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We classified performance-related mental states from EEG-derived measurements. We investi-
gated the usefulness of massively distributed source reconstruction, comparing scalp and cortical
scales. This approach provides a more detailed picture of the functional brain networks underly-
ing the changes related to the mental state of interest. Local and distant synchrony measurements
(coherence, phase locking value) were used for both scalp measurements and cortical current
density sources, and were fed into a SVM-based classifier. We designed two simulations where
classification scores increased when our 60-electrode scalp measurements were reconstructed on
60 sources and on a 500-source cortex. Source reconstruction appeared to be most useful in these
simulations, in particular, when distant synchronies were involved and local synchronies did not
prevail. Despite the simplicity of the model used, certain flaws in accuracy were observed in the
localization of informative activities, due to the relationship between amplitude and phase for
mixed signals. Our results with real EEG data suggested that the phenomenon of interest was
characterized merely by modulations in local amplitudes, but also in strength of distant cou-
plings. After source reconstruction, classification rates also increased for real EEG data when
seeking distant phase-related couplings. When reconstructing a large number of sources, the
regularization coefficient should be carefully selected on a subject-by-subject basis. We showed
that training classifiers using such high-dimension data is useful for localizing discriminating
patterns of activity.
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1. Introduction

Most studies of neuronal activity in humans
are based on either functional magnetic reso-
nance imaging (fMRI) or electro- or magneto-
electroencephalography (E/MEG). fMRI has a high
spatial resolution and can therefore be used to
study complex brain networks [Eguiluz et al., 2005;
Achard et al., 2006]. However, the low tempo-
ral resolution limits the study of the dynamics.
E/MEG displays the opposite trade-off: high tem-
poral resolution but low spatial resolution. Never-
theless, many attempts have been made to reveal
the structure of a functional network from E/MEG
data, and interesting dynamic links between scalp
sensors have been identified. Moreover, distributed
brain source reconstruction can be used to increase
the spatial resolution of E/MEG. Source recon-
struction has been reviewed in [Baillet, 2007]. It
makes use of a large number of current dipoles (or
sources) located, for example, in grey matter in
the brain, with the assistance of anatomical mag-
netic resonance image (MRI). In most currently
used models, only the surface of the cortex is con-
sidered of interest because it is difficult to recon-
struct deep sources correctly. Some studies have
combined E/MEG source reconstruction and analy-
ses of a functional brain network as a set of distant-
site dynamic links [ten Caat et al., 2008; Astolfi
et al., 2007; De Vico Fallani et al., 2007]. These links
are considered to be functional couplings, because
they are quantitatively scored from observed or
estimated activities. Many measurements can be
used to quantify the synchrony between two
signals.

This study aims to classify mental states from
cerebral electrical activities quantified in differ-
ent ways. Classification of mental states implies
the definition of at least two classes, for example,
two sets of time windows each related to a single
mental state, and to find differences in the signal
between classes. The idea is to process the signal
a given way, and to assess the amount of thus-
extracted information that would enable to dis-
criminate between two or more mental states. In
this paper, we investigate the discriminating power
of two coupling measures — standard coherence
and phase locking value (further details provided
below) — for quantifying dynamic links between
sources reconstructed on the cerebral cortex from
EEG data. The data is such that 60 electrode sig-
nals gave rise to about 500 reconstructed source

signals. The notion of “dynamic brain network” is
therefore much closer to that in fMRI. We com-
pared different levels of resolution (measured scalp
potentials versus estimated cortex current densi-
ties) and distant synchrony measurements plus a
conventional local synchrony measurement: mean
amplitude (mean amplitude versus coherence ver-
sus phase locking value). We also considered mean
amplitude, although this measurement estimates
only local synchrony, because energy-like features
have proved highly useful in many studies when
calculated for frequency bands specific to E/MEG.
This work is also applied in nature, borrowing tools
and methods from the Brain Computer Interface
(BCI) community (see [Wolpaw et al., 2002] for
an introduction). Here, spatial scales and func-
tional features are assessed in terms of their abil-
ity to discriminate between two predefined mental
states, using a classification/validation framework.
Discrimination between selected mental states is a
clear statistical paradigm with immediate applica-
tions. When mental states are known to have strong
correlates in a specific region, the localization power
of inverse methods alone may be sufficient to detect
the occurrence of the mental state concerned, as
shown by Qin et al. [2004], Congedo et al. [2006]
and Kamousi et al. [2007] for motor imaging. How-
ever, less may be known about activity patterns
underlying the mental state of interest, and it may
therefore be necessary to extract several features
from brain electrical activity and to feed these fea-
tures into a multivariate statistical tool. The use of
classification algorithms, such as the support vector
machine (SVM, see [Burges, 1998] for an introduc-
tion) seems to be useful in situations in which the
aim is to assess the amount of discriminating infor-
mation encoded in several variables, such as energy-
like features quantified in several frequency bands
and at several spatial locations [Lotte et al., 2007;
Noirhomme et al., 2008].

None of the BCI studies cited above made use
of distant synchrony features. However, the obser-
vation of such features may be the best way to
observe some phenomena common to many high-
level cognitive states and consisting of synchronized
oscillatory patterns simultaneously in several corti-
cal regions. These phenomena result from the for-
mation of “resonant neuronal assemblies” [Varela,
1995], which occurs during tasks involving memory,
perception, attention or consciousness [Rodriguez
et al., 1999; Varela et al., 2001]. This provides one



July 6, 2010 14:55 WSPC/S0218-1274 02677

Synchrony Measurements, Brain Networks, Classification 1705

of the main justifications for high-complexity func-
tional network methods. Such methods are suitable
for BCI applications despite increasing computa-
tional costs.

In this study, virtual mental states were used
to study, through simulations, the usefulness of
source reconstruction and distant synchrony fea-
tures for discrimination and localization purposes.
Results for real data are presented, discriminating
between two performance levels during a Simon task
involving 12 subjects. This study was based on a
previous investigation [Besserve et al., 2008]. Two
levels (low versus high mean reaction times) of per-
formance in a spatial compatibility task (or Simon
task) were to be discriminated from data from 60
EEG electrodes. Mean amplitude and phase locking
value were determined for three frequency bands
(theta: 3–7 Hz, alpha: 7–13 Hz, beta: 13–18 Hz).
Mean amplitudes were determined for each elec-
trode and phase locking values were determined for
each electrode pair. Two classification/validation
frameworks were compared.

2. Material and Methods

2.1. Processing chain

Figure 1 illustrates the main steps in the pro-
cessing chain involved in the study for source
reconstruction. Scalp measurements were comple-
mented with anatomical information obtained from
MRI segmentation items. In particular, as explained
in more detail in the Source reconstruction sec-
tion, a surface was extracted for the casting of
a given number of dipoles corresponding to our
sources. EEG electrode locations are also required
for source reconstruction. Once activities were
reconstructed, the signal was segmented, applying
a 20 s sliding time window. A constant number of
features were estimated from the signal in each time
window (these features are described in the EEG
quantification section). Each window is assigned
to one of two classes, as described below, resulting
in data for two sets of time windows in the form of
two clouds of points in a multidimensional space
(one dimension per feature). The classification/
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Fig. 1. Illustration of the processing steps involved in the study. Each subject was processed independently, using both T1
MRI and EEG recordings. MRI were segmented with Brainvisa software, to extract a cortical surface onto which sources were
located, the inner skull surface and electrode locations. Forward and inverse operators were calculated with the BrainStorm
MatLab toolbox. The projection of scalp measurements through the inverse matrix yielded estimates of current density time
course. Reconstructed signals were then quantified. The resulting features were fed to a classification/validation process,
which eventually yielded class estimates for the corresponding time windows. Features can be calculated directly from scalp
measurements, as illustrated by the dashed line. Classification results with and without source reconstruction are compared.
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validation step aims to identify the optimal sur-
face separating these two sets of time windows (or
points) and to assess the ability of this surface to
predict a class of new (closely related but different)
time windows. The procedure is explained in more
detail in Classification, validation and statis-
tics section.

The complete procedure was applied to gener-
ate classification scores in different situations. These
situations were then compared by means of the
classification scores obtained. We investigated three
sets of conditions. The first concerned the type
of data (one of the two simulations or real data).
The second concerned the level at which activi-
ties were determined (scalp measurements, recon-
structed sources with variable resolution) and the
third concerned the feature used to quantify activi-
ties (mean amplitude, coherence and phase locking
value, defined later).

2.2. EEG quantification

EEG quantification was carried out for both simu-
lation data and real data. The EEG was acquired
from or simulated for 60 EEG electrodes. Data was
segmented into 20 s time windows. Each window
was assigned to a class 1 or 2, the construction and
significance of these classes being explained below.

Within a window, analytic signals were esti-
mated for one or several frequency bands:

z[f1,f2](k, t) = a[f1,f2](k, t) · ejφ[f1,f2](k,t)

for all sensors k, times t and frequency bands
[f1, f2].

The frequency bands explored for real data
were 3–7 Hz (theta), 7–13 Hz (alpha) and 13–18 Hz
(beta), as described by Besserve et al. [2008]. For
simulations, only the 7–13 Hz frequency band was
used, to keep the model simple.

The analytic signal was used to sift amplitude
(a) and phase (φ) information. Mean amplitude
depends on the analytic signal, so does phase lock-
ing value (PLV, [Lachaux et al., 1999]):

PLV[f1,f2](k, l, n)

=

∣∣∣∣∣∣
1
Tn

tn,0+Tn∑
t=tn,0

ej(φ[f1,f2](k,t)−φ[f1,f2](l,t))

∣∣∣∣∣∣
for all different sensors k and l, windows n, and fre-
quency bands [f1, f2], with tn,0 denoting the begin-
ning time of the window and Tn its duration.

Standard coherence is also estimated, using fast
Fourier transformations (FFTs) of 19 2 s Hanning
subwindows with a 1 s overlap:

Coh[f1,f2](k, l, n) =
19∑

m=1

|Sn,m
[f1,f2]

(k, l)|
Sn,m

[f1,f2]
(k, k) · Sn,m

[f1,f2]
(l, l)

for all different sensors k and l, windows n, and fre-
quency bands [f1, f2], with Sn,m

[f1,f2]
(k, l) denoting the

cross-spectrum between sensors k and l, calculated
on subwindow m of time window n.

2.3. Source reconstruction

T1 MRIs were segmented with Brainvisa software
(http://brainvisa.info), to obtain the white mat-
ter/cortical gray matter surface and the interior
surface of the skull as triangle meshes. A first
processing step aims at computing the contribu-
tion to the scalp electric signal of activities from
small cortical areas represented as dipoles. This step
corresponds to the “forward problem”. The loca-
tion of dipoles were constrained to be the vertices
of the cortical mesh, with directions expressed as
the mean normal vectors of adjacent faces of the
mesh, oriented toward the scalp and normalized.
The number of dipoles was typically about 10 000.
The contribution of the dipoles was modeled as
a spatial transformation matrix A, with as many
rows as electrodes and as many columns as sources.
The method used here was known as the overlap-
ping spheres method [Huang et al., 1999] and was
implemented in the BrainStorm MatLab toolbox
(http://neuroimage.usc.edu/brainstorm).

A second step, or the “inverse problem”, is
the reconstruction of source signals from scalp sig-
nals and the forward matrix. We used the simplest
available method, involved in the regularized pseu-
doinversion of the forward matrix and known as
the minimum-norm inverse solution [Hämäläinen &
Sarvas, 1989]:

G = At(AAt + αI)−1

with A the forward matrix, α the regularization
coefficient, generally equal to (λ=) 10% of the max-
imal singular value of A, and I the identity matrix
in the electrode space (or measurement space).

The αI matrix may be interpreted as an estimate
of measurement noise [Dale & Sereno, 1993]. We can
therefore consider α as both a smoothing parameter
and a threshold for the signal-to-noise ratio.

The final transformation was thus a time-
independent spatial filter that projected the original
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60 signals into a space of about 10 000 current den-
sity estimates. We could have estimated the source
signal and computed the same measurements as con-
sidered for the scalp (mean amplitude, coherence and
PLV in the frequency bands of interest). However,
twoproblemsaroseat this step.First, therewere com-
putational limitations due to the combinatorial bur-
den of coupling features such as PLV and coherence.
Second, a number of sources higher than the num-
ber of electrodes would have made the number of fea-
tures different between scalp and source levels; the
“source” classifier would have had more input fea-
tures and consequently, would have been more prone
to overfit than its “scalp” counterpart. For these
reasons, we compared classification scores using 60
sources only, i.e. as many sources as electrodes. For
localization purposes, we drew statistical maps with
sources reconstructed on a number of cortical dipoles
reduced down to 500, leading to 1 24 750 pairs; this
latter number must be multiplied by the number of
frequency bands when estimating the total number of
features yielded by each coupling measure.

The 60 dipoles used for classification purposes
were selected the following way: for each electrode
i, a subset Si of 10 nearest neighbor dipoles were
selected; then the winning dipole j∗ was j∗ =
arg maxj∈Si

(Aj,i/(
∑

k Aj,k)), which can be thought
as the most correlated source with the electrode sig-
nal; in the end, the final inverse matrix was the
square matrix GJ,., where J was the subset of all
the selected dipoles. This inverse matrix was thus a
kind of anatomy-aware Laplacian operator.

The 500 dipoles used for localization purposes
were obtained by a two-step procedure. First, we
spatially decimated the original 10 000-vertex mesh
down to a 500-vertex mesh, using MathWorks’ func-
tion “reducepatch”. Then, for each new vertex, we
selected the nearest one in the original mesh. As
the reconstruction of a higher number of sources
than that of electrodes may critically depend on
the regularization coefficient of the minimum-norm
inverse solution, we screened the following values of
the λ parameter: 1%, 5%, 10%, 15% and 20%. This
screening is not intended to be comprehensive.

2.4. Classification, validation and
statistics

Features computed from segmented time windows
were fed into a ten-fold cross-validation process. For
real data, the cross-validation process was repeated
ten times with different initializations of the random

partitioning of labeled windows. This latter pro-
cedure was intended to reduce the inter-subject
variability. The cross-validation process consisted of
an iterative scheme in which two sets of time win-
dows were defined. The first set, the learning set,
allowed the algorithms to fit the classifier to the
data, and the second set, the validation set, was
used to assess the accuracy of the learnt classifier,
comparing its output with the expected class labels.

Each subject or simulated data set was pro-
cessed independently, yielding 100 classification
estimates consisting of the ratio of correctly classi-
fied validation windows to the total number of val-
idation windows.

The classification algorithm used was a binary
linear support vector machine (SVM, see [Schöl-
kopf & Smola, 2002] implemented in the simpleSVM
MatLab toolbox (http://gaelle.loosli.fr/research/
tools/simplesvm.html, [Vishwanathan et al., 2003]).
Support vector machines are a state-of-the-art
classification tool. Only one hyperparameter, a reg-
ularization coefficient c, needed to be set. This coef-
ficient can be set to infinity if the number of features
in each time window exceeds the number of time
windows provided that no feature is linearly depen-
dent on any other feature. This situation appears
to apply in all cases other than for the use of mean
amplitudes with simulation data (due to the use of
a single frequency band in this case). If there were
too few features, we arbitrarily set c to 1.

Windows from the learning set overlapping win-
dows from the validation set were discarded, during
each learning step in the cross-validation iteration.
This dramatically decreased the classification rate,
but yielded more realistic estimates.

Classification scores for all subjects or simu-
lated data sets were then digested using classical
univariate statistical tests. A result was considered
significant if the false positive rate of the test was
no greater than 0.05.

In addition to higher classification scores, local-
ization of key activities was one of our main
concerns. We used the linear SVMs to build sta-
tistical maps. Indeed, a trained linear SVM is actu-
ally a separating plane in the feature space — a set
of equal numbers of weights and variables. Thus,
weights computed from mean amplitude, for exam-
ple, can be mapped onto a scalp map or a cor-
tical map, depending on the chosen level. These
weights are calculated in a multivariate process and
the result may therefore differ from a T-score map.
The T-score we refer to was the Student’s T-test
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value, calculated for each feature, between win-
dows from class 1 and windows from class 2, and
then standardized based on the mean and standard
deviation of T-test values from 100 permutations of
windows (or class labels).

Tscore,i =
Ti − Tsurrogate,i

σ(Tsurrogate,i)
with

Ti =
Xi,1 − Xi,2√

(n1 − 1) · σ2(Xi,1) + (n2 − 1) · σ2(Xi,2)
n1 + n2 − 2

Average SVM weights were calculated using the fol-
lowing procedure. First, for each trained SVM, the
set of weights (or orthogonal vector of the separat-
ing hyperplane) was normalized by dividing each
weight by the norm of the vector. Then, these nor-
mal vectors were weighted-averaged across cross-
validation iterations and cross-validation restarts,
with corresponding classification rates as weight-
ings; as each trained SVM was associated to a classi-
fication rate calculated using some validation data,
multiplying the weights of the corresponding vector
by this classification rate (divided by the sum of
all the classification rates) yielded average weights
taking into account generalizability of the trained
SVM. Finally, vectors were averaged across subjects
or simulation datasets.

We calculated the classification scores using
features calculated from scalp measurements, and
features calculated from reconstructed sources. As
mentioned in the Source reconstruction subsec-
tion, different numbers of features could be responsi-
ble for a significant difference in the ability to overfit,
between the trained classifiers, in particular between
a “scalp” classifier based on features calculated from
60 signals and a“source” classifier usingmore than 60
sources. Therefore, only the displayed classification
scores for signals reconstructed on 60 dipoles were
suitable for statistical comparison with scalp mea-
surements (using the 60 electrode signals).Classifica-
tion scores were also provided for classifiers trained
on signals reconstructed on 500 dipoles, to illustrate
the impact of the regularization coefficient of the
minimum-norm inverse solution, and to better local-
ize discriminating patterns of activity.

Coupling measurements were to be folded so
that we could derive maps and project them onto
a representation of the scalp or cortical surface.
To this aim, we designed the following procedure
that applies both to T-scores and SVM weights: we
ranked the set of values (one value per coupling);

then for each source (or source/frequency band pair,
or electrode, etc.), we calculated the average rank
of all the couplings involving this source.

We hypothesized that multivariate maps could
have some advantages over the corresponding uni-
variate maps. In particular, using the 500 recon-
structed sources, we compared how variable could
be multivariate and univariate maps with respect
to the regularization coefficient of the minimum-
norm inverse solution. For coupling measurements,
we implemented this comparison using the following
procedure: we calculated one average map per value
of the regularization coefficient and per type of
maps (univariate/multivariate); then we calculated
the standard deviation of each weight or source
across all of the investigated values of the regu-
larization coefficient; finally, we tested whether the
distribution of “multivariate” standard deviations
lay above the distribution of “univariate” standard
deviations, using a one-sided Wilcoxon matched-
pairs test. For mean amplitude, the maps to be
compared were raw T-scores or SVM weights maps,
therefore, we adapted the previous procedure divid-
ing each map by its maximum. We performed this
procedure on simulation data only.

2.5. Simulations

The MRI and electrode locations were obtained from
one individual randomly chosen from those taking
part in the real experiment. This anatomical data
was used to construct simulation data which was pro-
cessed in a similar way to real data. A 10 014-vertex
mesh model (see Fig. 2) of the white matter/cortical
gray matter interface was used to generate data,
whereas a 504-vertex mesh of the same interface was
used to reconstruct source activities from scalp sig-
nals. A high resolution mesh as the original model
was expected to prevent “inverse crime” [Kaipio &
Somersalo, 2005]. An inverse crime occurs every time
someparameters (e.g. the source spatial distribution)
are assumed to be perfectly known, which is never the
case in reality, resulting in a bias in the study.

Two seeds on the cortical surface were selected
and an area of active dipoles was defined around
each selected seed. Two signals were generated and
assigned to the dipoles of each area, such that the
signal amplitude was maximal at the central source
and decreased, following a Gaussian curve, along
the paths of each area mesh.

The two signals were generated as random
Gaussian processes (Mersenne Twister algorithm)
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Patch 1

Patch 2 Step 1 

Step 2 

Fig. 2. Simulation model with two patches of activity
related to two virtual mental states. Simulated cortical data
are projected onto the scalp (step 1) and common processing
methods are then used on either scalp data or source data
after reconstruction (step 2). Grey areas on cortical maps
display no activity and correspond simply to gyri and sulci.

and filtered through a band-pass filter centered
around f = 10 Hz with transfer function:

H(z) =
1 − z−1

1 − 2r cos
(

2πf

Fs

)
z−1 + r2z−2

with r = 0.95, and Fs the sampling frequency.

For every second, the two signals had a feature
in common. The duration of this pattern depended
on the class of the corresponding window: 100 ms
for class 1 (10% of total time) and 500 ms for class
2 (50% of total time). Thus, the differences between
the two classes were only quantitative, and the clas-
sification task was difficult, so that the mean clas-
sification score never reached the maximal value of
100% correct classifications.

We designed two simulation experiments as
illustrated in Fig. 3. In simulation 1 (or
amplitude-modulation condition), the amplitude of
the two signals increased by 20% for 100 ms in
every second in class 1 and 500 ms in every sec-
ond in class 2. Simulation 2 (or synchronization-
modulation condition) corresponded to a situation
in which the two signals were completely synchro-
nized at the beginning of each second, for 100 ms in
class 1 and 500 ms in class 2.

We expected mean amplitude to yield higher
classification rates for validation data correspond-
ing to simulation 1, and coupling measurements
to perform better in simulation 2.

Gaussian random noise was then added to each
source, such that all sources had similar energy
levels in the 7–13 Hz band during each window.
This noise was intended to simulate background

Patch 1

Patch 2

Class 1 Class 2 

1s

Simulation 2

Patch 1

Patch 2

Class 1 Class 2 

1s

Simulation 1

Fig. 3. Example of noise-free original signals for each patch. There is a feature common to both signals (top: simulation
1, concomitant increase in amplitude but no phase synchronization; bottom: simulation 2, complete synchronization) from
the beginning of each second for a duration depending on the class of the 20 s time window. Left: example of original signals
for the first class (100 ms common feature — 10% of time — in blue); right: example of original signals for the second class
(500 ms common feature — 50% of time — in blue).
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cortical activity not related to the mental state of
interest.

The generated sources were projected onto the
scalp and filtered in the 7–13 Hz frequency band,
as this band was the only one used for the analysis
of simulated data. By contrast to the procedure for
real data, no average referencing was carried out at
this step, as such referencing might have spread a
mixture of the two informative signals everywhere.

We generated 20 data sets in this way for each
simulation, to ensure that our statistical estimates
were robust.

Statistical maps and classification rates were
thus calculated as mean estimates over the 20 simu-
lation data sets. Classification results were obtained
with the two original noise-free signals only, with
scalp data, with reconstructed data on the selected
60 sources with regularization coefficients of 10%,
and with reconstructed data on the selected 500
sources with regularization coefficients of 1%, 5%,
10%, 15% and 20%.

In simulation 1, we expected mean amplitude
to discriminate successfully between the windows
of the two classes whereas coupling measurements
were expected to be inefficient. Simulation 2
should lead to the opposite situation between mean
amplitude and coupling measurements.

2.6. Real data

Most of the experimental setting has been described
elsewhere [Besserve et al., 2008]. The experiment
consisted of a spatial compatibility task. Subjects
were asked to indicate as correctly and rapidly as
possible the direction (to the left or to the right —
relevant feature) of a displayed arrow. That arrow
was located either on the left or the right of the
screen (irrelevant feature), inducing a Simon effect.
We investigated the decrement of performance.

Data was processed in an asynchronous way,
segmenting the signal into sliding 20 s time windows
(10 s overlap). The performance of the subject was
quantified as a scalar index across windows, cor-
responding to the mean normalized reaction time
over trials for each window. Normalization was also
refined, with correction for the effect of stimulus
congruency, expected answer, and previous trials
(2 × 2 × 2 conditions). We independently labeled
high-performance (first quartile of the performance
index) and low-performance windows (last quartile
of the performance index) for each subject. The
remaining windows were ignored. High-performance

windows accounted for our first class, and low-
performance windows formed the second class.

The experiment consisted of four 10-min runs,
with the first run discarded to eliminate learn-
ing effects. EEG recording was performed with a
BrainAmps system, with 60 EEG, and 1 vertical
EOG channel.

T1 MRI (61 slices of 256 × 256 pixels) were
acquired for all subjects immediately after the EEG
recording session, so that electrode locations could
be determined from the patches of gel, visible as
white parcels in the MRI.

The preprocessing of real data involved correc-
tion for ocular movements by a PCA-based method
[Wallstrom et al., 2004] and rejection of segments
contaminated by muscle activity. Those steps were
more refined than in the previous study.

Signals from the 60 EEG electrodes were ref-
erenced with respect to a common average refer-
ence calculated from the signals from all but most
peripheral electrodes (the outer crown, omitting
occipital electrodes, such as Fp1, F7, T7, etc.), in
order to prevent contamination of the signal by
muscle activity. Indeed, muscle activity is known
to increase with time-on-task and mental effort,
and we aimed to study only the cognitive pat-
tern of performance decrement and mental fatigue.
Moreover, source models for the forward problem
do not take into account extracranial electrical
activities.

Source reconstruction was carried out by calcu-
lating forward and inverse operators from individual
MRIs.

Mean amplitude, coherence and phase locking
value were calculated for three frequency bands
(theta: 3–7 Hz, alpha: 7–13 Hz, beta: 13–18 Hz)
from both scalp measurements and reconstructed
source signals, in order to compare the amount of
discriminating information available at these two
levels.

3. Results for Simulations

3.1. Mean amplitude

In simulation 1 (amplitude-modulation condi-
tion), mean amplitudes, from the 500-source signals
in the correct frequency band, helped to localize the
two patches of activity, with a source topography
that appeared to be easier to interpret than that
obtained for the scalp (Fig. 4).

The experimental setting illustrated in Fig. 4
led to more than 75% correct classifications, when
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Fig. 4. Simulation 1 — Classification scores (bottom row, in % correct classification with corresponding standard deviation
in parentheses, chance level: 50%) and topographies (top: T-scores, bottom: SVM weights) for discrimination of amplitude
modulations based on mean amplitudes at different levels, (from left to right): original signal pair, scalp, reconstructed sources
with the regularization coefficient λ set to 1%, 5%, 10%, 15% and 20%, respectively.

classifying features that were calculated based on
the two initial source signals without noise. This
rate of correct classifications can be used as a sort
of reference classification rate.

At the scalp level, original patches were iden-
tifiable, but the classification rate barely exceeded
64%. Classification rates were higher at the cortical
level using 60 sources than at the scalp level, but
this difference was actually not significant. At the
504-source level, the classification rates increased
and were significantly higher than classification
rates at the scalp level, whatever the features used.

Concerning mean amplitudes of the 504 recon-
structed sources, the regularization parameter acted
as a smoothing parameter. The smoothing effect
was observed on both univariate (namely T-scores)
and multivariate (SVM weights) statistical maps.
The univariate depiction of a spatial discrimina-
tion pattern had the disadvantage of an overestima-
tion for areas between the two patches. This might
account for the artificial diffusion due to spatial
smoothness of the inverse solution, and was surpris-
ingly found to be more marked than for scalp data.
SVM-based maps were significantly less sensitive

to the regularization coefficient than were T-maps
(Z = 1.7).

Classification scores based on mean amplitude
increased significantly with the regularization coef-
ficient (Friedman test).

In simulation 2 (coupling-modulation condi-
tion), mean amplitudes, both of the original sources
and at the scalp level, gave classification rates no
higher than would be expected by chance (Fig. 5).
However, at the source level, after reconstruction of
60 sources, the classification score was significantly
higher. At the 504-source level, classification scores
increased together with the regularization coeffi-
cient to reach levels sufficient for discrimination
(about 61% with λ = 20%). The sources capable
of discriminating between the two classes seemed
to be located half-way between the two patches.

3.2. Coherence and phase locking
value

Figures 6 and 7 give classification scores for simu-
lation 1 (in the amplitude-modulation condition)
and simulation 2 (the synchronization-modulation
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Fig. 5. Simulation 2 — Classification scores (bottom row, in % correct classification, with corresponding standard deviation
in parentheses, chance level: 50%) and topographies (top: T-scores, bottom: SVM weights) for discrimination of phase coupling
modulations based on mean amplitudes at different levels, (from left to right) original signal pair, scalp, reconstructed sources
with the regularization coefficient λ set to 1%, 5%, 10%, 15% and 20%, respectively.
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Fig. 6. Classification rates for simulation 1, based on
mean amplitude (white bars), coherence (black bars) and
phase locking value (grey bars) for different signals; original:
pair of noise-free original signals; scalp: 60 electrode signals
after forward projection; 60 sources: 60 reconstructed signals
after forward and inverse projection, using λ = 10%; mean,
1%, 5%, 10%, 15% and 20%: 504 source signals after forward
and inverse projections with different values for λ. In partic-
ular, the group of columns labeled mean gives classification
scores averaged across the five sets of results with the 504
reconstructed sources. The scores using 60 sources were com-
pared with the scores obtained from scalp measurements. A
star indicates that reconstructed source scores were higher
than scalp measurement scores (200 samples).
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Fig. 7. Classification rates for simulation 2, based on mean
amplitude (white bars), coherence (black bars) and phase
locking value (grey bars) for different signals; original: pair
of noise-free original signal; scalp: 60 electrode signals after
forward projection; 60 sources: 60 reconstructed signals after
forward and inverse projection, using λ = 10%; mean, 1%,
5%, 10%, 15% and 20%: 504 source signals after forward and
inverse projections with different values for λ. In particular,
the group of columns labeled mean gives classification scores
averaged across the five sets of results with the 504 recon-
structed sources. The scores using 60 sources were compared
with the scores obtained from scalp measurements. A star
indicates that reconstructed source scores were higher than
scalp measurement scores (200 samples).
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condition), at the same spatial levels as above, using
separate coherence and phase locking value. The
results obtained with mean amplitudes are given to
facilitate comparison.

Figure 6 relates to simulation 1. As expected,
mean amplitude performed better than coherence
or phase locking value for this simulation. When
discriminating between the two simulated states
using the two original signals, mean amplitude had
a much higher discriminating power than coupling
measurements. This base setting was designed to
test whether, in this condition, mean amplitude
would always give better results than coupling mea-
surements, and to determine whether coupling mea-
surements could be significantly more useful than
chance alone.

Our results differed from our expectation: the
classification rates for coherence and phase locking
value were higher than chance alone, both at the
scalp level and on reconstructed sources. Moreover,
the classification rates increased together with the
number of sources, revealing the presence of artifi-
cial couplings due to the spatial mixing of the orig-
inal activities.

Figure 6 relates to simulation 2. Phase locking
value appeared to be the most discriminating fea-
ture for coupling modulations, although coherence
also seemed to give good results. The coherences
calculated from scalp data (or better, from the 60
sources) outperformed those obtained after recon-
struction of 504 sources, whatever the smoothing
intensity used.

Classification rates for both coupling measures
were higher with the 60 reconstructed sources than
with scalp measurements. At the 504-source level,
classification scores also increased together with the
regularization coefficient.

Fig. 8. The actual coupled pairs of sources (in yellow) in simulation 2 were defined based on the original high-resolution
mesh (left) and the two regions of interest (in blue and red), and adaptation to the source model (middle) for reconstruction
by application of a simple nearest neighbor rule, defining the new regions of interest and then the set of correct links (90 of
1 26 756 links; right).

Both coherence- and PLV-based SVM-derived
maps, for the 504 sources, were more stable across
the investigated values of the regularization coeffi-
cient than respectively coherence- and PLV-based
T-score-derived maps (respectively Z = 18.0 and
Z = 16.3).

We also investigated whether coherence or
phase locking value could localize the expected
pairs of sources in simulation 2, by defining a set
of correct pairs of sources. The two patches were
translated from the original 10 014-vertex mesh to
the 504-vertex mesh used for the reconstruction of
cortical electrical activities. All possible pairings
between the two new regions of interest were labeled
as correct (procedure illustrated in Fig. 8).

Links can be ranked on the basis of T-scores
or SVM weights calculated from coherence or phase
locking value. The capacity of a measurement to
localize the discrimination pattern was quantified
in a simple manner, by retrieving the rank of the
best-ranked pair among correct pair and averaging
this rank over data sets. This approach should be
suitable for use in real situations, in which we often
rely on the best-ranked link to infer the location of
two distant coupled areas when it is hypothesized
that there are at least two such areas. We compared
the results obtained for coherence and phase lock-
ing value, based on both T-scores and SVM weights
(Fig. 8). Phase locking value outperformed coher-
ence in situations in which we expected to local-
ize correctly a pair of distant areas intermittently
displaying complete synchronization (see stars in
Fig. 9). The best-ranked link was often found to
be the correct one. Interestingly, PLV-based best
ranks gave more reliable localization for smaller reg-
ularization coefficients. A positive relationship was
observed (significance for both T-scores and SVM
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Fig. 9. Simulation 2 — Assessment of the localizing power of coupling measurements. Rank of the best-ranked correct
pair, averaged over simulation data sets; ranks are calculated from either T-scores (left) or SVM weights (right), themselves
computed either from coherence (white) and phase locking value (grey) on cortical activities reconstructed with different
regularization coefficient values. Confidence intervals relate here only to the variance across simulation data sets. Lower values
indicate a better performance at localizing. A star indicates that PLV ranks were significantly lower than those obtained from
coherence.

Fig. 10. Average rank maps using SVM weights of coherence (left) and PLV (right) from simulation 2 data reconstructed
with λ = 1%. The value at each vertex is the average rank of adjacent links — links that share the specified vertex as one
of their ends. Red indicates low average ranks and blue indicates high average ranks. Vertices with lower values had stronger
connections with the other vertices.

weights; Friedman tests), with lower ranks asso-
ciated with lower regularization coefficients, while
classification scores showed the opposite pattern,
with higher scores obtained for higher regulariza-
tion coefficient values.

A cortical map (Fig. 10) was estimated by cal-
culating, for each source, the average rank of links
having this source as a common end. The top rank
is coded as 1 (the lower the rank, the better).

4. Application to Real EEG Data

The Simon task experiment was designed to study
mental fatigue as a performance decrement. We

thus aimed to classify time windows as a function
of mean normalized reaction time: class 1 (short
reaction time, high performance) or class 2 (long
reaction time, poor performance), with intermedi-
ate values ignored.

We show mean results from 12 subjects.
Figure 11 summarizes classification scores for
mean amplitude (white), coherence (black) and
phase locking value (grey). The classification scores
spanned an interval of about four points. This shows
that there were few differences between types of fea-
tures and observation levels.

At the scalp level, coherence gave slightly bet-
ter results than mean amplitude (not significant)
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Fig. 11. Mean across 12 subjects (and 100 cross-validation
estimates) of classification scores for every feature type
(white: mean amplitude, black: coherence, grey: phase lock-
ing value) for scalp and reconstructed data as 60 sources
(λ = 10%) and 500 sources (λ = 1%, 5%, 10%, 15% and
20%). 95% confidence intervals were calculated from the cor-
responding total variance, both across subjects and across
validation iterations for each subject. Mean classification
scores are given for reconstructed data on 500 sources (third
group of bars). Classification scores for 60 sources are com-
pared with classification scores for scalp measurements (1200
samples).

and classification scores using phase locking value
were significantly above the chance level (one-sided
Wilcoxon matched-pairs test against 50%). Physio-
logical phenomena may have been more related to
local patterns of activity in this case. However, as
phase locking value did extract some information
and coherence slightly outperformed mean ampli-
tude, distant pair-wise activity patterns nonethe-
less contribute to the classification of performance
levels.

Classification results for mean amplitude and
coherence calculated from 60 reconstructed sources
decreased. This decrease was even significant for
mean amplitude. However, classification scores
using PLV increased. Reconstructing activities on
500 sources led to higher classification rates. Aver-
age classification scores using PLV were signif-
icantly higher for 500 sources than for scalp
measurements.

Topographical maps were generated (Fig. 12),
showing only the theta band with λ = 1%, to
save space. Coherence gave the highest classifica-
tion scores; therefore the related map may be more
relevant. A bi-lateralized patch appeared in the
superior frontal cortices. Given the well-known dif-
ficulties of the minimum norm inverse method to
correctly estimate deep sources and the lack of
sensitivity of EEG electrodes to tangent-oriented
dipoles, the related discriminating activity could

originate from a superior area of the anterior cin-
gulate cortices, which are known to play a role
in response selection [Devinsky et al., 1995] and
conflict monitoring [van Veen & Carter, 2002].
Moreover, the right-lateralized pattern was quite
similar to the so-called dorsal frontoparietal atten-
tional network for salience detection [Corbetta &
Shulman, 2002]. This latter pattern was common
to all of the three types of features, but there were
clear differences in the location of other implicated
areas between the three types of features.

5. Discussion

We investigated the contribution of source recon-
struction in several respects. One of our mere
expectations was that the classification scores
using features calculated from reconstructed sources
would be greater than those derived from original
scalp signal. We observed such an increase with sim-
ulations, but this was by far less clear with our real
data. Indeed, concerning real data and reconstruc-
tion of 60 sources, we observed decreases with mean
amplitude and coherence, which had given the high-
est scores at the scalp level. However, we noted two
interesting points.

First, distant synchronies seemed to carry infor-
mation on the two mental states to be discrimi-
nated. Despite the fact that informative patterns
may be mainly local, classification scores using PLV
were higher than the level of chance and classifica-
tion scores using coherence were slightly higher than
those using mean amplitude.

Second, source reconstruction could have actu-
ally helped at unveiling distant synchronies. Coher-
ence is expected to reach a compromise between
phase locking value, which extracts information
from phase, and mean amplitude, which is related to
amplitude. Here, we could hypothesize that coher-
ence made profit from both components of the sig-
nal. We believe that the decrease in classification
score for the coherence between the scalp level and
the 60 reconstructed sources reflected mostly signif-
icant decrease in mean amplitude. Therefore, source
reconstruction could favor distant synchronies at
the expense of local phenomena. Another hypothe-
sis is related to the contribution of electrical activi-
ties that current forward models had not yet taken
into account. These could be muscle activity and
deep cerebral activities. Both were likely to be
involved in this experiment, as discussed again
below. We believe that PLV is not much sensitive
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SVM weights for mean amplitude in the 3-7 Hz band  

 

Average ranks (see above) of SVM weights for coherence in the 3-7 Hz band 

Average ranks (see above) of SVM weights for PLV in the 3-7 Hz band 

 

Fig. 12. Discrimination maps generated for activities reconstructed with λ = 1% in the 3–7 Hz band, with left, top and right
views (from the left to the right); all maps are average estimates for the 12 subjects. Topmost pictures correspond to SVM
weights for mean amplitude. Middle row pictures correspond to average ranks calculated based on SVM weights (as already
described) for coherence. Bottom pictures correspond to average ranks calculated based on SVM weights for phase locking
value. Here, averaging across subjects was made possible by matching source meshes with a reference mesh, and some defaults
may have occurred. Precise values corresponding to colors do not help; the key point is that red indicates sources that affect
the most the discrimination (high absolute SVM weight for mean amplitude-related map and low average rank for coherence
and PLV-related maps), and blue indicates least discriminating sources.

to muscular noise, for example, because phase rela-
tionship is the hallmark of complex dynamics, and
electrical activities from pericranial muscles might
be less complex that cerebral activities. On the con-
trary, features based on signal amplitude are likely
to catch information related to muscular noise.
Hence, PLV could be more selective of cortical
activities. Therefore, distant synchrony appears to
be a useful concept. Coupled activities should there-
fore be investigated further.

Our results on simulations seem to support the
notion that source reconstruction could refine sig-
nals that originated from the cerebral cortex, as
higher classification scores were obtained for recon-
structed sources than for scalp measurements.

Previous studies on real data showed small
increases of (multivariate) classification scores when
source activities were reconstructed and quantified
with local synchrony measurements (power, mean
amplitude, etc; [Lotte et al., 2007; Noirhomme
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et al., 2008]). In simulations, this result is thus
confirmed and extrapolated to distant synchrony
measurements.

We would also like to comment on the
widespread inverse method known as sloreta (stan-
dardized low-resolution brain electromagnetic
tomography [Pascual-Marqui, 2002]), and other
standardized instantaneous inverse methods such as
that described by Dale, with a constant noise covari-
ance matrix [Dale & Sereno, 1993]. As these meth-
ods differ from the minimum-norm inverse method
by a constant scaling of each source signal, identi-
cal classification results were obtained. Mean ampli-
tude is linearly related to the scaling used in these
methods, and coherence and phase locking value are
unbiased. The differences were made irrelevant even
with mean amplitude, as we used a linear classifier.

At the 500-source level, classification scores
often increased when increasing the smoothness of
the solution, whatever the feature used. This may
be partly explained by the use of a multivariate clas-
sification method.

Indeed, discriminating activities might spread
in larger patches with increasing regularization. The
SVM, like other classification tools, makes use of
the fact that barely detectable physiological phe-
nomenon at a given location also occur in many
other neighboring locations, and the cumulative dis-
criminative power of all sources is potentially suffi-
cient to separate two states with greater efficiency
than chance alone.

Thus, the influence of the regularization (or
smoothing) parameter may result from originally
isolated activity being more widely distributed
when the parameter has a high value, with more
sources appearing to be informative in their activ-
ity. At low or moderate signal-to-noise ratios, these
sources may not be completely redundant, depend-
ing on the instantaneous noise levels associated with
each source.

For real data, some parameters could be fit-
ted on a subject-by-subject basis, especially if get-
ting higher classification scores is considered the
sole objective. This is particularly true for the regu-
larization coefficient of the minimum-norm inverse
matrix, as suggested by the high level of inter-
subject variability in our experiment. For exam-
ple, Noirhomme et al. [2008] used a cross-validation
process to select the value of this regularization
coefficient.

We did not optimize for this parameter using
60 sources, because the variability was much lower

than when using 500 sources, and the comparison
between the “scalp” and “source” classifiers would
have been unfair if we had optimized for a param-
eter at the source level without having optimized
for a similar parameter at the scalp level. The same
explanation may also hold for the validity of the
comparison of classification scores between the scalp
and massively distributed source levels. Again, opti-
mizing for different numbers of parameters might
lead to a variable inclination for overfitting.

Moreover, as suggested by our simulated data,
the features selected may play an important role in
the processing chain. Coherence and phase locking
value are more suitable to data in which distant
synchronization patterns occur and are informa-
tive, whereas mean amplitude performs better when
amplitude modulation is the key phenomenon.

As already mentioned, coherence is expected to
reach a compromise between phase locking value,
which extracts information from phase, and mean
amplitude, which is related to amplitude. How-
ever, even phase locking value and mean ampli-
tude may also provide similar information because
of their respective indirect relationship to amplitude
and phase. Indeed, phase alters amplitude and vice
versa, as clearly shown by our simulations.

The spatial mixing of electrical activities from
the brain to the sensors, and the blurring observed
in reconstructed sources due to spatial transforma-
tion from scalp measurements to sources, and the
presence of uninformative signal or noise, may result
in misleading patterns. As shown, mean amplitude
can be used to discriminate between purely phase-
related dynamic states, because the amplitude of
a linear combination of signals depends partly on
the phase difference between these signals. Sim-
ilarly, coupling measurements, even if related to
phase only, may respond to simultaneous changes
in amplitude.

In this study, we assessed the complete process-
ing chain. Consequently, the observed effect associ-
ated to a given parameter may be made possible by
another component in the chain and the impact of
this other component is not always clear.

The most appropriate choice for the regulariza-
tion parameter is not straightforward and, consid-
ering real data, clearly depended on the data for
the concerned subject. The regularization parame-
ter may depend on the sparseness of the informative
patterns to be extracted, and the quality of source
reconstruction (spatial fidelity, inverse method and
assumptions concerning signal-to-noise ratio).
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Most BCI studies reported higher classification
scores than what we obtained. However, the classes
defined in these studies always correspond to two
different tasks, while the classes we designed did not
qualitatively differ from each other. Errors rarely
occurred, considering the whole session, and were
not taken into account in our performance mea-
surement, therefore errors could not account for any
characteristic mental state in the poor-performance
class.

The classification scores obtained on the basis
of mean amplitude and phase locking value on the
scalp presented here are slightly lower than those
in our previous study [Besserve et al., 2008]. This
difference may result mainly from improvements
in some preprocessing steps, especially the correc-
tion for ocular artifacts and the rejection of seg-
ments contaminated by muscle activity. Indeed,
such extra-cerebral physiological variables have
been correlated with mental fatigue or time-on-task
[van Boxtel & Jessurun, 1993; Waterink & van Box-
tel, 1994; Stern et al., 1994]. Current forward mod-
els for source reconstruction take into account only
electrical activity from the cerebral cortex. Models
for other areas of grey matter in the human brain
are emerging. However, no efforts have yet been
made to take into account extracranial electrical
sources, such as the facial and pericranial muscles
and ocular globes, using assumptions concerning
spatial location and spectral profile. This could be
an explanation for subdued improvement of source
reconstruction when classifying performance levels
in our EEG experiment. In particular, muscle activ-
ity might be discriminating because of its link to
mental effort, and a model that would ignore it may
underestimate the contribution of this extra physi-
ological variable.

In addition, the conventional features studied
by EEG are based on rhythms and other time series
patterns, as EEG displays a high level of temporal
resolution. This suggests that dynamic inverse solu-
tions might improve the performance of our method
[Baillet & Garnero, 1997]. The inverse solution used
in this study was the simplest available instanta-
neous solution.

Many studies in the BCI field are based on clas-
sification methods. Nevertheless, few BCI applica-
tions with multivariate classification methods made
use of massively distributed source reconstruction
methods at that time. MRIs are expensive to get
and one could fear that source reconstruction would
increase the amount of computation. Noirhomme

et al. [2008] explained why source reconstruction
does not necessarily increase computational bur-
den and could be suitable for real-time applications,
such as BCI. As long as convenient inverse meth-
ods are used, the projection of scalp measurements
to sources is straight forward. The number of fea-
tures derived from reconstructed activities should
nevertheless grow at a similar rate to the number
of sources. Coupling measurements are also suitable
for real-time applications as they can be calculated
rapidly, but at the expense of the number of sources,
because of memory space limitations.

The use of features from reconstructed activ-
ities may increase in popularity as many studies
suggested that it may be easier to interpret EEG
signals if scalp measurements are translated into
activities of cortical regions and coupling measure-
ments between such regions are studied [ten Caat
et al., 2008; Astolfi et al., 2007]. This may lead
to a growing need for methods for the automatic
segmentation of raw MRI to cortical areas and
new standard functional topographies, such as that
described by Tzourio-Mazoyer et al. [2002].

The procedure we described in this article is
not to be considered as readily suitable for BCI
application, because we trained classifiers on a
subject-by-subject basis, using data from one ses-
sion per subject. To expect a classifier to be stable
enough over time as required by every application,
one should test this classifier using the data of
another session, another day for example, with the
same subject. However, the described procedure is
a useful framework to be adapted.

One of our aims was the detection of functional
cortical networks. As we were interested in distant
pair-wise measurements for this purpose, we devel-
oped a method for displaying an activity map for
these features. This approach seemed to be success-
ful for identifying key source locations for discrim-
ination. Our results in the simulations suggested
that phase locking value is suitable for the phe-
nomenon of interest. More work is required to deter-
mine the robustness of this ability to discriminate
when diffusion increases and informative coupling
patterns become more randomly distributed across
the cerebral cortex. Structural measurements, such
as minimum path length or clustering coefficient,
could also be used, for quantified network, so long
as this does not increase overall computational
costs.

Discriminating patterns seem to be better
localized when extracted by multivariate methods,
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such as SVM coefficients, as opposed to univariate
scoring methods. To our knowledge, the suitabil-
ity of such linear SVM coefficients for determina-
tion of the weight of input variables has not yet
been demonstrated, but the notion has already been
proposed (see for example [Mourão-Miranda et al.,
2005]). The weights of the trained SVM are the
coefficients of a vector defining the axis of opti-
mal separation between the two classes. When each
feature for classification was first standardized, the
weights can be compared to each other. The fea-
ture with the highest absolute weight is likely to be
the most discriminating one. Moreover, we showed
on simulation data that cortical maps derived from
these weights were less sensitive to the value of
the regularization coefficient. If one needs to save
computation time and select an arbitrary value for
this coefficient, or does not have any suitable pro-
cedure to select a value, SVM-based maps may be
preferred. Therefore, linear SVM could be consid-
ered as a useful tool to derive SPM-like maps.

6. Conclusion

In this study, simulation data and real EEG data
corresponded to various cerebral states differing in
terms of type of informative activity (local or dis-
tant synchronization patterns) and complexity of
informative patterns (clustered or sparse, low or
high signal-to-noise ratio, etc). Simulation data was
used to study the effect of the type of informative
activity, whereas results from real EEG data showed
some limitations of such simulations for studying
mental state-related activity patterns.

Results from simulations suggested that source
reconstruction may be useful when attempting to
discriminate between two cerebral states using a
suitable feature type, but care must be taken when
interpreting results, due to the possible localiza-
tion bias that may occur when focusing on a
sole type of informative activity, such as local
amplitude-related activity or distant phase-related
activity. Indeed, once recorded signals are mixed
in an unavoidably imperfect way to reconstruct
the cortical electrical activity, phase-amplitude rela-
tionships may result in an above-than-chance dis-
crimination, but the discriminating pattern may be
partly misleading when the aim is to localize the
pattern.

The proposed method involving the display of
a full map based on a complete set of pair-wise
quantifications seems to be useful, as we were able

to locate the patches of interest in the second
simulation. In addition, linear SVM provides inter-
esting discrimination maps.

In our simulations, at the cortical level with
increased spatial resolution, higher regularization
parameters were associated with better classifica-
tions, possibly because informative pattern set for
the simulation was spatially coarse and that the
classifier was able to aggregate information across
space. However, this strategy is clearly limited for
real EEG applications, such as the classification of
performance levels. In such cases, the regulariza-
tion parameter should be determined on a subject-
by-subject basis. With a close-to-optimality value,
source reconstruction seems to be useful for dis-
criminating between mental states with variable
patterns of coupled activities. In our real EEG
experiment, coherence gave the highest classifica-
tion scores at the scalp and massively distributed
source levels, and phase locking value gave results
better than would be expected by chance, suggest-
ing that performance-related mental states did yield
phase information. Results with real EEG data may
give a good picture of the complexity of the brain
dynamics, with both amplitude and phase-related
modulations. Simulations appeared as special cases
that might have been combined in the real EEG
dynamics. Thus, distant synchrony and phase rela-
tionships are useful concepts here, and should be
investigated more closely.
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