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Abstract Population stratification may confound the
results of genetic association studies among unrelated
individuals from admixed populations. Several methods
have been proposed to estimate the ancestral informa-
tion in admixed populations and used to adjust the
population stratification in genetic association tests. We
evaluate the performances of three different methods:
maximum likelihood estimation, ADMIXMAP and
Structure through various simulated data sets and real
data from Latino subjects participating in a genetic
study of asthma. All three methods provide similar
information on the accuracy of ancestral estimates and
control type I error rate at an approximately similar
rate. The most important factor in determining accuracy
of the ancestry estimate and in minimizing type I error
rate is the number of markers used to estimate ancestry.
We demonstrate that approximately 100 ancestry
informative markers (AIMs) are required to obtain
estimates of ancestry that correlate with correlation

coefficients more than 0.9 with the true individual
ancestral proportions. In addition, after accounting for
the ancestry information in association tests, the excess
of type I error rate is controlled at the 5% level when 100
markers are used to estimate ancestry. However, since
the effect of admixture on the type I error rate worsens
with sample size, the accuracy of ancestry estimates also
needs to increase to make the appropriate correction.
Using data from the Latino subjects, we also apply these
methods to an association study between body mass
index and 44 AIMs. These simulations are meant to
provide some practical guidelines for investigators con-
ducting association studies in admixed populations.

Introduction

Genetic association studies are a powerful approach to
identify genetic risk factors associated with complex
traits (Risch and Merikangas 1996). However, concern
has been raised that population stratification may con-
found genetic association studies (Lander and Schork
1994; Spielman et al. 1993). This may be especially
important and cannot be ignored while conducting
association studies in admixed populations such as
Latinos or African Americans. If disease risk varies with
ancestry proportions, then any marker found at a higher
frequency in one ancestral group may be associated with
the disease even if it is not a causative allele or at a locus
near a causative allele (Burchard et al. 2003; Cardon and
Bell 2001; Knowler et al. 1988; Ziv and Burchard 2003).

Population stratification can be identified and cor-
rected by various approaches. In general, the methods of
correction for population stratification can be catego-
rized into three classes (1) genomic control (2) ‘‘struc-
tured association’’ and (3) a semi-parametric method
based on principal components analysis (Bacanu et al.
2000; Chakraborty et al. 1986; Devlin and Roeder 1999;
Falush et al. 2003; Hanis et al. 1986; Pritchard et al.
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2000; Zhang and Zhao 2001; Zhang et al. 2003). The
‘‘structured association’’ approach estimates individual
ancestry by using a set of genetic markers and then tests
for association while correcting for individual admixture
(IA). This approach is particularly favored by the
investigators studying admixed populations and is often
used with a set of highly informative markers for esti-
mating ancestral proportions. Several methods are
commonly used to estimate ancestry including: (1)
maximum likelihood estimation (MLE), (2) Structure,
and (3) ADMIXMAP. The latter two programs use a
Markov Chain Monte Carlo (MCMC) approach to
estimate ancestry. In addition, ADMIXMAP also
incorporates a test of association that is performed
simultaneously with the estimation of ancestry.

In this study, we examine and compare the perfor-
mance of these three methods for estimating ancestry and
for eliminating the excess type I error rates due to pop-
ulation stratification. We investigate the common case of
a three-way population admixture, which is relevant to
both Latinos and African Americans, the two largest
minority groups in the US. We not only use simulations
for most of the investigations but also explore the three
methods with real data from an asthma genetic study
among the Latinos. The goals are to provide practical
recommendations to investigators on the choice of
methods, number of markers, and number of ancestral
individuals included in the study while performing ge-
netic association studies in admixed populations.

Methods

Maximum likelihood estimation

Consider an admixed population, K4, resulting from the
genetic admixture of subjects from three ancestral pop-
ulations, K1, K2, and K3. Let s1, s2, and (1�s1�s2) rep-
resent the ancestry proportion from population K1, K2,
and K3, separately. Let Gi represent the genotype for an
admixed individual at the ith locus. For n loci, likelihood
can be defined as:

Lðs1; s2Þ ¼
Yn

i¼1
PrðGiÞ: ð1Þ

Instead of maximizing likelihood, it is computationally
simple to maximize its natural logarithm:

loge½Lðs1; s2Þ� ¼
Xn

i¼1
loge½PrðGiÞ�: ð2Þ

The MLE approach has been implemented in the pro-
gram IAE3CI, which was kindly provided by Dr. Mark
D. Shriver. The program requires the information of
allele frequencies from each ancestral population and
admixed subjects’ genotyping data (Bonilla et al. 2004;
Chakraborty et al. 1986; Hanis et al. 1986).

Structure

An admixture model implemented in the program
Structure assumes each individual inheriting some pro-
portion of its ancestry from each population (Falush
et al. 2003). Let K denote the number of populations, pkij
denote the frequency of allele i at locus j in population k.
Let P denote the multidimensional vector of allele fre-
quencies for all k, i, and j. Let sk

(x) refer to the ancestry
proportion of individual x’s genome that is derived from
population k. Let S refer to the multidimensional vector
of ancestry proportions for all subjects of the sample.
Let Y be the vector of the populations of origin of every
allele copy in each individual with yj

(x,a). Under the
admixture model,

Pr½yðx;aÞj ¼ k� ¼ sðxÞk : ð3Þ

This admixture model also assumes linkage equilibrium
and Hardy-Weinberg Equilibrium (HWE) within pop-
ulations. Based on a Bayesian approach, it requires
priors for P and S. Therefore, Pritchard et al. (2000)
assumes that the vector of allele frequencies at locus j in
population k is sampled from a Dirichlet distribution
with a single hyperparameter a. The vector of ancestry
proportions for individual x are sampled from a
Dirichlet distribution with a hyperparameter b. We may
not have the prior information of the allele frequencies P
or the populations that came from origin Y. A MCMC
approach is applied to estimate P and Y simultaneously.
The admixture model in the later version of Structure
can handle the situation that is not linkage equilibrium
(Falush et al. 2003). For obtaining individual ancestry
estimates (IAEs), we input the genotyping data from
each ancestral population specified as known popula-
tions and admixed subjects specified as an unknown
population, assumed admixture model and used default
values for other parameters by Structure with 50,000
burn-ins and 50,000 further iterations, as suggested by
the authors. We also checked that the values of key
parameters converged before the end of the burn-in
stage.

ADMIXMAP

A combination of Bayesian and classical approaches has
been implemented in the program ADMIXMAP. For k
subpopulations, the ancestry proportions are defined by
a vector K with k coordinates. The distribution of K in
the population is modeled as a Dirichlet distribution.
The stochastic variation of k states of ancestry across all
chromosomes in each gamete is modeled by k indepen-
dent Poisson arrival processes, with intensity parameters
summing to s. Priors are assigned to k parameters for
the distribution of admixture in the population, s and
the ancestry-specific allele frequencies at each of j
loci in k subpopulations (ancestry proportion vectors:
s11, ..., skj). A MCMC simulation is applied to estimate
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the posterior distribution of all unobserved variables,
conditional on observed marker data, and phenotype
values (Hoggart et al. 2003, 2004; McKeigue et al. 2000).
For obtaining IAEs, we input allelic counts of ancestry
informative markers (AIMs) calculated from each
ancestral population, genetic map distance, and geno-
typing data and phenotype of admixed subjects to
ADMIXMAP with 1,000 burn-ins and 20,000 further
iterations, as recommended by the authors. Addition-
ally, we evaluated the adequacy of burn-ins by the
postscript plots provided in ADMIXMAP.

Data sources

Simulation 1

This simulation is meant to replicate a realistic scenario
with an admixed population and a trait that varies
among the ancestral populations. The differences in the
ancestral frequencies of markers being tested for asso-
ciation in this simulation are derived from the differ-
ences observed between continental groups (e.g.
Africans vs. Europeans and Europeans vs. Asians). A
subset of the most informative markers in this simula-
tion is used to estimate ancestry among admixed indi-
viduals.

To simulate the allele frequencies in ancestral popu-
lations, we first selected 2,000 out of 46,000 random
SNPs evenly distributed on chromosome 10 in three
different populations, Africans, Caucasians, and Chinese
retrieved from the International HapMap Project. We
calculated allele frequencies distribution from these
observed 2,000 SNPs and identified 101 SNPs with
FST>0.3 between Africans and Caucasians. FST was
calculated as d2=ð�pð1� �pÞÞ; where d2 denoted variance
and �p was the mean of individual allele frequency
(Wright 1969). We then simulated two data sets with 500
and 1,000 admixed subjects, separately, and 30 subjects
from each ancestral population. We assumed admixed
individuals derived from the admixture of these three
ancestral populations. We generated 2,000 markers for
subjects from each ancestral population based on the
observed allele frequencies and assumed all markers
under the HWE. For the admixed subjects, we first
simulated their true individual ancestral proportion
(TIAP) from each ancestral population based on a uni-
form distribution. To simulate ancestral proportion, we
picked two values (s1 and s2) drawn from a uniform
distribution with an interval between zero and one. If s1
was larger than s2, TIAPs of the subject would be s2,
(s1�s2) and (1�s1) corresponding to each ancestral
population. If s1 was smaller than s2, TIAPs would be s1,
(s2�s1) and (1�s2). We then generated the marker
genotyping data for each admixed subject conditional on
the TIAPs and marker allele frequencies in each ances-
tral population. For each marker, we generated allele 1
independently of allele 2. Next, we simulated the phe-

notype data for different ancestral groups based on the
observed distribution in realistic cases, for instance,
bone density (Wagner and Heyward 2000). Simulated
phenotype data were followed by a normal distribution
with means equal to zero for ancestral population 1 and
3, and one for population 2 with the variance equal to
one for all ancestral populations. Simulated phenotype
data for admixed subjects were conditional on pheno-
type distribution in ancestral populations and the cor-
responding TIAPs.

Simulation 2

This simulation is meant to resemble a ‘‘worst case’’
scenario, in which the markers being tested for associ-
ation with the phenotype have, on an average, greater
ancestral allele frequency differences than the average
marker. We simulated the data sets with the combina-
tion of different numbers of AIMs (n=25, 50, 100 or
1,000), admixed subjects (n=200 or 500) and subjects
from each of three ancestral populations (n=15 or 30).
In this simulation scenario, instead of selecting AIMs
with FST>0.3, we generated AIMs with the range of FST

among markers between 0.01 and 0.65 (mean informa-
tiveness = 0.15). FST distribution was provided in
Supplement Fig. 1. We defined allele frequencies of
markers in three ancestral populations for four marker
sets (n=25, 50, 100, and 1,000). The simulation proce-
dures of generating data for admixed subjects and
ancestral subjects were the same as the ones in Simula-
tion 1.

Admixture populations from an asthma genetic study

One hundred and eighty-one Mexican and 179 Puerto
Rican subjects with asthma, who had participated in the
Genetics of Asthma in Latino Americans (GALA) Study
were included in this analysis (Burchard et al. 2004). The
Mexican and Puerto Rican samples were recruited
through primary care clinics in the San Francisco (SF)
Bay Area, California, and Puerto Rico (PR), respec-
tively. Subjects were enrolled only if they self-reported
that both the biological parents and all biological
grandparents were of Puerto Rican or Mexican ethnic-
ity.

We selected 44 AIMs from a panel having large allele
frequency differences, d, between Native American,
African, and European ancestral populations. Of the 44
AIMs, 23, 31, and 33 markers had d>0.3 for European
and Native American ancestry, African and European
ancestry, and African and Native American ancestry,
respectively (Supplement Table 1). Flanking sequence
and other relevant information for all the 44 AIMs can
be obtained from the dbSNP website. We genotyped
these 44 AIMs for all the Mexican and Puerto Rican
subjects.
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Data analysis

Evaluating accuracy of IAE

cWe used three programs: IAE3CI, Structure, and AD-
MIXMAP to obtain IAEs for simulated data and GALA
data. We evaluated the precision and correlation of IAEs
obtained from each of the three programs and compared
these IAEs to the TIAPs generated by simulation code.
We first computed the Pearson’s product moment corre-
lation coefficient, r, for comparing the ‘‘TIAPs’’ to IAEs
generated from each of the three programs. To assess the
accuracy of IAEs calculated from the programs, we re-
gressed ‘‘TIAPs’’ on IAEs obtained from the programs,
then recorded slopes and the corresponding standard
deviations from regression models for each of the simu-
lated sets. We also plotted the errors (TIAP–IAE) for
individuals to evaluate the bias in the three methods.

Tests for association and evaluation of the false
positive rate

For simulated sets, we performed linear regression
models to test for an association between phenotype and

markers (all markers in Simulation 1 and AIMs in
Simulation 2) under the additive genetic model
assumption (genotypes coded as 0, 1, or 2 alleles). For
the asthma study, we applied the linear regression
models to test for association between body mass index
(BMI) and AIMs with covariates: age and gender in the
models. For both simulations and the real data, we
carried out association tests with and without adjust-
ment for IAEs in the regression models, separately. We
only incorporated two out of three IAEs in regression
analyses to avoid co-linearity. IAEs included in the
models were obtained from the IAE3CI or Structure,
and the ‘‘TIAPs’’, individually. Score tests for associa-
tion with traits under the control for population strati-
fication can be obtained in ADMIXMAP. We therefore,
reported the results of score tests from ADMIXMAP for
both simulation and real data with respect to evaluating
the inflation of type I error rate. We used a P value of
less than 0.05 as the significance level and recorded
positive results from regression analyses according to
this threshold.

Data simulation and analyses were carried out using
statistical packages R 1.9.0 and STATA 8.0 S/E (College
Station, TX, USA). Data simulation R code is available
upon request from the author.

Fig. 1 Precision of individual ancestry estimates (IAEs) calculated from each of the three methods. Precision was evaluated by regressing
the ‘‘TIAPs’’ on IAEs obtained from each of the three methods in Simulation 1. Note: Y-axis represents regression coefficients (b) and
corresponding standard deviation (SD) obtained from regression models
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Results

Correlation of IAEs among different approaches

We applied three programs by using various simulation
sets. We then computed the Pearson’s product moment
correlation coefficients, r, to evaluate the correlation
between the ‘‘TIAPs’’ and the IAEs obtained from
IAE3CI, ADMIXMAP, and Structure programs. The
results are presented in Table 1 and Supplementary
Figs. 2 and 3. All methods increase their correlation
with the ‘‘TIAPs’’ at a similar rate with an increasing
number of markers (Table 1).

We generated data sets with various numbers of
individuals from three ancestral populations (n=15 and
30, separately) in Simulation 2. Increasing the number of
ancestral individuals improved IAEs substantially when
only using 25 AIMs. However, for the data sets with 50
or more AIMs, adding more ancestral subjects did not
significantly increase the accuracy of estimating IA for
any of the three methods, even though each method
incorporates ancestral allele frequencies of AIMs in a
very different manner (data not shown).

Of note, Structure provided very poor IAEs when
there were 1,000 admixed subjects and 15 ancestral
subjects with only 25 AIMs. In this simulation scenario,
the correlation coefficients, r, were 0.03, 0.04, and 0.05
between Structure and the ‘‘TIAPs’’, IAE3CI and
ADMIXMAP, respectively. However, when we
increased the number of ancestral subjects to 30, r
improved to 0.76 between Structure and the ‘‘TIAPs’’,
which was comparable to the other methods (data not
shown). Thus, Structure seems to require a minimal ratio
of ancestral to the admixed individuals to appropriately
estimate ancestral information in admixed populations.

Accuracy of IAEs from three approaches

To evaluate the accuracy of IAEs, we separately re-
gressed the ‘‘TIAPs’’ on the IAEs obtained from each of
the three approaches. When 25 AIMs were used in the
regression model, IAEs from ADMIXMAP agreed very
well with the ‘‘TIAPs’’ (regression coefficient, b=0.944,
SD=0.036), compared to the results of IAE3CI or
Structure (b=0.642, SD=0.025; and b=1.074,

SD=0.042, respectively). When 100 or more AIMs were
included in the IAE calculation, IAEs from all the three
programs were very close to the ‘‘TIAPs’’ and the vari-
ance also became smaller (IAE3CI, ADMIXMAP, and
Structure: b=0.939, 1.063, 1.097, individually;
SD=0.019, 0.02, 0.021, respectively) (Fig. 1).

In addition, we examined the distribution of differ-
ences between ‘‘TIAPs’’ and the estimates from each of
the methods. Figure 2 presents the distribution of values
for estimated ancestry subtracted from true ancestry
(‘‘TIAPs’’) for each of the three methods. In general,
ADMIXMAP and Structure tended to systematically
overestimate ancestry at the low end of the ancestry
proportions and to systematically underestimate ances-
try at the high end of ancestry proportions. Both the
Bayesian methods tended to correlate well in terms of
the distribution of deviations. In contrast, maximum
likelihood tended to have a greater error throughout the
entire distribution of ancestry, but less of a bias at the
extremes of ancestry. As expected, when more AIMs
were incorporated in admixture estimates, both methods
provided less biased estimates.

Control for population stratification

Our simulations produce a very high false positive rate
without adjustment for ancestry (Figs. 3a, b). The type I
error rate without correction is higher in Simulation 2,
since the markers being tested have higher allele fre-
quency differences between the populations. When the
sample size of admixed subjects increased the false po-
sitive rates also increased (data not shown). In both the
simulations, type I error rate was decreased with even as
few as 25 AIMs markers and further decreased by 50
AIMs markers. But to achieve a type I error rate as low
as the adjustment using the ‘‘TIAPs’’, all methods re-
quired 100 AIMs markers for both simulation scenarios
(Fig. 3a, b).

Application to the genetics of asthma in Latino
Americans (GALA) study

Contemporary Latino populations have been formed by
the admixture of three ancestral populations: Africans,
Europeans, and Native Americans. We calculated IAEs

Table 1 Correlation of IAEs between two different resources in Simulation 2

True individual
ancestral proportion

MLE ADMIXMAP Structure

(m25, m50, m100)a (m25, m50, m100) (m25, m50, m100) (m25, m50, m100)

True individual
ancestral proportion

– (0.787,0.870, 0.928) (0.799, 0.877, 0.931) (0.787, 0.874, 0.932)

MLE (0.787, 0.870, 0.928) – (0.982, 0.986, 0.991) (0.991, 0.993, 0.996)
ADMIXMAP (0.799, 0.877, 0.931) (0.982, 0.986, 0.991) – (0.985, 0.989, 0.994)
Structure (0.787, 0.874, 0.932) (0.991, 0.993, 0.996) (0.985, 0.989, 0.994) –

aIAE estimated by using 25, 50 and 100 AIMs, respectively, in 500 admixed subjects

428



of these three ancestral populations in subjects partici-
pating in the GALA Study by using IAE3CI, ADMIX-
MAP, and Structure. When we compared IAEs obtained
from each of the three programs, correlation coefficients
between IAE3CI and Structure were higher than those
observed between ADMIXMAP and IAE3CI, and be-
tween ADMIXMAP and Structure. The results were
consistent with the results obtained from the simulated
data with 50 AIMs (Supplement Fig. 4).

We then applied regression analyses to test the
association between BMI and 44 AIMs in the GALA
subjects (181 Mexican Americans and 179 Puerto Ri-
cans). We found that 10 out of 44 AIMs were signifi-
cantly associated with BMI (P £ 0.05) after adjustment
for age and gender. After adjusting the IAEs obtained
from each of the three programs, only four AIMs re-
mained significantly associated with BMI (Table 2).
Furthermore, when we stratified our GALA subjects to
two groups: Mexican Americans and Puerto Ricans,

there were only four AIMs significantly associated with
BMI in the Mexican Americans and one AIM in the
Puerto Ricans (Table 3). In addition to stratifying our
GALA subjects into two groups based on national ori-
gin, we carried out separate models in which we entered
both ancestry and nationality by using all the subjects
(data not shown). In these models nationality remained
a significant predictor, but ancestry did not.

Discussion

In this study, we applied simulations to evaluate the
performance of the ‘‘structured association’’ approach
in admixed populations. We tested three methods: MLE,
ADMIXMAP, and Structure using simulated data with
various numbers of AIMs markers, ancestral subjects,
and admixed subjects. We also tested these approaches
using real data from the GALA Study. These methods

Fig. 2 The distribution of difference between TIAPs and estimates from each of the three methods when 25, 50 and 100 AIMs were used
separately to calculate IAEs in Simulation 2. Note: Rate of positive results was calculated from testing association between phenotype and
2,000 markers
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extract the ancestry information from the genotype data of ancestral populations in a different manner. The MLE

Fig. 3 a Rates of positive
results in regression models,
before and after adjusting IAEs
from each of the three methods
when 25, 50 and 100 AIMs were
used separately to calculate
IAEs in Simulation 1 for 500
individuals. b Rates of positive
results in regression models,
before and after adjusting IAEs
from each of the three methods
when 25, 50 100 and 200 AIMs
were used separately to
calculate IAEs in Simulation 2
for 500 individuals. Note: Rate
of positive results was
calculated from testing
association between phenotype
and 2,000 markers in (a) and
between phenotype and 1,000
markers in (b)

Table 2 Associations between AIMs and BMI in Mexicans (n=181) and Puerto Ricans (n=179) combined

Marker Unadjusted for IAEs Adjusted for IAEs by
MLE

Adjusted for IAEs by
ADMIXMAP

Adjusted for IAEs by
Structure

ta Pb,c t P Score P t P

mid93 3.1 0.002 2.27 0.024 252.8 0.028 2.22 0.027
rs223830 �3.07 0.002 �2.54 0.012 �255.7 0.016 �2.54 0.011
wi11153 �2.96 0.003 �2.61 0.009 �289.9 0.014 �2.59 0.01
Ckmm �2.64 0.009 �1.99 0.048 �213.1 0.051 �2.01 0.045
wi11909 2.61 0.009 1.30 0.196 157 0.16 1.35 0.178
rs6003 2.46 0.014 1.71 0.088 166.6 0.059 1.77 0.078
rs584059 �2.41 0.017 �1.80 0.072 �186.8 0.067 �1.86 0.063
wi9231 2.22 0.027 1.15 0.249 132.2 0.2 1.19 0.234
rs326946 2.15 0.032 1.48 0.139 127.7 0.11 1.51 0.131
Tyr192 2.14 0.033 1.54 0.124 153.4 0.12 1.51 0.131

at = score from Student’s t test
bP value for each association test, P values less than 0.05 are underlined
c Analyses were carried out by regression analyses
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approach calculates IAEs using allele frequencies of
markers from the ancestral populations. ADMIXMAP
and Structure both calculate IAEs through the Bayesian
framework by inputting genotyping data from the
ancestral populations as a prior information and then
estimates a posterior distribution of ancestry informa-
tion through the MCMC simulation.

The three main factors affecting the accuracy of IAEs
are the number of markers, the informativeness of
markers, and the number of ancestral subjects. Our re-
sults demonstrated that increasing the number of AIMs
improved the precision of IAEs in each of these three
programs. As the number of markers increased, all three
methods improved at a very similar rate. The concor-
dance between all three programs was high regardless of
the number of markers. We noted that a high level of
agreement between the methods did not imply a high
level of accuracy in measuring IAEs. The programs may
have a very high level of agreement (r>0.95) despite a
low level of agreement with the ‘‘TIAPs’’ (r<0.8) when
using very few AIMs markers on IAEs. Since the
methods are relatively similar, the similarity in the errors
is expected. However, our results demonstrate that the
distribution of errors is different among the different
methods with a more pronounced bias at the extremes of
ancestry with the Bayesian methods and a greater error
at the middle ranges of ancestry with the MLE ap-
proach. As more markers are added and the error for all
methods decreases, these differences become less pro-
nounced.

Our results supported the conclusion from the pre-
vious study that these three methods required the prior
information from ancestral populations to obtain accu-
rate IAEs (Tang et al. 2005). Moreover, they were gen-
erally robust to the number of ancestral subjects, which
influenced the accuracy of IAEs only when a limited
number of AIMs were used, for instance, 25 AIMs.
Structure gave poor IAEs when there were more than
1,000 admixed individuals and only 15 ancestral sub-
jects. As the number of ancestral subjects increased to
30, Structure performed as well as the other two pro-
grams in terms of IAEs. In addition, we observed mild
differences of IAEs obtained from ADMIXMAP and
Structure, respectively. Although the same statistical

model is implemented in both ADMIXMAP and
Structure programs to model admixed populations, the
observed differences are likely due to the prior infor-
mation from ancestral populations which is treated dif-
ferently in the programs.

Improving the accuracy of IAEs is important for
properly controlling spurious associations in genetic
studies. Although IAEs from 50 AIMs did not com-
pletely control the inflation of false positive rate, certain
level of false positive signals were removed from the
association tests. In our simulations, all three programs
were able to appropriately correct excess false positive
results when using 100 or more AIMs in IAEs. Of
interest, with even more informative markers, fewer
markers were needed to decrease the type I error rate.
For example, when we simulated 25 AIMs with FST

higher than 0.5, the number of AIMs required for con-
trolling the excess of false positives was less than 50
(data not shown). Additionally, previous work has re-
ported when a sample size of admixed subjects increases,
more markers are required to adequately control
for excess of type I error rate using genomic control
(Marchini et al. 2004). Our results demonstrate that the
structured association methods require more markers as
well.

Our findings demonstrated that the type I error rate
was inflated when testing for associations between BMI
and AIMs in Latino subjects participating in the GALA
Study. False positive associations were corrected after
adjusting IAEs. These three approaches provided very
similar results for controlling the excess of false positive
rates. However, we still observed a slight excess of type I
error rate even after correcting for ancestry. Since we
only genotyped 44 AIMs, the IAEs for GALA subjects
might not be accurate enough for efficiently controlling
the excess of false positive rates. It is consistent with our
simulation results that 100 AIMs are required for esti-
mating precise individual ancestry and moreover con-
trolling for the type I error rate.

After we stratified the study subjects to two different
ethnic groups, the results of association tests did not
significantly change with and without IAEs adjustment.
It was possible that these four AIMs in the Mexican
Americans and one in Puerto Ricans were physically

Table 3 Associations between AIMs and BMI in Mexicans and Puerto Ricans, separately

Marker Unadjusted for IAEs Adjusted for IAEs
by MLE

Adjusted for IAEs by
ADMIXMAP

Adjusted for IAEs
by Structure

t P t P Score P t P

Mexicans
mid93 2.27 0.025 2.37 0.019 204.4 0.021 2.36 0.02
Sgc30055 2.72 0.007 2.70 0.008 238.4 0.0084 2.7 0.008
Ckmm �2.27 0.024 �2.31 0.022 �184.6 0.025 �2.29 0.024
Tyr192 1.98 0.049 2.04 0.043 128.5 0.056 2.04 0.042

Puerto Ricans
rs223830 �2.31 0.022 �2.16 0.033 �144.9 0.028 �2.16 0.032
Wi11153 �2.10 0.037 �1.12 .265 �141.2 0.069 �1.89 0.06
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closed to obesity-related loci (Table 3). However, we
examined the location of these five AIMs with the
obesity susceptibility loci reported in the human obesity
gene map (Snyder et al. 2004). None of them locates
closely to the reported obesity candidate genes. There-
fore, these positive results were more likely to be an
excess of type I error due to chance.

We found that nationality was significantly associ-
ated with BMI and seemed to be a stronger predictor of
BMI than ancestry, although both eliminated type I
error to the same degree. The results of the stratified
models suggested that nationality was more proximate
to the source of confounding in GALA subjects. In other
words, an excess of false positive in our association tests
appeared due to nationality rather than ancestry, with
the Mexican Americans having a higher BMI compared
with the Puerto Ricans. It was possible that environ-
mental factors such as lifestyle and/or diet in the Mex-
ican Americans were different than the lifestyle and/or
diet in Puerto Ricans. Although ancestry did not appear
to be the most closely correlated factor with BMI, IAEs
still effectively controlled the excess false positive rates.
By controlling for Native American ancestry, we could
eliminate that excess of false positives even if it was not
due to any genetic differences between the Native
Americans and other populations. This is due to the fact
that in order to increase the type I error rate for genetic
markers, a particular environmental factor must be
associated with ancestry. This example helps to illustrate
an important aspect of measuring and adjusting for
ancestry: by measuring ancestry, investigators may also
eliminate excess false positives whether they are due to
genetic or non-genetic confounders.

Previous work has demonstrated the value of using
more informative markers (Rosenberg et al. 2003). In
the present work, we only simulated single nucleotide
polymorphisms (SNPs) for evaluating these three
methods. Although the average microsatellite markers
are more informative than the average SNPs, the relative
abundance of SNPs means that SNPs can be highly
selective and we can use the most informative SNPs for
ancestry measures (Pritchard and Rosenberg 1999).

We modeled a population with a uniform distribution
of ancestry. Although we did this with the explicit pur-
pose of testing each method over the largest possible
range of individual ancestry, in real populations the
distribution of individual ancestry are more likely to be
skewed. In addition, we simulated phenotype data under
a normal distribution with means equal to zero or one
for different ancestral populations. For the traits with
only a subtle difference across different populations, the
type I error rate is likely to be lower and thus, the effect
of adjustment for stratification less dramatic. Our sim-
ulations are based on subjects admixed from distinct
ancestral populations for which a large number of
markers with large allele frequency differences can be
used (i.e., East Asians vs. Caucasians). The number of
markers required to distinguish ancestry among more
closely related groups (i.e., Japanese vs. Chinese) is likely

to be much higher. More work is needed to investigate
how these methods perform for populations with subtle
substructures.

Our simulations only examined methods that explic-
itly seek to model individual ancestry in admixed pop-
ulations. We did not include the approach of adjustment
using a latent variable approach (Satten et al. 2001) since
this does not allow individual ancestry to vary over a
range. Other methods we did not evaluate were the
genomic control method (Devlin et al. 2001) and prin-
ciple component approach (Zhu et al. 2002), which may
also be promising approaches for adjusting population
stratification but also do not explicitly model individual
ancestry.

African American and Latino populations are highly
admixed and susceptible to genetic confounding from
population stratification. Many clinical and genetic risk
factors vary between the racial and ethnic groups (Bur-
chard et al. 2003). African American and Latino popu-
lations are underrepresented in biomedical research
(King 2002). Association study designs with a proper
measurement and adjustment for population stratifica-
tion are plausible approaches for determining suscepti-
bility genes of complex traits in these two ethnic groups.
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dbSNP website, http://www.ncbi.nlm.nih.gov/SNP/
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epi/software.html
Structure program website, http://pritch.bsd.uchica-
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