duo 1.8GHz Cor-
e2TMDuo 1.8 GHz processor and 2 GB RAM. The running time to pro-
cess one neuron image is approximately 12 min. In Section 5.1 we
explain the procedure used for validating the method, and show
the results. Then, in Section 5.2 we explain the selection of param-
eters and quantitatively measure their effects on neuron recon-
struction and spine identification.

5.1. Validation

The results of the spine identification procedure were validated
on a data-set of 20 image stacks of pyramidal neuron cultures. Each
3D image contained multiple independent dendritic backbones
with branching topology, an approximately fifteen spines per den-
drite. Four expert users examined the original microscopy images
and identified the dendritic spines. They then examined the den-
drogram overlaid on the de-noised neuron 3D image ( Fig. 11a
and b), and the number of false positives (Type I error) and false
negatives (Type II error) were tabulated across the users. The
average sensitivity6 and specificity7 were then computed. These
experiments were repeated for a number of parameter settings
(see Fig. 15).

With regards to measuring the morphological features of
dendrites, manual morphometry has been traditionally performed
3 MATLAB� is a product of The Mathworks Inc.
4 Insight Segmentation and Registration Toolkit from the National Library of

Medicine (NIH/NLM) (www.itk.org).
5 Visualization Toolkit from Kitware Inc. (www.vtk.org).
6 defined as TP=ðTPþ FNÞ, where TP: count of true positives, TN: count of true

negatives, FP: count of false positives, FN: count of false negatives.
7 defined as TN=ðTNþ FPÞ.
in 2D. It must be noted that there are no widely accepted methods
of performing dendritic morphometry from 3D images. As a result,
the manually measured values themselves are not accurate. Also,
the measurements are subject to wide variation between the users.
On our data-sets, the following morphological features were mea-
sured manually by the four users:

Length: Measured as the straight line distance between
base of the spine and its apex, located in the 3D
segmented volume,

Volume: Measured as the number of voxels in the spine
enclosed by a plane marking the base of the
spine in the 3D segmented volume,

Basal radius: Measured in the 2D maximum intensity projec-
tion of the dendrite at the base of the spine,

Maximum radius: Measured in the 2D maximum intensity projec-
tion of the dendrite at a point along the spine
judged by the user to have maximum radius,

Minimum radius: Measured in the 2D maximum intensity projec-
tion of the dendrite at a point along the spine
judged by the user to have minimum radius.

The dendritic spines were roughly grouped into two sets: short
spines and long spines based on their length, and each set was
evaluated separately. As the spine length reduces, the natural var-
iability in locating the spine base and maximum (minimum) radius
has a greater impact on the relative error (standard score). There-
fore for shorter spines, the relative variability across human users
in morphological measurements increases, making evaluation of
the machine measurements less reliable. The accuracy of the ma-
chine morphometry for each feature (length, volume, basal radius,
maximum radius, minimum radius) was computed using a MANO-
VA test (Krzanowski, 1988). Each spine in the set (short or long
spines) was an independent variate, while the two samples to be
tested were (a) the four manual measurements and (b) the four
manual measurements along with the machine measurement.
The difference between the means of the two samples was not
found to be statistically significant (significance level of
a ¼ 0:05). The Mahalanobis distance between the two sample
means for each feature are tabulated in Table 1.

http://www.itk.org
http://www.vtk.org


Table 1
MANOVA results for spine morphometry

Feature Mahalanobis distance

Long spines Short spines

Length 0.51 0.83
Volume 0.22 0.46
Basal radius 0.65 0.90
Maximum radius 0.42 0.77
Minimum radius 0.37 0.68

Fig. 14. Average dihedral angle /M of dendrite surface mesh M vs. decimation
factor q.

Table 2
List of parameters and their optimal values

Parameter Explanation Values Type

knl Non-linear diffusion conductance (Eq. (2)) 0.5–1.5 –
Nnl Non-linear diffusion number of time-steps 15 –
r Regularization scale (Eq. (4)) 2–5 Setup
X Segmentation threshold (Section 3.3) 50–200 –
sgac Level-set time-steps 5–10 Setup
# Floating fragment max volume (�103)

(Section 3.4)
5–1000 –

a Surface fairing smoothing (Eq. (9)) 0.3–0.7 –
l Surface fairing expansion (Eq. (10)) �0.1 to

�0.4
–

N Surface fairing steps (Eq. (11)) 20–80 –
q Surface decimation factor 0.90–0.96 Data-set
h Skeletonisation strictness (Section 4.2) 0.0 to �0.2 Data-set
Cmin Minimum spine length (Section 4.3) 12	 3 Data-set
Cmax Maximum spine length (Section 4.4) 38	 5 Data-set
Rmax Maximum spine radius (Section 4.4) 17	 5 Data-set
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Given the small size of each sample (4 or 5 data-points), the
Mahalanobis distances observed are reasonable. The larger error
in length measurement is explained by the fact that manually it
Fig. 12. The effect of conductance knl and number of time-steps Nnl on non-linear diffusio
of the 3D volume for varying values of knl and Nnl .

Fig. 13. (a) Condition number with respect to X. The red line is a least-squares fit of the
to X.
was measured as the straight line distance between base to apex.
Similarly, the larger errors in radius measurements are because
the manual verification was done in 2D. In all cases, it was ob-
served that the machine measurements were slightly larger than
the manual measurements, confirming this conclusion.

5.2. Parameter selection

Table 2 gives a list of the parameters in the pipeline, their opti-
mal values, and the conditions under which they need to be tuned.
Parameters of type ‘‘Setup” depend upon either the properties of
the image acquisition process or the digitization process and
would need to be changed only if this setup were to change. The
parameters of type ‘‘data-set” depend on the characteristics of
n filtering of the neuron images: (a)–(d) Monge map (intensity map) for a 2D section

data and (b) approximate radius (in voxels) of the segmented volume with respect
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the neurons being analyzed, and can be kept the same for the en-
tire data-set.

Edges with gradient value less than the diffusion conductance
parameter knl are smoothed while those above it are enhanced. Gi-
ven the nature of the intensity field in a neuron image, we find a
large difference between the gradients of valid edges and noise
edges, and the smoothing step is not sensitive to the selection of
knl. Perona and Malik (1990) have shown that edges remains stable
over a long period of time in the non-linear diffusion process, while
the solution gradually converges to a steady state. We too observe
that after 10 iterations, most of the noise is removed and the edges
remain stable up to 200 iterations (Fig. 12). Consequently, the
number of time-steps Nnl is fixed at 15 for all data-sets. The regu-
larization scale r depends upon the physical spacing between the
voxels. For our microscopy setup, a value of r between 2 and 5 was
found to be satisfactory.

The condition number condðXÞ (Eq. (5)) quantifies the sensitiv-
ity of the segmentation threshold X (Section 3.3). As seen in
Fig. 13a, the condition number is low for X < 300, and once the
background tissue is segmented out (X > 50), the approximate
radius (in voxels) of the segmented neuron stabilizes (Fig. 13b).
As a result of this large range in acceptable values of X, the algo-
rithm is robust with respect to it and it does not have to be fine
tuned.

The sgac parameter enforces a proximity constraint (Section 3.4),
between valid floating spine heads and the dendritic backbone, and
depends upon the characteristics of the imaging process and the
Fig. 15. ROC curves with respect to h: (a) ROC curve for different values of Cmin; (b) RO
underlying tissue, which are responsible for this disconnect. We
find that sgac � 5 is appropriate for all cases in our data-set. The
volumes of the smallest dendrite (>120,000 voxels) and the largest
floating tissue fragment (
5000 voxels) differ by two orders of
magnitude, and therefore the volume threshold # has a lot of slack
in its selection.

The two parameters a and l of the surface fairing step affect the
pass-band and stop-band of the surface frequencies (Section 4.1).
The parameter N controls the sharpness of the cut-off frequency.
Their value can be kept fixed and does not have to be tuned. This
is because the scale of the noise in the iso-surface is many orders
of magnitude smaller than the scale of the features (spines) in
the neurons, as can be clearly seen from Fig. 9a.

To select the best quadric error decimation factor q we use the
average dihedral angle /M of the surface mesh M to quantify
smoothness. Fig. 14 shows the value of /M with respect to the dec-
imation factor q. Initially, as number of polygons in the original
mesh starts reducing, /M of the remains fairly constant. However,
after a certain percentage of the faces are removed, the surface be-
gins to develop sharp edges and /M begins to rise sharply. The opti-
mal value of q is in the region, where the knee point occurs. We
have found a factor of 0.8 to 0.95 to produce good results.

The skeletonisation strictness parameter h (Section 4.2), the
spine length thresholds Cmin (Section 4.3), Cmax and maximum
spine radius threshold Rmax (Section 4.4) work in conjunction to di-
rectly influence the sensitivity and specificity of the spine identifi-
cation process. The values of Cmin;Cmax and Rmax serve to impose
C curve for different values of Cmax; and (c) ROC curve for different values of Rmax.
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biologically meaningful constraints on the size of the spines, and
are known a priori, while h is set constant for the entire data-set.
From the ROC8 curves (Fig. 15) we observe the effect of variations
in Cmin;Cmax and Rmax on the accuracy of the algorithm. We obtained
optimal sensitivity (0.953) and specificity (0.901) at h ¼ 0:05,
Cmin ¼ 12, Cmax ¼ 38 and Rmax ¼ 17 for our data-set.

6. Conclusion

In this paper, we have presented a method to robustly recon-
struct neuronal dendrites in 3D and to accurately identify spines
on the dendrites. We developed a surface representation of the
neuron that is compact and allows us control over the smoothness
of the reconstructed surface. The curve-skeleton of the neuron
was extracted using a procedure based on the medial geodesic
function, which is robust to noise and correct in the sense of topo-
logical preservation. Based on the surface representation and the
curve-skeleton we could accurately detect spines and measure
spine length, volume, radius and other morphological features.
Such features, in combination with other experimental informa-
tion, may help researchers to delineate the mechanisms and path-
ways of neurological conditions such as Alzheimer’s disease and
tuberous sclerosis complex syndrome. The parameters of our
method are easy to understand and biologically motivated. The
accuracy of the system for spine identification and morphometry
was demonstrated through a quantitative evaluation. We also pre-
sented a detailed study of the effect of the various parameters on
the image processing, reconstruction and spine identification pro-
cedures that shows the robustness of this approach to parameter
selection.

We are investigating methods to use the rich description of
neuronal structure presented here to track dendrites and spines
over time and study their morphological changes. By combining
the 3D reconstruction algorithm with image registration, we plan
to study the relationship between the changes in spines and their
synaptic formations dynamically in order to uncover potentially
new mechanisms of neuronal networks and functions. We also be-
lieve that the processing time for one neuron image can be reduced
by a factor of 2� by optimizing our algorithm and implementing it
entirely in C/C++.
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