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bstract

Many important questions in neuroscience are about interactions between neurons or neuronal groups. These interactions are often quantified by
oherence, which is a frequency-indexed measure that quantifies the extent to which two signals exhibit a consistent phase relation. In this paper,
e consider the statistical testing of the difference between coherence values observed in two experimental conditions. We pay special attention to
roblems induced by (1) unequal sample sizes and (2) the fact that coherence is typically evaluated at a large number of frequency bins and between
arge numbers of pairs of neurons or neuronal groups (the multiple comparisons problem). We show that nonparametric statistical tests provide
onvincing and elegant solutions for both problems. We also show that these tests allow to incorporate biophysically motivated constraints in the
est statistic, which may drastically increase the sensitivity of the test. Finally, we explain why the nonparametric test is formally correct. This means
hat we formulate a null hypothesis (identical probability distribution in the different experimental conditions) and show that the nonparametric

est controls the false alarm rate under this null hypothesis. The proposed methodology is illustrated by analyses of data collected in a study on
ortico-spinal coherence [Schoffelen JM, Oostenveld R, Fries P. Neuronal coherence as a mechanism of effective corticospinal interaction. Science
005;308(5718):111-3].
 2007 Elsevier B.V. All rights reserved.
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. Introduction

In neuroscience, one often encounters the problem of mea-
uring the association strength between two signals. Very often,
hese signals are electrical recordings using electrodes (located
n the scalp, on the dura, or in the grey matter) or magnetic
ecordings using SQUIDs. Because one wants to learn about
nteractions between brain areas (and sometimes, sensorimo-
or organs), it is of particular interest to understand the joint
ecordings from multiple sensors. A popular measure of associ-
tion between signals is the coherence spectrum. Coherence is

frequency-indexed measure that quantifies the extent to which

wo signals exhibit a consistent phase difference. Coherence is
ften interpreted as a measure of effective interaction.

� The methods described in this paper have been implemented in the Matlab
oolbox Fieldtrip, which is available from http://www.ru.nl/fcdonders/fieldtrip.
∗ Corresponding author at: Nijmegen Institute of Cognition and Informa-

ion (NICI), Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The
etherlands. Tel.: +31 243612651.
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One problem that is still not fully resolved is the compar-
son of coherence values from two samples. Typically, these
wo samples are two sets of trials observed in different exper-
mental conditions. Traditional statistical tests of coherence
ifferences (Amjad et al., 1997; Brillinger, 1981; Enochson
nd Goodman, 1965) rely on the asymptotic normality of the
ourier transform, and this assumption can be questioned. Sta-

istical testing of coherence difference is especially challenging
ith unequal sample sizes. This may happen, for instance, if

he experimental conditions are defined by behavioral responses
e.g., correct/incorrect). Unequal sample sizes create a problem
ecause coherence estimates are biased and the bias depends
n the sample size: the smaller the sample size, the larger the
ias. We need a statistical test that can cope with this differential
ias.

Furthermore, in most neuroscience studies, coherence is eval-
ated in many frequency intervals (bins). This leads to a multiple

omparisons problem (MCP): How can we perform a large num-
er of statistical tests (one for every frequency bin) while at
he same time controlling the false alarm rate for these statis-
ical tests as a whole? An analogous problem is that, in most

http://www.ru.nl/fcdonders/fieldtrip
mailto:maris@nici.ru.nl
dx.doi.org/10.1016/j.jneumeth.2007.02.011
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tudies, much more than two signals are observed. As a con-
equence, the number of signal pairs can become very large,
nd so does the number of coherence values. This also leads
o a MCP, but now over the spatial instead of the spectral
imension.

The objective of this paper is to show how nonparamet-
ic statistical tests offer a solution for these problems. First, a
onparametric statistical test of coherence differences does not
epend on asymptotic normality. Second, it is valid for unequal
ample sizes. And third, it deals with the MCP over the spectral
s well as the spatial dimension. We will describe these statis-
ical tests, apply them to an example data set on cortico-spinal
nteractions (Schoffelen et al., 2005), and present the theory that
ustifies their use.

The potential of nonparametric statistical tests for the analy-
is of EEG- and MEG-data has been noticed by several authors.
hese tests were first proposed for testing the difference between

opographies at a particular time point (Achim, 2001; Galán et
l., 1997; Karnisky et al., 1994) and later for whole spatiotempo-
al matrices (Maris, 2004). Nonparametric tests have also been
sed very successfully for frequency domain representations of
EG- and MEG-data (Kaiser et al., 2000, 2003, 2006; Kaiser
nd Lutzenberger, 2005; Lutzenberger et al., 2002). Recently,
onparametric tests were proposed for distributed inverse solu-
ions obtained by a minimum variance beamformer (Chau et
l., 2004; Singh et al., 2003) or a minimum norm linear inverse
Pantazis et al., 2005). Lee (2002) gives an interesting applica-
ion of nonparametric tests to intracranial electrophysiological
ata observed in a single experimental condition. Finally, several
uthors have proposed nonparametric tests for the analysis of
MRI-data (Bullmore et al., 1996, 1999; Hayasaka and Nichols,
003, 2004; Holmes et al., 1996; Nichols and Holmes, 2002;
az et al., 2003).

The present paper is written for two audiences: (1) empirical
euroscientists looking for the most appropriate data analysis
ethod, and (2) methodologists interested in the theoreti-

al concepts behind nonparametric statistical tests. With the
mpirical neuroscientist in mind, we have written Sections
and 3 in a tutorial-like fashion. And with the methodolo-

ist in mind, we have written a Section 4 that explains why
hese nonparametric tests are formally correct. However, at no
oint in this paper, are concepts from mathematical statistics
equired.

. Methods

.1. The calculation of coherence

Although nonparametric statistical testing can also be applied
o multiple-subject studies, for didactic reasons, we restricted
ur focus to single-subject studies (the subject can be an ani-
al or a human). We consider the following case: a subject is

bserved in two experimental conditions and in every condition

ultiple trials are observed. The number of trials in the two con-

itions does not have to be equal. In every trial n, a bivariate time
eries (Xn, Yn) is observed. These time series can be discretely
ampled continuous processes (e.g., local field potentials, EEG,

i
i
o
(
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R-signals) or point processes (e.g., spike trains). In the follow-
ng, we assume the time series to be continuous processes. In the
ase of point processes and mixed continuous-point processes,
oherence is calculated in a slightly different fashion; this is well
escribed by Jarvis and Mitra (2001).

We now describe the calculation of coherence. This calcu-
ation involves trial-specific estimates of the power in the two
ignals (X and Y) and of their cross-spectrum: sXX

n (f ), sYY
n (f ),

nd sXY
n (f ), with f denoting the frequency. These estimates can

e calculated in several ways, and here we focus mainly on
he so-called multitaper estimates (Percival and Walden, 1993).

ultitaper estimation of power involves taking the average over
number of tapers (K) for a given signal Xn:

XX
n (f ) = 1

K

K∑
k=1

|Ff (tk ⊗ Xn)|2,

n which Ff (tk ⊗ Xn) denotes the Fourier transform of the
apered time series tk ⊗ Xn (tk is the k th taper) at frequency
. The power of the other signal (Yn) is calculated in the same
ay. Multitaper estimation of the cross-spectrum also involves

aking the average over a number of tapers (K):

XY
n (f ) = 1

K

K∑
k=1

Ff (tk ⊗ Xn)Ff (tk ⊗ Yn)∗,

n which the asterisk (∗) denotes complex conjugation.
Although we focus on multitaper estimation, the methods

escribed in this paper also apply to other estimates of trial-
pecific power and the cross-spectrum. Two other estimates are
escribed by Jarvis and Mitra (2001).

We introduce an independent variable I, whose length is equal
o the total number of trials in the two conditions (N1 + N2, with

1 and N2 being the number of trials in the first and the second
ondition). The n th value of I, denoted by In, has the value 1 if
he trial belongs to the first condition and it has the value 2 if it
elongs to the second condition. The length of the time series,
.e. the number of time samples per trial, is equal for the two
onditions.

The trial-specific estimates of power and the cross-spectrum
re combined by averaging over the trials. These averages are
alculated separately for each of the two conditions:

XX
1 (f ) =

N∑
n=1

�1(In)sXX
n (f )

N1
,

XX
2 (f ) =

N∑
n=1

�2(In)sXX
n (f )

N2
,

n which �a(x) is an indicator function that takes the value 1
f x = a and 0 otherwise. Similar formulas hold for the power
f the other signal (SYY

1 (f ) and SYY
2 (f )) and the cross-spectrum

SXY
1 (f ) and SXY

2 (f )).
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Coherency is the normalized cross-spectrum, and it is calcu-
ated as follows:

1(f ) = SXY
1 (f )√

SXX
1 (f )SYY

1 (f )
.

similar formula holds for C2(f ), the coherency in the second
ondition. Coherency is a complex-valued measure whose mag-
itude (|C1(f )| and |C2(f )|) quantifies the consistency of the
hase differences between the two signals, and whose angle is
qual to the average phase difference. Coherence is the magni-
ude of coherency. (Although it is not important for the present
aper, it should be noted that coherency also depends on ampli-
ude consistency; see Lachaux et al., 1999.)

.2. Coherence is biased

The sample coherence is a biased estimate of the population
oherence. This is because coherence is a positive quantity. To
ee this, assume that the population coherence is zero. In this
ase, the sample coherency has a uniform distribution in the
omplex plane, which means that it does not have a preferred
ngle. However, the magnitude of the sample coherency (i.e., the
ample coherence) is always nonzero. The expected coherence
epends on the variability of coherency: the more trials, the
maller the variability around zero in the complex plane, and
he smaller its expected magnitude.

The coherence bias is illustrated in Fig. 1. In this figure, we
how sample coherency values for two time series with a coher-
nce of zero, separately for three different sample sizes (N = 10,
= 40, and N = 100). The cross-spectra were drawn from

uniform distribution in the complex plane. Every blue line
n Fig. 1 represents the normalized cross-spectrum of a single
rial. The normalization is performed by dividing the single-
rial cross-spectrum by the square-root of the average power of
ach of the two signals, with the average being taken over the
rials. Sample coherency is equal to the average (over the tri-
ls) normalized cross-spectrum. The sample coherency values
re represented by the red lines. The important observation is

hat the sample coherence (i.e., the magnitude of the sample
oherency) is a function of the sample size: the more trials, the
maller the sample coherence. This means that the coherence
ias depends on the sample size.

o
t
i
1

ig. 1. Sample coherency values for three different sample sizes (N = 10, N = 40,
ingle trial, and every red line represents a sample coherency. On the horizontal axes
he imaginary part. The main observation is that the sample coherence (i.e., the magn
he smaller the sample coherence. (For interpretation of the references to color in this
nce Methods 163 (2007) 161–175 163

.3. Parametric statistical tests for coherence differences

Existing parametric statistical tests for coherence differences
re based on asymptotic results (Amjad et al., 1997; Brillinger,
981). More specifically, they are based on the asymptotic dis-
ribution of tanh−1(|C(f )|), the inverse hyperbolic tangent of
oherence. This asymptotic distribution depends on the number
f degrees of freedom (d.f.) for the coherence estimates. For mul-
itaper estimates, the d.f. for a coherence estimate is 2 × N × K.
or two conditions with equal d.f., Brillinger (1981) showed that,
nder the null hypothesis of equal population coherences, the
ifference [tanh−1(|C1(f )|) − tanh−1(|C2(f )|)] asymptotically
for large d.f.) has a normal distribution with expected value 0
nd variance 1/d.f. This result immediately leads to a statisti-
al test for coherence differences. Amjad et al. (1997) extended
his result to allow for a statistical test of the difference between
hree and more coherence values.

The statistical tests proposed by Brillinger (1981) and Amjad
t al. (1997) can only be used if the conditions have equal d.f. For
onditions with unequal d.f., we can make use of the following
bservation of Enochson and Goodman (1965): For d.f. > 20
nd squared population coherence values γ2(f ) between 0.4 and
.95, tanh−1(|C(f )|) is approximately normally distributed with
ean [tanh−1(|γ(f )|) + 1/(d.f. − 2)] (the term 1/(d.f. − 2) in

his formula corrects for the bias) and variance 1/(d.f. − 2). It
ollows that, under the null hypothesis of equal population coher-
nce values in the two conditions, the following test statistic (Z)
s approximately normally distributed with expected value 0 and
ariance 1:

= (tanh−1(|C1(f )|) − (1/d.f.1 − 2)) − (tanh−1(|C2(f )|) − (1/d.f.2 − 2))√
(1/d.f.1 − 2) + (1/d.f.2 − 2)

.

(1)

In this formula, d.f.1 and d.f.2 denote the degrees of free-
om in, respectively, the first and the second condition. As
ar as we know, the properties of this test statistic have not
een systematically evaluated. One reason of concern is that the
f Enochson and Goodman (1965) is valid, are much larger than
he squared sample coherence values that are typically observed
n neuroscience experiments (Fries et al., 2001; Srinivasan et al.,
999; Tallon-Baudry et al., 2001).

and N = 100). Every blue line represents the normalized cross-spectrum of a
, we show the real part of the cross-spectra, and on the vertical axes, we show
itude of the sample coherency) is a function of the sample size: the more trials,
figure legend, the reader is referred to the web version of the article.)
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Another reason of concern is that the d.f. of the multitaper
stimates are only asymptotically valid. That is, the asymptotic
istributions of tanh−1(|C1(f )|) and tanh−1(|C2(f )|) (normal
ith known means and variances) approximate the true sam-
ling distributions only when the d.f. are large. Especially for
parse spike trains, the asymptotic distributions are likely to be
oor approximations of the true sampling distributions. This
roblem was analyzed in detail by Jarvis and Mitra (2001).
nder the assumption of a doubly stochastic inhomogeneous
oisson process, these authors showed that the asymptotic d.f.
f the coherence estimates exceed the effective d.f. Moreover, the
maller the number of spikes, the larger the difference between
he asymptotic and the effective d.f. The nonparametric meth-
ds proposed in this paper do not require parametric distributions
like the normal) and their parameters (mean and variance, which
epend on the d.f.), and therefore they do not suffer from the
roblem mentioned here.

For conditions with unequal d.f., an obvious alternative to the
oherence Z-test of Enochson and Goodman (1965) is to curtail
ne of the conditions to the same size as the other, and to use a
tatistical test based on Brillinger’s (1981) result. However, this
pproach results in a loss of statistical power. If one uses the
ethods proposed in this paper, one does not have to tolerate a

oss of statistical power.

.4. A statistical test for coherence differences based on the
acknife

The issue of the appropriateness of the asymptotic d.f. for
oherence estimates was taken up by Bokil et al. (2007). These
uthors proposed to use the Jacknife (Tukey, 1958) as a means
o estimate the sampling variance of the Z-statistic in Eq. (1).
he Jacknife is an obvious candidate here, because the regu-

ar formula for the sampling variance of the mean (the variance
f the observations divided by N) cannot be used to estimate
he sampling variance of the coherence estimates, nor of any
unction of these coherence estimates. Thus, instead of rely-
ng on the fact that the asymptotic variance of the Z-statistic
s 1, these authors proposed to estimate it from the data. The
-statistic is then divided by this Jacknife-estimated variance,

nd the resulting test statistic is assumed to be normally dis-
ributed with mean 0 and variance 1. In contrast to the approach
n this paper, the approach of Bokil et al. (2007) is paramet-
ic. It is parametric because it assumes that the Z-statistic in
q. (1) has a normal distribution with mean 0 and an unknown
ariance. However, it does not rely on the asymptotic sampling
ariance of the Z-statistic. The approach in this paper is fully
onparametric: no assumptions are made about the probability
istributions of either the data or parameter estimates calculated
n these data.

.5. Type 1 and type 2 error rates
The quality of a statistical test is expressed in terms of its type
and type 2 error rate. The type 1 error rate is the probability

f a false positive, rejecting the null hypothesis when it is true.
nd the type 2 error rate is the probability of a false negative,

i
e
i
p

e Methods  163 (2007) 161–175

ccepting the null hypothesis when the alternative hypothesis is
rue. The type 1 error rate is also called the false alarm (FA)
ate of the test, and the complement of the type 2 error rate is
lso called the sensitivity of the test. In Section 4 of this paper,
e deal with the FA rate: we show that nonparametric statis-

ical tests of coherence differences effectively control the FA
ate. Importantly, they control the FA rate for all sample sizes,
ncluding unequal and small ones, and for all spike rates.

Our treatment of sensitivity is much less complete than our
reatment of the FA rate. In fact, our main point with respect to
ensitivity is that it can be drastically increased by incorporat-
ng biophysically motivated constraints in the test statistic. Due
o space limitations, no results will be presented that express
he sensitivity of the test as a precise function of the factors on
hich it depends: true coherence, number of trials, spike rate,

tc. Obtaining such results would require an extensive simu-
ation study in which these factors are varied simultaneously.

ithout doubt, such a stimulation study would be very infor-
ative for neuroscientists interested in long-range coherence

etween spike trains. Especially for this type of coherence, it
s important to know whether a null result can be due to the
nsensitivity of the statistical test.

.6. Statistical testing of coherence differences in multiple
requency bins and multiple signal pairs

Very often, coherence is not calculated in a single fre-
uency bin only. Instead, a coherence spectrum is calculated.

coherence spectrum is an array of frequency-indexed coher-
nce values, sorted by frequency. We often do not know in which
requency bin an effect is likely to be observed. This makes the
tatistical analysis much more complicated than in the case of a
ingle frequency bin. With multiple frequency bins, it is not suffi-
ient to calculate multiple test statistics, one for every frequency
in, and their corresponding p-values. Due to the large number
f statistical tests, it is not possible to control the family-wise
rror rate (FWER) by means of the standard statistical proce-
ures that operate at the level of a single frequency bin. The
WER is the probability under the hypothesis of no effect of
alsely concluding that there is a difference between the experi-
ental conditions in one or more frequency bins. A solution of

his multiple comparisons problem (MCP) requires a procedure
hat controls the FWER at some fixed level (typically, 0.05).
n the following, whenever we use the term false alarm (FA)
ate in the context of a statistical comparison involving multiple
requency bins, we mean the FWER.

The point to remember is the following: if the spectral locus
f the effect is not known in advance, we need a specialized
tatistical procedure that takes our prior ignorance into account.
t is very difficult to develop such a specialized procedure in
he parametric statistical framework. The main obstacle is the
nknown pattern of statistical dependence between the many fre-
uency bins. Statistical dependence is not an important concern

f the frequency bins are non-overlapping, because coherence
stimates in non-overlapping frequency bins are statistically
ndependent in large samples. In fact, Bokil et al. (2007) pro-
ose a way to deal with the MCP from exactly this perspective
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statistically independent frequency bins). However, in many
pplications involving modern spectral analysis methods such
s multitaper estimation and wavelets (Percival and Walden,
993), the frequency bins do overlap, and therefore statistical
ependence is an issue of concern.

We encounter a similar problem if more than two signals are
bserved and we do not know at which signal pair an effect is
ikely to be observed. With multiple signal pairs, it is not suffi-
ient to calculate multiple test statistics, one for every signal pair,
nd their corresponding p-values. Instead, we need a specialized
tatistical procedure that takes our prior ignorance into account.
gain, it is very difficult to develop such a specialized procedure

n the parametric statistical framework. The main obstacle is the
nknown pattern of statistical dependence between the spectral
epresentations in the different signals.

We can now summarize the problems involved in the para-
etric statistical testing of coherence differences. First, all

hree statistical tests (Brillinger’s, Amjad’s, and the Z-statistic)
epend on the asymptotic (complex-valued) normality of the
ourier transforms of the tapered time series. This property
ay not hold, and if it holds, it may be useless (if normal-

ty is only approximated in unrealistically large samples). As
consequence, the FA rate of these statistical tests may differ

rom their alpha-level. Second, for experimental conditions with
nequal d.f., we have to rely on an observation by Enochson and
oodman (1965) of which we do not know whether it is a suf-
cient approximation of the true sampling distribution for all
opulation coherence values between 0 and 1. Third, it is very
ifficult to develop a parametric statistical test of coherence dif-
erences in multiple frequency bins and multiple signal pairs.
or all three problems, the nonparametric statistical framework
rovides a simple solution. This solution can compete with the
pproach of Bokil et al. (2007) because (1) it does not rely on
he Jacknife estimate of the sampling variance (of which we
now that it fails for some statistics; see Miller (1964)), and
2) it solves the MCP for all patterns of statistical dependence
etween different frequency bins and different signals.

.7. The nonparametric statistical test

For the sake of clarity and simplicity, we will in this section
eliberately ignore three important issues: (1) the exact specifi-
ation of the null hypothesis that is tested by the nonparametric
tatistical test, (2) the proof that this test controls the FA rate,
nd (3) the issue of how to choose a test statistic. These issues
ill be discussed in Section 4.

.7.1. A nonparametric statistical test for a single signal
air and a single frequency bin

The first step in every nonparametric statistical test is the
hoice of a test statistic. Contrary to the parametric statistical
ramework, in the nonparametric framework, the scientist can
se every test statistic that he believes to be sensitive to the

ffect of interest. If the interest is in the coherence difference for
single signal pair, then the obvious test statistic is [|C1(f )| −

C2(f )|], the difference between the coherence values at one
requency in the two experimental conditions. Later, we will also

u
b
o
v

nce Methods 163 (2007) 161–175 165

onsider a test statistic for the situation of multiple frequency
ins and multiple signal pairs.

The nonparametric statistical test is performed in the follow-
ng way:

1) Collect the trials of the two experimental conditions in a
single set.

2) Randomly draw as many trials from this combined data set
as there were trials in condition 1 and place those trials into
subset 1. Place the remaining trials in subset 2. The result
of this procedure is called a random partition.

3) Calculate the test statistic on this random partition.
4) Repeat steps 2 and 3 a large number of times and construct

a histogram of the test statistics.
5) From the test statistic that was actually observed and the

histogram in step 4, calculate the proportion of random par-
titions that resulted in a larger test statistic than the observed
one. This proportion is called the Monte Carlo p-value.

6) If the Monte Carlo p-value is smaller than the critical alpha-
level (typically, 0.05), then conclude that the data in the two
experimental conditions are significantly different.

This six-step procedure results in a valid statistical test:
nder some well-specified null hypothesis (see Section 4), the
robability of falsely rejecting this null hypothesis using this
rocedure, is equal to the critical alpha-level.

Nonparametric statistical testing is extremely general
ecause its validity does not depend on the probability distri-
ution of the data (i.e., whether it has a normal or some other
istribution) nor on the test statistic on which the statistical infer-
nce is based. By using a different test statistic, one obtains a
tatistical test that is sensitive to other aspects of the data. For
nstance, the effect of the independent variable could (also) be
eflected in the phase difference between the two signals. To cap-
ure this effect, one can use as a test statistic [Φ1(f ) − Φ2(f )], in
hich Φ1(f ) and Φ2(f ) are the phases in the two experimental

onditions.

.7.2. A nonparametric statistical test for multiple
requency bins

Very often, instead of calculating coherence in a single fre-
uency bin, a coherence spectrum is calculated. Because the
ffect may be observed in any one of multiple frequency bins,
e have to deal with the MCP. The nonparametric statistical test
rovides a solution for the MCP because it can be modified such
hat it calculates a single test statistic for the whole coherence
pectrum. Several test statistics can be used for this purpose,
nd here we consider two: (1) the maximum (over the frequency
ins) of the coherence Z-statistics, defined in Eq. (1), and (2) a
est statistic that is based on clustering of adjacent frequency
ins, which will be described after the maximum coherence
-statistic. It is important to emphasize that, although we previ-
usly criticized the coherence Z-statistic, we have no problem

sing it as an element of a nonparametric statistical test. This is
ecause the incorrectness of the assumed sampling distribution
f the coherence Z-statistic (a normal distribution with expected
alue 0 and variance 1) does not affect the FA rate of the non-
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arametric test. This is because the nonparametric test controls
he FA rate for all test statistics, regardless of their sampling
istribution. For instance, we would also control the FA rate if,
nstead of the coherence Z-statistic, the plain coherence differ-
nce were used. The advantage of the Z-statistic is that it can
ore easily be used for thresholding, which is a step in the clus-

ering procedure that will be described in the following. We will
eturn to this point in Section 4.

The nonparametric statistical test that uses the maximum
oherence Z-statistic is performed using the same recipe as the
ne in Section 2.7.1. The only difference in the actual compu-
ation is that, in step 3, the maximum coherence Z-statistic is
alculated instead of the coherence Z-statistic for a single fre-
uency bin. As an aside, it must be noted that this is a one-sided
est; we obtain a two-sided test if the maximum is taken of the
bsolute values of the coherence Z-statistics.

A nonparametric statistical test controls the FA rate for all
est statistics. We can take advantage of this fact by using a
est statistic that is maximally sensitive to effects that are likely
o occur. For instance, assuming that a hypothesized effect is
road-band, it is likely that adjacent frequency bins exhibit
he same effect. To capture this phenomenon, we introduce a
est statistic that is based on clustering of adjacent frequency
ins. Instead of the maximum coherence Z-statistic, in step 3
f the recipe, a cluster-based test statistic is calculated. The
alculation of this cluster-based test statistic involves several
teps.

1) For every frequency bin, calculate the coherence for each of
the two experimental conditions.

2) For every frequency bin, evaluate the coherence difference
by means of a test statistic, such as the coherence Z-statistic
in Eq. (1).

3) Select all frequency bins whose coherence Z-statistic is
larger than some threshold. For instance, this threshold can
be some quantile of the normal distribution with expected
value 0 and variance 1. (The incorrectness of the assumed
sampling distribution of the coherence Z-statistic does not
affect the FA rate of the nonparametric test.)

4) Cluster the selected frequency bins in connected sets on the
basis of adjacency; neighboring frequency bins are clustered
in the same set.

5) Calculate cluster-level statistics by taking the sum of the
coherence Z-statistics within a cluster.

6) Take the maximum of the cluster-level statistics.

This is a test statistic for a one-sided test; for a two-sided test,
n step 3, we select test statistics whose absolute value is larger
han some threshold, and in step 6, we take the cluster-level
tatistic that is largest in absolute value. Also, for a two-sided
est, the clustering in step 5 is performed separately for frequency
ins with a positive and a negative Z-statistic.

The cluster-based test statistic depends on the threshold that

s used to select frequency bins for clustering. In our example,
his threshold was the 95th quantile of the normal distribution
ith expected value 0 and variance 1. Although this threshold
oes not affect the FA rate of the statistical test, as will be shown

(

(
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n Section 4, it does affect the sensitivity of the test. For example,
eak but widespread effects are not detected when the threshold

s high.
Except for the fact that the test statistic is rather complicated,

he nonparametric statistical test is performed in the same way
s for a single signal pair: a Monte Carlo p-value is calculated by
andomly partitioning the trials and if this p-value is less than
he critical alpha-level, then conclude that the data in the two
onditions are significantly different. If more than one cluster
f frequency bins is identified, the p-values for all clusters are
alculated under the histogram of the maximum cluster-level
tatistic and not under the histogram of the second largest, third
argest, etc. The choice for the maximum cluster-level statistic
and not the second largest, third largest, . . .) results in a statis-
ical test that controls the FA rate for all clusters (from largest
o smallest), but does so at the expense of a reduced sensitivity
or the smaller clusters (reduced in comparison with a statistical
est that is specific for the second, third, . . . largest cluster-level
tatistic).

.7.3. A nonparametric statistical test for multiple signal
airs

We now consider coherence in a single frequency bin for mul-
iple sensor pairs. Here, the MCP can be solved in essentially
he same way as for a single sensor pair and multiple frequency
ins: instead of clustering neighboring frequency bins, we now
luster adjacent sensor pairs. To explain the clustering of sensor
airs, we must first describe the configuration of these sen-
or pairs. In this paper, we consider a set of signal pairs that
nvolve one common sensor, which will be called the reference
ensor. (The reason for this is in the example study that we
se to illustrate the methodology. The example study will be
escribed later.) Denoting the reference sensor by R and the
arget sensors by M1, M2, M3, . . ., the set of signal pairs is
he following: (M1, R), (M2, R), (M3, R), . . .. In the example
tudy, the non-reference sensors M1, M2, M3, . . ., are the sen-
ors of a magneto-encephalogram (MEG), and in the following
e will denote them as MEG sensors.
To solve the MCP, we use a test statistic that is based on

lustering of adjacent MEG sensors for which the coherence
ith the reference sensor exhibits a similar difference (in sign

nd magnitude). The calculation of this test statistic involves the
ollowing steps:

1) For every MEG sensor, calculate the coherence with the ref-
erence sensor for each of the two experimental conditions.

2) For every MEG sensor, evaluate the coherence difference by
means of a test statistic, such as the coherence Z-statistic in
Eq. (1).

3) Select all samples whose Z-statistic is larger than some
threshold.

4) Cluster the selected samples in connected sets on the basis

of spatial adjacency.

5) Calculate cluster-level statistics by taking the sum of the
Z-statistics within a cluster.

6) Take the maximum of the cluster-level statistics.
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So far, we have described approaches to treat the MCP for a
ingle sensor pair and multiple frequency bins and also for mul-
iple sensor pairs and a single frequency bin. The same rationale
an be generalized to multiple sensor pairs and multiple fre-
uency bins. The only difference is in the test statistic: in the
atter case, cluster combinations of sensor pairs and frequency
ins on the basis of spectral and spatial adjacency.

.7.4. The reliability of the Monte Carlo p-value
Strictly speaking, the nonparametric statistical test is only

alid if the Monte Carlo p-value is calculated on the basis of all
ossible partitions of the trials in two subsets (with each par-
ition having the same probability), and not just some random
ubset of the collection of possible partitions. In fact, in the case
f a complete enumeration of all possible partitions, the Monte
arlo p-value is the true nonparametric p-value, of which we
ill show that it controls the FA rate under some well-specified
ull hypothesis (see Section 4). However, the number of trials
ay be so large that it is infeasible to calculate the test statistic

or all possible partitions. For example, with 200 trials, evenly
istributed over the two conditions, the number of possible par-
itions is approximately 1.0e + 29. In this case, one can only
alculate a Monte Carlo p-value on the basis of a random subset
f all possible partitions.

To determine the necessary number of random partitions,
t is useful to construct a confidence interval for the Monte
arlo p-value. Because the Monte Carlo p-value has a bino-
ial distribution, its accuracy can be quantified by means of

he well-known confidence interval for a binomial proportion
Ernst, 2004). By increasing the number of draws from the per-
utation distribution, the width of this confidence interval can

e made arbitrarily small. It makes sense to determine the num-
er of draws in an adaptive way: increase this number until the
onfidence interval does not contain anymore the critical alpha
evel (0.01 or 0.05). With this strategy, the necessary number of
andom partitions is large if the Monte Carlo p-value is on the
oundary of significance. In other words, when the difference
s highly significant or far from significance, then this can be
ound with few random partitions. But when the true nonpara-
etric p-value is just below or above the critical alpha level, then
any random partitions are needed to attain certainty about the

ignificance.

.8. Example study: cognitive modulation of cortico-spinal
oherence

We analyzed data of a study by Schoffelen et al. (2005) on
ortico-spinal coherence. In this study, the interest was in the
oherence between the electromyogram (EMG) over a muscle
f the right forearm, which informs us about alpha motor neu-
on activity in the spinal cord (the reference sensor), and the

EG (especially the sensors over the contralateral motor cor-
ex). The signals were observed in two experimental conditions

hat differed with respect to the subject’s expectation of when a
o-signal would occur. All responses were given with the right
and. The signals were taken from periods in which the right
rist was extended and the subjects held this wrist extension

b

q

nce Methods 163 (2007) 161–175 167

ntil a go-cue was given. This go-cue was a sudden change in
he speed of moving concentric circles that were displayed on a
creen in front of the subject. The two conditions differed with
espect to when the response signal was most likely to occur. In
he so-called UP condition, the probability that the response sig-
al would occur in the time interval [t, t + �t], given that it had
ot yet occurred before time t, increased with t, and in the so-
alled DOWN condition it decreased with t. This instantaneous
onditional probability is called the hazard rate. Subjects were
rained beforehand on one or the other hazard rate and implicitly
earned that hazard rate. This can be concluded from the fact that
hey modulated their reaction times accordingly while reporting
o not being aware of it.

We analyzed the signal in the time interval between 250 and
50 ms after the onset of the visual stimulus. In this time inter-
al, the hazard rate for the response signal was about three times
igher in the DOWN condition than in the UP condition. Because
choffelen et al. (2005) hypothesized that cortico-spinal coher-
nce increases with the subject’s readiness to respond, they
xpected a larger coherence in the DOWN than in the UP con-
ition. These coherence values are denoted by, respectively,
DOWN(f ) and CUP(f )]. It is important to observe that the phys-

cal stimulation in the two experimental conditions is identical;
nly the subject’s readiness to respond differs.

The statistical analysis of this data set is challenging for sev-
ral reasons. First, there is a large difference in the number of
rials in the two experimental conditions. This is because the go-
ignal (and thereby the trial end) occurred on average earlier in
he DOWN condition than in the UP condition. For the paramet-
ic coherence Z-test this may be problematic, because it relies on
he bias correction factors in the numerator of Eq. (1). Moreover,
he sample coherence values are much smaller (approximately
.2 over left motor cortex) than the minimum population coher-
nce value for which Enochson and Goodman (1965) advocate
he use of their approximation (i.e.,

√
0.4 = 0.63)).

Second, we would like to investigate the pattern of coherence
ithout making strong prior assumptions as to which frequency
ins and which MEG sensors to involve. Therefore, we need
statistical procedure that controls the FA rate over multiple

requency bins and multiple signal pairs.

. Results

In this section, we will focus on three points: (1) we give the
esults of a nonparametric test for a single EMG-MEG signal
air and a single frequency bin (Section 3.1), (2) we show that,
ontrary to the parametric coherence Z-test, the nonparametric
est controls the FA (Section 3.2), and (3) we give the results of
he cluster-based nonparametric tests for multiple EMG-MEG
ignal pairs and multiple frequency bins (Sections 3.3, 3.4, and
.5).

.1. A single EMG-MEG signal pair and a single frequency

in

We investigated cortico-spinal coherence in the gamma fre-
uency band, more specifically, in the range between 40 and
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0 Hz. In this frequency band, the sensors over the left motor
ortex (contralateral to the response) showed an increase in
oherence when the stimulus appeared on the screen. We now
ant to know whether this gamma band coherence is modulated
y the readiness to respond (i.e., the difference between the UP
nd the DOWN condition).

We selected the MEG sensor that had the largest gamma band
oherence with the EMG signal, averaged over the two condi-
ions. We used the multitaper method (Percival and Walden,
993) to calculate coherence in the frequency bin from 40 to
0 Hz; this involved spectral smoothing over this interval. For
he selected sensor over the left hemisphere, the nonparametric
est of the coherence difference between the UP and the DOWN
ondition was significant: from the 10,000 random partitions,
one resulted in a coherence difference that was larger than the
bserved coherence difference, and thus the Monte Carlo p-value
quals 0. Thus, we can conclude that the readiness to respond
ncreases the cortico-spinal coherence.

We also performed a statistical test of the difference between
he UP and the DOWN condition with respect to the between-
ignal phase difference. The Monte Carlo p-value of this
onparametric test is 0.0557 and its 95% confidence interval
s [0.0512, 0.0602]. Thus, there is no significant modulation of
he between-signal phase difference by the readiness to respond.

.2. An evaluation of the FA rate of the parametric and the
onparametric statistical test

Normally, we apply a statistical test to determine whether
wo conditions differ significantly. Any such test, parametric or
onparametric, will have an FA rate. We can determine this FA
ate with a procedure that makes use of the trials of a single
xperimental condition. These trials come from some probabil-
ty distribution f. It is possible to construct two samples from
robability distribution f by randomly partitioning the trials in
wo samples. Building on this fact, we can evaluate the FA rate
f a statistical test by means of the following procedure:

1) Randomly partition the trials of one sample into two samples
with fixed sizes.

2) Perform a statistical test of the difference between the two
samples. (If this statistical test is nonparametric, it may
involve the calculation of a Monte Carlo p-value, which
again requires random partitioning. It is important to distin-
guish between the first and the second random partition: the
first is the mechanism that produces the two samples that
will be compared, and the second is a part of the calculation
of the Monte Carlo p-value.)

3) Repeat steps 1 and 2 a large number of times and calculate
the proportion of repetitions in which the statistical test is
significant.

By construction, the trials in the two samples that will be
ompared come from the same probability distribution. There-

ore, the proportion of repetitions in which the statistical test is
ignificant (determined in step 3), is the FA rate of the statistical
est. For a statistical test to be sound, this FA rate must be equal
o its critical alpha-level (which is used in step 2).

3

t

izes are nearly equal (40/60 and 50/50). For the nonparametric test, the average
A rates are approximately equal to the critical alpha-level (0.05). This holds
or all sample size schemes.

Because we are interested in the effect of unequal sample
izes on the FA rate, we constructed samples according to the
ollowing five schemes: 10/90 (10% of the trials in the first sam-
le and 90% in the second), 20/90, 30/70, 40/60, and 50/50
equal sample sizes). We used 196 trials of the UP condition.
or each of the five schemes, we performed 1000 random parti-

ions of these 196 trials. For every random partition, the resulting
amples were compared by means of the parametric coherence
-test and the nonparametric test of the previous section (Sec-

ion 3.1). Both statistical tests were two-sided and used a critical
lpha-level of 0.05. The statistical tests were performed for all
51 MEG sensors. The Monte Carlo p-value for the nonpara-
etric test was calculated using 100 random partitions. This

ow number was chosen to show that the FA rate of the nonpara-
etric test does not depend on the accuracy of the Monte Carlo

-value. Higher numbers of random partitions would increase
he accuracy of the Monte Carlo p-value.

The results are shown in Fig. 2. The parametric coherence
-test is too liberal when the sample sizes are very unequal

10/90 and 20/80) and too conservative when the sample sizes
re nearly equal (40/60 and 50/50). This is confirmed by the
esults of two-sided binomial tests (one for every EMG-MEG
ensor pair) of the null hypothesis that the FA rate is equal to the
ritical alpha-level (0.05). These results are shown in Fig. 3.

For the nonparametric test, the average FA rates are approxi-
ately equal to the critical alpha-level (0.05). This holds for all

ample size schemes. This conclusion is confirmed by the results
f the two-sided binomial tests (one for every EMG-MEG sen-
or pair) of the null hypothesis that the FA rate is equal to the
ritical alpha-level: the proportion of statistical tests that were
ither too liberal or too conservative is approximately 0.05 for
ll sample size schemes (results not shown).
.3. Multiple frequency bins

We performed the statistical test for multiple frequency bins
wice: once for a MEG-sensor over the contralateral (left) motor
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Fig. 3. Percentage of EMG-MEG sensor pairs for which the parametric coher-
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Fig. 4. Nonparametric statistical testing of coherence in multiple frequency bins
for a sensor over the contralateral motor cortex. In panel a, the coherence spectra
are shown, separately for the UP and the DOWN condition. In panel b, the solid
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nce Z-test is too liberal (an FA rate that is significantly larger than the critical
lpha-level of 0.05) and the percentage for which it is too conservative (an FA
ate that is significantly smaller than the critical alpha-level).

ortex, and once for a MEG-sensor over the ipsilateral (right)
otor cortex. We used the multitaper method (Percival and
alden, 1993) to calculate coherence in 46 frequency bins with

enter frequencies between 10 and 100 Hz. The frequency bins
ere chosen such that the largest frequency in a bin was 1.5

imes the smallest frequency. For instance, for the frequency bin
ith center frequency 30 the smallest frequency was 24 and the

argest frequency was 36. Thus, the frequency bins had variable
idths.
The results for the MEG-sensor over the contralateral motor

ortex are shown in Fig. 4. There are four clusters of connected
requency bins that exceed the threshold for the coherence Z-
tatistic, which was set at 1.96 (chosen a priori). The two largest
lusters, one in the gamma band (36–70 Hz) and one in the
eta band (21–34 Hz), are significant: for the largest cluster-
evel statistic, the Monte Carlo p-value is 0, and for the second
argest it is 0.011 (calculated on 10,000 random partitions). In
anel b of Fig. 4, the two significant clusters are indicated by
he shaded area under the curve. The two non-significant clus-
ers are between 80 and 95 Hz. The finding of two significant
lusters confirms our previous conclusion on the basis of a sin-
le frequency bin: coherence is modulated by the readiness to
espond. It is clear that in this subject the modulation is not only
bserved in the gamma band (the largest cluster), but also in the
eta band (the second-largest cluster).

The results for the MEG-sensor over the ipsilateral motor
ortex are shown in Fig. 5. There are four clusters of connected
requency bins that exceed the threshold for the coherence Z-
tatistic. Only the largest cluster-level statistic, the one in the
amma band, is significant: its Monte Carlo p-value is 0.001
calculated on 10,000 random partitions). This cluster is indi-
ated by the shaded area in panel b of Fig. 5. Despite the large
oherence difference in the beta band, the corresponding cluster-
evel statistic is not significant (Monte Carlo p-value equal to

.0769). The two smallest non-significant clusters are between
8 and 72 Hz, and they consist of one or two frequency bins only.
n the basis of these findings, we conclude that in this subject

he gamma coherence over the ipsilateral motor cortex is also

c
o
0
o

ine is the time series of sample-specific coherence Z-statistics, and the dashed
ine is the threshold that is used for selecting frequency bins that can subsequently
e clustered. The shaded areas indicate the two significant clusters.

odulated by the readiness to respond. This modulation may
eflect effective connectivity between the two motor cortices or
patial non-specificity of the cognitive modulation.

.4. Multiple EMG-MEG signal pairs

The statistical test for multiple EMG-MEG signal pairs was
pplied to the frequency bin from 40 to 60 Hz. In the previ-
us analyses, we observed an effect in this frequency bin, both
ver the contra- and the ipsilateral motor cortex. This finding
as replicated in the present analysis that uses the data in all
MG-MEG signal pairs: in this subject, there are two spa-

ially connected clusters in the data, one over the contra- and
ne over the ipsilateral motor cortex. Both clusters are signifi-

ant: the largest cluster-level statistic has a Monte Carlo p-value
f 0.009 and the second-largest has a Monte Carlo p-value of
.0092 (calculated on 10,000 random partitions). This confirms
ur previous conclusion on the basis of single EMG-MEG sig-
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Fig. 5. Nonparametric statistical testing of coherence in multiple frequency bins
for a sensor over the ipsilateral motor cortex. In panel a, the coherence spectra
are shown, separately for the UP and the DOWN condition. In panel b, the
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olid line is the time series of the sample-specific coherence Z-statistics, and
he dashed line is the threshold that is used for selecting frequency bins that can
ubsequently be clustered. The shaded area indicates the significant cluster.

al pairs: gamma coherence over the ipsi- and the contralateral
otor cortex is modulated by the readiness to respond.
In Fig. 6, we show the topography of the raw effect (i.e., the

ifference in cortico-spinal coherence between the DOWN and
he UP condition). This topography is obtained by masking the
aw effect by the spatial pattern of the significant cluster. This
asking involves that the raw effects of all signal pairs that do

ot belong to the significant cluster are set equal to zero.

.5. Multiple EMG-MEG signal pairs and multiple
requency bins

Finally, we also investigated the modulation of cortico-spinal
oherence over all EMG-MEG signal pairs and over a large num-

er of frequency bins. We calculated coherence in 17 frequency
ins with center frequencies between 15 and 100 Hz. As before,
he frequency bins were chosen such that the largest frequency in
bin was 1.5 times the smallest frequency. There are 14 clusters

o
s
t
T

ig. 6. Topography of the raw effect (the difference in cortico-spinal coherence
etween the DOWN and the UP condition) for the frequency bin [40, 60 Hz],
asked by the spatial pattern of the significant cluster.

f connected (sensor,frequency)-pairs that exceed the threshold
or the coherence Z-statistic. Four of theses clusters are signifi-
ant: (1) one cluster in the beta band over the contralateral motor
ortex (p = 0.001), (2) one cluster in the beta band over the ipsi-
ateral motor cortex (p = 0.007), (3) one cluster in the gamma
and over the contralateral motor cortex (p = 0.008), and (4)
ne cluster in the gamma band over the ipsilateral motor cortex
p = 0.016). These four clusters are shown in Fig. 7.

This finding confirms our previous conclusions: readiness to
espond modulates coherence over the ipsi- and the contralateral
otor cortex, and this modulation is observed in both the beta

nd the gamma band. This modulation is not a broadband phe-
omenon: in the coherence spectrum, there are two clear peaks,
ne over the beta and one over the gamma band. This is clear
rom the coherence spectra in Figs. 4 and 5, and from the fact
hat there are no significant clusters in the frequency bin [28,
2 Hz] (with center frequency 35 Hz), which is shown in Fig. 7.
ote that, in the analysis of the single EMG-MEG signal pair
ver the ipsilateral motor cortex (see Fig. 5), there was no sig-
ificant modulation in the beta band. In the last analysis, which
nvolves all EMG-MEG signal pairs, the beta band modulation
ver the ipsilateral motor cortex is significant. This is because
he cluster-based statistical test takes advantage of the fact that
he beta band modulation is observed in multiple adjacent MEG
ensors.

. Justification

Until now, we have deliberately ignored three important
ssues: (1) the exact specification of the null hypothesis that
s tested by the nonparametric statistical test, (2) the proof that
his test controls the FA rate, and (3) the issue of how to choose a
est statistic. For the first two points, we can make use of the the-

ry of nonparametric statistical tests. As compared to parametric
tatistics, the theoretical framework behind nonparametric sta-
istical tests is not well documented and not very accessible.
he central argument of this section (the so-called conditioning
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ig. 7. Topography of the raw effect (the difference in cortico-spinal coherence
patio-spectral pattern of the four significant clusters. The four clusters are den
requencies of the frequency bins.

ationale, see further) is formally identical to an argument in the
ntroductory chapter of a book by Pesarin (2001). The argument
lso appears in the context of parameter estimation for models
f achievement test data (Maris, 1998). However, it is not clear
ho deserves the credit for this argument. Because this argu-
ent is extremely powerful, we have tried to make it accessible

o the neuroscience community. When doing this, we needed
ome definitions, and these are introduced now.

.1. The structure in the data

In this paper, we only consider single-subject studies. In this
ype of studies, the units of observation are trials that belong
o different experimental conditions and the research question
s about the effect of these experimental conditions on the sig-
al that is observed in the trials. For completeness, it must be
oted that the trails can be assigned to the experimental condi-
ions according to two schemes: (1) the between-trials design, in
hich every trial is assigned to one of a number of experimental

onditions, or (2) the within-trials design, in which every trial
s assigned to all experimental conditions in a particular order.
he between-trials design is by far the most common in prac-

ice. In fact, there is only one type of within-trials study that is
erformed regularly: the within-trials activation-versus-baseline
tudy. This type of study involves multiple trials that consist of a
aseline (the interval preceding the stimulus) and an activation
ondition (the interval following the stimulus), which have to
e compared. In this paper, we only consider the between-trials
esign.

To describe the structure in the data, we make the usual
istinction between a dependent and an independent variable.
n the example, the dependent variable is the complete set of

EMG,MEG)-signal pairs in the two conditions. This variable is
enoted by D, and it is assumed to be a random variable. This
eans that we consider D as a variable whose value is the result

f a random process. The value of D that was actually observed

i
a

f

een the DOWN and the UP condition) for eight frequency bins, masked by the
by the numbers 1, 2, 3 and 4. The frequencies below the heads are the center

n the experiment (the realization of D) is denoted by d. In a
etween-trials study, the dependent variable D is an array of n
maller component data structures Dr(r = 1, . . . , n), each one
orresponding to one trial: every component Dr is a spatiotem-
oral data matrix observed in a given trial. In our example study,
he spatial dimension of the spatiotemporal matrix is formed by
single EMG channel and the 151 MEG channels.

The independent variable specifies the different experimental
onditions. In the example, there are two experimental condi-
ions: the upward going and the downward going hazard rate. In
eneral, the experimental conditions can differ with respect to a
umber of factors: stimulus type, task type, response type, char-
cteristics of the data in an epoch prior to the dependent variable,
tc. The independent variable is denoted by I. In a between-trials
tudy, I is an array of n smaller components Ir(r = 1, . . . , n),
ach one corresponding to one trial: every component Ir denotes
he condition to which the trial belongs. For instance, Ir equals

if the trial belongs to the UP condition and 2 if it belongs to
he DOWN condition. The independent variable I can be both
andom and fixed, but at this point it is not necessary to make
his distinction. Later, we will return to this issue.

.2. The null hypothesis

The null hypothesis of a permutation test is about the proba-
ility distributions of the trial-specific data structures Dr, which
re denoted by f (Dr = dr), and abbreviated by f (Dr). These
robability distributions do not have to be of a familiar type (e.g.,
ormal, binomial, Poisson). Instead, we only need the assump-
ion that there is some rule f that assigns probabilitiesf (Dr = dr)
o all possible realizations dr; we do not have to know what
his rule is. Now, the null hypothesis of a permutation test

nvolves that all n probability distributions f (Dr)(r = 1, . . . , n)
re equal:

(D1) = f (D2) = . . . = f (Dn). (2)
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n words, the null hypothesis involves that all trial-specific data
tructures Dr are drawn from the same probability distribution,
egardless of the experimental condition in which they were
bserved (Ir = 1 or Ir = 2).

The null hypothesis of many familiar parametric statistical
ests (i.e., the t-, the F-test, and their multivariate generaliza-
ions) also involves that all trial-specific data structures Dr are
rawn from the same probability distribution, regardless of the
xperimental condition. This may sound unfamiliar, because
n statistics handbooks the parametric null hypothesis is for-

ulated as equality of the two conditions with respect some
arameter of the probability distribution (typically, the expected
alue, but also the variance, the covariance, . . .). However, the
amiliar parametric statistical tests also make auxiliary assump-
ions about the probability distributions in the two conditions
i.e., normality and equal variances), and together with the null
ypothesis of interest (equality with respect to some parame-
er of interest) this implies equality of the complete probability
istributions.

Very often, researchers are willing to make the assumption of
tatistical independence between the trials. In fact, this assump-
ion is always made if one uses parametric statistical tests in
etween-trials studies. The assumption of statistical indepen-
ence will be violated if the signal in one trial depends on the
ignal in another trial. A biologically plausible form of statistical
ependence is temporal autocorrelation: correlation between the
ignals in neighboring trials. To avoid temporal autocorrelation,
t is good practice to have the trials separated by some minimum
ime interval (determined by the lag of the temporal autocorre-
ation). In this paper, as in parametric statistics, we make the
ssumption of statistical independence between the trials. We
eed this assumption to show that the permutation test is a valid
est of the null hypothesis of identical distributions in Eq. (2).

From the null hypothesis of identical distributions together
ith the assumption of statistical independence, it follows that

he probability distribution of the dependent variable D, f (D) =
(D1, D2, . . . , Dn), is exchangeable. Exchangeability means

hat the probability of D is invariant under permutation of the
omponent data structures Dr. Exchangeability is a useful con-
ept because it allows us to show the validity of the permutation
est in a straightforward way. In the following, we will present the
ermutation test as a statistical test of exchangeability, and not as
statistical test of the null hypothesis of identical probability dis-

ributions. However, this is just a matter of presentation: under
he assumption of statistical independence, the null hypothe-
is of identical probability distributions and exchangeability are
quivalent.

.3. The permutation test

In principle (but not in practice), one could test the hypothesis
f exchangeability by constructing the probability distribution
f some test statistic under this hypothesis, and by evaluating the

ctually observed test statistic under this distribution. However,
t turns out to be much easier to construct a particular condi-
ional probability distribution of the test statistic (also under
he hypothesis of exchangeability). This conditional probabil-

(
d
b
e
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ty distribution is the permutation distribution and the resulting
tatistical test is the permutation test. As will be shown in the
ollowing, using a conditional instead of the unconditional prob-
bility distribution results in exactly the same FA rate. Before
ntroducing the permutation distribution, we first describe a pro-
edure that effectively draws from it.

.3.1. Drawing from the permutation distribution
Drawing from the permutation distribution involves ran-

omly permuting the components of d, the realization of the
andom dependent variable D. For instance, in a study with four
rials, d has the following structure: (d1, d2, d3, d4). In a permu-
ation test, the data matrices in d are randomly permuted in such
way that every permutation of d has the same probability. With

our trials, there are 4! = 24 different permutations, and they all
ave a probability of 1/24.

Very often, it is sufficient to perform random partitions
nstead of random permutations. This is the case for all test
tatistics for which the order of the trial-specific data matrices
ithin the conditions is irrelevant. For instance, the coherence
ifference [|CDOWN(f )| − |CUP(f )|] is such a test statistic. To
how this, assume that the first two trials belong to the DOWN
ondition, and the last two belong to the UP condition. Now,
he coherence difference is identical for the following four per-

utations: (d1, d3, d2, d4), (d3, d1, d2, d4), (d1, d3, d4, d2), and
d3, d1, d4, d2). This is because the coherence values for the
rial pairs (d1, d3) and (d2, d4) are independent of the order of
he trials within the pairs. As a consequence, the permutation
istribution of the test statistic is identical to the so-called parti-
ioning distribution, which is obtained by randomly partitioning
he trials into two sets. The number of different partitions is
qual to the so-called multinomial coefficient, which depends
n the number of trials in each of the two conditions. In the
ini-example above, there are two trials in every condition, and

he multinomial coefficient is equal to (4!/(2!2!) = 6. In the fol-
owing, we will not make a distinction between the permutation
nd the partitioning distribution; one should remember that the
ermutation and the partitioning distribution are identical if the
est statistic is independent of the order of the trials within the
onditions.

.3.2. The permutation p-value is a conditional p-value
The permutation p-value is the p-value that is obtained in a

ermutation test. The permutation p-value is a conditional p-
alue because it is calculated under a conditional distribution.
o show this, let f (D) be the unknown probability distribution
f the dependent variable D. Exchangeability involves that f (D)
s invariant under permutation of the trial-specific data matrices

r. Now, the permutation distribution is the conditional distri-
ution of D given the unordered set of trial-specific data matrices
r = dr. This unordered set is denoted by {D} = {d}. In a study
ith four trials, d = (d1, d2, d3, d4), the unordered set {d} is the

ollection of all permutations of (d1, d2, d3, d4): (d1, d2, d3, d4),

d1, d2, d4, d3), (d1, d4, d3, d2), plus 21 more. The conditional
istribution of D given the unordered set {D} = {d} is denoted
y f (D|{D} = {d}). Now, if the unknown distribution f (D) is
xchangeable, then the conditional distribution f (D|{D} = {d})
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s the permutation distribution, which is known. In other words,
f f (D) is exchangeable, then the draws from f (D|{D} = {d})
re permutations of the observed array d, and each of these
ermutations has the same probability.

The previous paragraph was about a conditional probability
istribution of the dependent variable D. However, in statistical
esting, we are not interested in the complete D, but in some test
tatistic, which is a function of D and I, the independent variable.
his test statistic is random and it is denoted by S(D, I). The test
tatistic that was actually observed in the experiment (the real-
zation of S(D, I)) is denoted by S(d, I). Now, because we can
raw from the conditional distribution f (D|{D} = {d}), we can
alculate f (S(D, I)|{D} = {d}), the conditional distribution of
(D, I) given {D} = {d}. In Section 2, we have described how
(S(D, I)|{D} = {d}) can be approximated by randomly parti-

ioning the trials and constructing a histogram of the test statistics
(D, I). The Monte Carlo p-value is calculated under this his-

ogram, and therefore it is a conditional p-value. In Fig. 8, we
ive a schematic representation of the permutation test in which
e refer to the fact that, under exchangeability, f (D|{D} = {d})

s the permutation distribution.
The permutation test is based on a p-value that is calculated

nder the conditional distribution f (S(D, I)|{D} = {d}). There-
ore, the permutation test controls the FA rate in the following
onditional sense: given the unordered set {D} = {d}, under
xchangeability, the probability of observing a p-value that is
ess than the critical alpha-level is exactly equal to the critical
lpha-level.

.3.3. The permutation test controls the false alarm rate
nconditionally
At first sight, controlling the FA rate in this conditional sense
i.e., conditional on {D} = {d}) is not very appealing. After all,
ho is interested in the conditional FA rate of a statistical test
iven an event that occurs so rarely ({D} = {d}, the data that

ig. 8. Schematic representation of the permutation test. We use a box to denote
he random variable D|{D} = {d}. The observed realization of D (i.e., d) is
rinted black, and the draws from f (D|{D} = {d}) that are used to construct
he permutation distribution of the test statistic (i.e., d̂1, d̂2, d̂3, . . .) are printed
rey. The observed test statistic is denoted by S(d, I), and the draws from the
ermutation distribution by S(d̂1, I), S(d̂2, I), S(d̂3, I), . . .. The permutation
istribution of the test statistic is shown as an histogram, and the p-value is
enoted by the black tail-area under the permutation distribution. In the lower-
eft corner, we show possible values for d, d̂1, d̂2, and d̂3, which are all permuted
ersions of the same set of lowercase letters. Each lowercase letter represents
he data that was observed in a single trial.
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ere observed in this experiment, but regardless of the trial
rder)? However, what matters is not this rare event, but the
roperties of a decision that is made on the basis of this p-value.
he decision is about exchangeability of the probability distri-
ution of D: if the permutation p-value is less than some critical
lpha-level, this hypothesis is rejected; otherwise, it is main-
ained. The FA rate is a property of this decision rule. Now, the
A rate is equal to the critical alpha-level, regardless of whether
he p-value has a conditional or an unconditional interpretation.
his is because, for each of the events {D} = {d} on which we
ondition, the FA rate is equal to the same critical alpha-level.
herefore, if we average over the probability distribution of {D},

he FA rate remains equal to this critical alpha-level.
This can also be shown in a short derivation. In this derivation,

he FA rate under the conditional distribution f (D|{D} = {d})
s denoted by P(RejectH0|{D} = {d}, H0) and the false alarm
ate under the distribution f (D) by P(RejectH0|H0). We also
se

∑
{d} to denote the sum over all realizations of {D} and α to

enote the critical alpha-level.

(RejectH0|H0) =
∑
{d}

P(RejectH0|{D}={d}, H0)f ({D}={d})

=
∑
{d}

αf ({D} = {d})

= α (3)

n the first line of this derivation, we make use of the fol-
owing equality from elementary probability theory: P(A) =

bP(A|B = b)P(B = b). And in the third line, we make use
f the fact that the probabilities f ({D} = {d}) sum to 1.

We can conclude that an FA rate that is controlled under the
onditional distribution f (D|{D} = {d}) is also controlled under
he corresponding unconditional distribution f (D). This con-
lusion is a special case of the following general fact: for every
vent (in our case, falsely rejecting the null hypothesis) whose
robability is controlled under a conditional distribution, also
he probability under the corresponding marginal distribution
s controlled. This general fact will be called the conditioning
ationale.

.3.4. The permutation test for a random independent
ariable

Until now we have not made a distinction between random
nd fixed independent variables. For practical applications, there
s no need to make this distinction because the calculations are
dentical for both types of independent variables. However, a

ethodologist may be interested in the rationale behind this
act. We now describe the difference between random and fixed
ndependent variables. An independent variable I is random if a
eplication of the experiment may show a different value of I with
ome probability (possibly unknown). This can happen in two
ays: (1) the experimenter assigns the trials to the experimen-
al conditions by means of a randomization mechanism (which
sually calls a random number generator), and (2) the indepen-
ent variable depends on the subject’s behavioral response (e.g.,
ccuracy, speed). When I is a random variable, we have to make
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distinction between the random variable itself and its realiza-
ion, i.e. the value that was actually observed. The realization of
is denoted by i.

An independent variable I is fixed if a replication of the exper-
ment always shows the same value of I. This is the case if the
xperimenter assigns the trials to the experimental conditions
ccording to a fixed scheme (e.g., a fixed pattern that is repeated
very x trials). Until now, we have tacitly assumed that the inde-
endent variable was fixed; only the dependent variable D was
onsidered random.

If both the dependent and the independent variable are ran-
om, then we have to give a rationale for the permutation test
n terms of the joint probability distribution f (D, I) instead of
(D). It turns out that this rationale is very simple if the random

ndependent variable is treated as if it is fixed. In probability the-
ry, this conceptual move is called conditioning on the random
ndependent variable. Conditioning on the random independent
ariable involves that we express our hypothesis in terms of
he conditional probability distribution of the biological data D
iven the assignment I = i, which is denoted by f (D|I = i).
ow, our hypothesis involves that f (D|I = i) is exchangeable

or all realizations i.
We can use the conditioning rationale to show that con-

itioning on a random independent variable does not affect
he FA rate. We begin by observing that the permutation p-
alue is calculated under the double conditional distribution
(D|{D} = {d}, I = i), which is the permutation distribution
nder exchangeability of f (D|I = i). A statistical test based on
his p-value controls the FA rate under the conditional distri-
ution f (D|{D} = {d}, I = i) and, because of the conditioning
ationale, also under the unconditional distribution f (D).

.4. The choice of a test statistic

FA rate control by means of a permutation test does not
epend on the test statistic. This is an enormous advantage of
onparametric over parametric statistical testing. In paramet-
ic statistics, one can only use test statistics whose sampling
istribution under the null hypothesis is known. In contrast, in
onparametric statistics, one is free to choose any test statis-
ic one likes. This freedom has several advantages and here we
riefly discuss three of these advantages:

1) It provides a simple way to solve the MCP: instead of eval-
uating the difference between the experimental conditions
for each of the sensors separately, it is now evaluated by
means of a single test statistic for the complete sensor array,
for example the maximal value of the test statistic across the
sensor array. Thus, the multiple comparisons (one for every
sensor) are replaced by a single comparison, and therefore
the MCP does not exist any more.

2) It allows us to incorporate prior knowledge about the type of
effect that can be expected. Incorporating prior knowledge

will increase the sensitivity of the test. There are many bio-
logically motivated constraints that can be incorporated. For
example, when comparing sensor array data in two experi-
mental conditions, one can make use of the fact that adjacent

c
w
e
u
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sensors are likely to exhibit the same effect. Therefore, it
makes sense to use a test statistic that is based on a cluster-
ing of these adjacent sensors, such as the size of the largest
connected cluster that exceeds some threshold, or the sum
of the coherence Z-statistics in that cluster.

To illustrate the differential sensitivity of different test
statistics, we reanalyzed the example data set with a test
statistic that is not based on clustering of adjacent sensors:
the maximum of the sensor-specific coherence Z-statistics.
We reanalyzed the multiple EMG-MEG signal pairs at 17
frequency bins with center frequencies between 15 and 100
Hz. On the basis of the critical value of the maximum coher-
ence Z-statistic, only four (sensor,frequency)-pairs were
significant. This contrasts with the cluster-based test statis-
tic, that detected 211 significant (sensors,frequency)-pairs,
distributed over four clusters.

3) It is possible to localize the area of the largest effect by mak-
ing use of the maximum-statistic. When comparing sensor
array data in two conditions, one is almost always inter-
ested in the spatial and/or spectral localization of the effect.
The maximum-statistic allows to bridge the gap between the
interest in localized effects and the requirement to control
the FA rate.

For localization, we need a method to identify significant
arts of the spatio-spectral data structures. This is possible by
eans of a critical value that is applied at the level of the (sen-

or, frequency)-pairs or at the level of clusters. For every cluster,
cluster-level statistic is calculated by taking the sum of the

-statistics within the cluster. To control the FA rate of the local-
zation procedure, we need a critical value for the cluster-level
tatistics with the following property: Under the null hypothe-
is, the probability that one or more cluster-level statistics exceed
he critical value CV, is controlled at some critical alpha-level.
ormally,

(at least one cluster-level statistic ≥ CV) = α.

This is equivalent to

(Max(cluster-level statistics) ≥ CV ) = α.

Thus, the critical value for Max(cluster-level statistics) can
e used to identify significant clusters while controlling the FA
ate.

.5. Conclusions

We have shown that nonparametric statistical testing of
oherence differences is a viable alternative to its parametric
ounterpart. First, the FA rate of nonparametric statistical tests
oes not depend on auxiliary assumptions about the probability
istribution of the Fourier transforms. Second, nonparametric
tatistical testing offers complete freedom with respect to the

hoice of a test statistic. This property (1) provides a simple
ay to solve the MCP, (2) allows us to incorporate prior knowl-

dge about the type of effect that can be expected, and (3) allows
s to localize the effect.
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extrastriate areas during visual short-term memory maintenance. J Neurosci
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We have presented a theory for these nonparametric statistical
ests, which demonstrates their validity in a rigorous way. The
ull hypothesis of these statistical tests involves that the prob-
bility distributions of the signal in the different experimental
onditions are equal. Under the assumption of statistical inde-
endence between the trials, this null hypothesis is equivalent
ith exchangeability of the dependent variable. Exchangeabil-

ty is an intermediate concept that allows us to demonstrate the
alidity of the permutation test.

In this paper, we have only considered single-subject
etween-trial studies. However, the core of the theory is also
pplicable to single-subject within-trial studies and to multiple-
ubject studies (both between-subjects and within-subjects). In
ultiple-subject studies, we have to deal with the question
hether the effect in the sample can be generalized to a popu-

ation. This involves a so-called random-effect null hypothesis.
onparametric testing of random-effect null hypotheses requires
separate paper.
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