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Abstract
Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously

recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of

synchronization from time series. In this work, we first describe the multivariate linear methods most commonly used in neurophysiology and show

that they can be extended to assess the existence of nonlinear interdependences between signals. We then review the concepts of entropy andmutual

information followed by a detailed description of nonlinear methods based on the concepts of phase synchronization, generalized synchronization

and event synchronization. In all cases, we show how to apply these methods to study different kinds of neurophysiological data. Finally, we

illustrate the use of multivariate surrogate data test for the assessment of the strength (strong or weak) and the type (linear or nonlinear) of

interdependence between neurophysiological signals.
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1. Introduction

Oneof themost commonways of obtaining information about

neurophysiological systems is to study the features of the

signal(s) recorded from them by using time series analysis

techniques (e.g., Galka, 2000). If one is only interested in the

features of a single signal, univariate analysis can perfectly carry

out this task by itself. But an increasing number of experiments

are being carried out inwhich several neurophysiological signals

are simultaneously recorded, and the assessment of the

interdependence between signals can give new insights into

the functioning of the systems that produce them. Therefore,

univariate analysis alone cannot accomplish such a task, as it is

necessary to make use of the multivariate analysis.

In spite of their different aims and scopes, univariate and

multivariate time series analysis have an important point in

common: they have traditionally relied on the use of linear

methods in the time and frequency domains (see, e.g., Bendat
and Piersol, 2000). Unfortunately, these methods cannot give

any information about the nonlinear features of the signal. Due

to the intrinsic nonlinearity of neuronal activity, these nonlinear

features might be present in neurophysiological data, which has

led researchers to try out other techniques that do not present

the aforementioned limitation.

Univariate nonlinear time series analysis methods started to

be applied to neurophysiological data about two decades ago

(Babloyantz et al., 1985); see, e.g., Elbert et al. (1994), Faure

and Korn (2001), Galka (2000), Jansen (1991), Korn and Faure

(2003), Segundo (2001), Segundo et al. (1998), Stam (2005) for

surveys. As an example, the EEG has been characterized in

terms of its correlation dimension, a nonlinear index that has

been roughly interpreted as a measure of the irregularity or

complexity of a signal3 (see, e.g., Kantz and Schreiber, 2004).
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This index has been useful in sleep-wake research (Pereda

et al., 1998; Pradhan et al., 1995), mental load research

(Lamberts et al., 2000), monitoring the depth of anesthesia (van

den Broek et al., 2005; Widman et al., 2000) and in studies of

epilepsy (Pijn, 1990) to name but a few applications (see Stam,

2005 for a recent review).

Similarly, in the last few years several nonlinear multivariate

techniques have started to be used in neurophysiology, mainly

as a result of recent advances in information theory (see, e.g.,

Kraskov et al., 2004; Schreiber, 2000) and in the study of the

synchronization between chaotic systems (Boccaletti et al.,

2002; Pikovsky et al., 2001). Two relevant concepts are:

generalized synchronization (GS) (Rulkov et al., 1995), a state

in which a functional dependence between the systems exist,

and phase synchronization (PS) (Rosenblum et al., 1996), a

state in which the phases of the systems are correlated whereas

their amplitudes may not be. In fact, and unlike complete

synchronization (Fujisaka and Yamada, 1983) (which may exist

only between identical systems and entails the exact equality of

their variables), GS and PS may exist between nonindentical

systems even in the presence of noise. This makes GS and PS

methods appealing for the analysis of neurophysiological

signals.

The multivariate nonlinear time series methods derived for

the study of GS and PS, as well as those based on information

theory, are theoretically useful in neurophysiology due to their

ability to detect nonlinear interactions, which might not be fully

captured by linear techniques. Nevertheless, the application of

these methods to neurophysiological signals is not a plain

subject. On the one hand, these signals are often noisy, non-

stationary and of finite (sometimes quite short) size. On the

other hand, the theoretical subtleties underlying the calculation

of many nonlinear interdependence indexes from experimental

time series must be taken into account before applying them to

the data. In this work, we go through all these questions by

reviewing the theoretical and practical aspects of the multi-

variate nonlinear methods more frequently used for the analysis

of neurophysiological signals, ranging from recordings of

neuronal action potentials (spikes) to the electroencephalogram

(EEG) and the magnetoencephalogram (MEG) as typical

examples of integrated neuronal activity.

The paper is organized as follows: we first review the

traditional linear tools for the assessment of the interdepen-

dence between neurophysiological data in the time and

frequency domain; the nonlinear counterparts of the time

domain tools are also discussed. Then, we present methods

based on information theory as a natural extension of the

concept of linear statistical dependence between time series.

Next, we explore the idea of PS indexes, which assess the

existence of interdependence between the phases of the signals

regardless of whether their amplitudes are correlated. Subse-

quently, methods based on a state space reconstruction are

introduced, which analyze the interdependence between the

amplitudes of the signals in the reconstructed state spaces and

can be used for the assessment of GS. Further, we review the

study of the interdependence between signals that present

marked events. Finally, we conclude by comparing the
performance of the main multivariate nonlinear methods and

give some practical recipes.

Two appendixes are added at the end. Appendix A deals with

the use of multivariate surrogate data for the assessment of the

strength (strong or weak) and the character (linear or nonlinear)

of the interdependence between neurophysiological signals.

Appendix B is devoted to interesting Internet sites fromwhere it

is possible to gather information on how to put into practice the

different nonlinear methods reviewed in the text.

2. Cross-correlation function

2.1. Definition and estimation

This is one of the oldest and most classical measures of

interdependence between two time series. The cross-correlation

function measures the linear correlation between two variables

X and Yas a function of their delay time (t), which is of interest

because such a time delay may reflect a causal relationship

between the signals. In particular, if X causes Y, one may in

principle get a delay from the first signal to the second one. This

is, however, not necessarily always the case, since internal

delay loops of one of the systems or different distances to the

sources may change this interpretation (see, e.g., Quian

Quiroga et al., 2000).

If x(t) and y(t) are signals normalized to have zero mean and

unit variance, their cross-correlation function is:

CxyðtÞ ¼
1

N � t

XN�t

k¼1

xðk þ tÞyðkÞ (1)

where N is the total number of samples and t the time lag

between the signals. An example of the cross-correlation

function between two EEG signals is shown in Fig. 1. This

function ranges from �1 (complete linear inverse correlation)

to +1 (complete linear direct correlation), with Cxy(t) = 0

suggesting lack of linear interdependence for a given time

lag t. The sign of Cxy indicates the direction of correlation:

Cxy < 0 implies inverse correlation, i.e., a tendency of both

signals to have similar absolute values but with opposite signs,

and Cxy > 0 implies direct correlation, i.e., a tendency of both

signals to have similar values with the same sign. The value of

t that maximizes this function is usually taken as an estimation

of the delay between the signals, under the implicit assump-

tion that they are linearly related. It must be stressed again,

however, that this delay cannot be directly regarded as a

measure of the propagation time of, say, the electrical signal

in the cerebral cortex.

In practice, the significance of Cxy(t) is usually checked, at

the desired level of statistical confidence, by calculating the

residual cross-correlation from an ensemble of signals with the

same autocorrelation than the original ones but completely

independent from each other, a procedure that has also become

popular in the nonlinear methodology (see Appendix A). It

must be mentioned that the cross-correlation function at zero

time lag is the well-known Pearson’s product moment
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Fig. 1. (a) Cross-correlation function Cxy(t) between two EEG time series recorded from the two hemispheres in a rat. (b) Same as (a) but after taking a fourth power

of each data point for both time series. As Cxy(t) is a measure of linear relationship between these time series, the strong correlation in (a) is decreased by a simple

static nonlinear transformation in (b). The function at zero time lag is the linear correlation coefficient (rxy = 0.63 in (a), rxy = 0.25 in (b)).
correlation coefficient (rxy or simply r), an index frequently

used to measure the linear correlation between two variables.

2.2. Applications to neurophysiology

The first approaches to correlation measurements between

two simultaneously measured EEG signals were made more

than 50 years ago (Brazier and Barlow, 1956; Brazier and

Casby, 1952). Before the possibilities of the computation of

coherence spectra (see next section) in early 1960s, most of the

studies investigated the similarity and the time delay between

two EEG signals recorded from two separate regions of the

brain by the linear cross-correlation (see, e.g., Gevins and

Schaffer, 1980; Shaw and Ongley, 1972 for reviews). After the

availability of the fast Fourier transform (FFT) algorithm in

1965, frequency based measures like coherence and phase

spectra of neurophysiological signals such as EEG/MEG

became increasingly popular. However, the cross-correlation

function and its variant, the cross-correlogram histogram

(Perkel et al., 1967) remains one of the mostly used measures to

reveal the temporal coherence in the firing of cortical neurons

from their spike trains (see Brody, 1999; Nowak and Bullier,

2000 for reviews on the applicability of this method to this kind

of signals).

3. Coherence

3.1. Definition and estimation

The coherence function gives the linear correlation

between two signals as a function of the frequency.

Coherence, also termed as magnitude squared coherence

or coherence spectrum, between two signals is their cross-

spectral density function – which is in fact the Fourier

transform of Eq. (1) – normalized by their individual auto-

spectral density functions. These spectral quantities are

usually derived via the FFT algorithm (Cooley and Tukey,

1965). However, due to finite size of the neural data, one can

only have an estimate of the true spectrum (the periodogram).

Smoothing techniques are often used to improve the

performance of the spectral estimators. Thus, in practice,
EEG/MEG signals are usually subdivided into M epochs of

equal length, and the spectra are estimated by averaging the

periodogram over these epochs (Welch’s method), so that

coherence is normally calculated as:

k2xyð f Þ ¼
jhSxyð f Þij2

jhSxxð f ÞijjhSyyð f Þij
(2)

where h�i indicates average over the M segments.

For event-related data, spectra are estimated by averaging the

periodogram over trials (Andrew and Pfurtscheller, 1996). In this

case, however, what we have is not the true coherence, but an

estimation of this value, whose confidence interval must be

estimated, as detailed below. For this kind of non-parametric

spectral estimation, a trade-off has to be made regarding the

length of the data segment for analysis, which on the one hand

must be short enough to satisfy the condition of stationarity, and

on the other handmust be long enough to provide good frequency

resolution. Instead, a parametric approach can be used to obtain

spectral quantities of signals (Hannan, 1970), which is based on

the assumption that a signal can be described as the output of a

stochastic process, i.e., autoregressive (AR) or autoregressive-

moving-average (ARMA) process (Marple, 1987). This idea has

been used to represent EEG signals (Gersch, 1970), to enhance

spectral resolution (Franaszczuk et al., 1985) or to classify EEGs

(Gersch et al., 1980). See Blinowska et al. (1981), Davis and

Lutchen (1991), Guler et al. (1995), Spyers-Ashby et al. (1998)

for comparative performances of spectral estimators based on

FFT and parametric methods.

3.2. Properties of coherence

The estimated coherence ranges between 0 and 1. For a given

frequency f0, kxy( f0) = 0 indicates that the activities of the signals

in this frequency are linearly independent, whereas a value of

kxy( f0) = 1 gives the maximum linear correlation for this

frequency. The confidence limit for coherence at the 100% a

(a is defined by the confidence probability), is given by

1 � (1 � a)1/M � 1 (Bendat and Piersol, 2000). For a recent

theoretical discussion on the estimation of this limit, see Wang

and Tang (2004). Additionally, specific methods have been
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derived for a reliable estimation of the coherence function aswell

as its confident limits in point processes such as sequences of

neural action potentials (Jarvis and Mitra, 2001; Pesaran et al.,

2002). Other factors that must be carefully considered before

EEG coherence estimation are reference electrodes and volume

conduction. As an example, we can mention that the application

of this technique to study the relationship betweenEEG channels

recorded with electrode Cz as common reference is problematic,

because this active common source may introduce interdepen-

dence between the electrodes that is not actually present in the

signals.We refer the interested readers to Essl andRappelsberger

(1998), Nolte et al. (2004), Nunez et al. (1999) and Nunez et al.

(2001) for detailed treatments of these ideas.

Another important point to take into account is that

coherence is sensitive to both phase and amplitude relationships

between the signals. Therefore, the relative importance of

amplitude and phase covariance in this index is not altogether

clear (Lachaux et al., 1999; Varela et al., 2001). If one is only

interested in the relationship between the phases without any

influence of the amplitudes then other methodology is

necessary for this aim, as described in Section 8.

3.3. Applications to neurophysiology

Coherence was first applied to EEG signals more than 40

years ago (Adey et al., 1967a; Brazier, 1968; Walter and Adey,

1963; Walter et al., 1966). One of the pioneering efforts was to

demonstrate the continuous coherence spectra of the EEG of an

astronaut during the Gemini flight GT-7 (Adey et al., 1967b,

1967c). After the introduction of the FFT, the coherence

measure could be calculated within a reasonable time and it has

been applied to EEG or MEG signals in several cognitive or

clinical conditions. It is beyond the scope of the present paper to

list all these applications; however, we mention a few key

articles that reviewed the applications of coherence to neural

data (Dumermuth and Molinari, 1991; French and Beaumont,

1984; Shaw, 1984; Thatcher et al., 1986; Zaveri et al., 1999).

4. Nonlinear correlation coefficient

4.1. Definition and estimation

This measure is primarily a nonparametric nonlinear

regression coefficient, which describes the dependency of X

on Y in a most general way without any direct specification of

the type of relationship between them (Lopes da Silva et al.,

1989; Pijn et al., 1990). The underlying idea is that if the value

of X is considered as a function of the value of Y, the value of Y

given X can be predicted according to a nonlinear regression

curve. The variance of Y according to the regression curve is

termed as the explained variance, since it is explained or

predicted by the knowledge of X. The unexplained variance is

estimated by subtracting the explained variance from the

original one. The correlation ratio h2 describes the reduction of

variance of Y that can be obtained by predicting the Y values

from those of X according to the regression curve as h2 = (total

variance � unexplained variance)/total variance.
Since this computation involves a step of nonlinear

regression, one can only get an estimate of this correlation

ratio between two signals of finite data points. The estimate of

the above ratio measure is termed as nonlinear correlation (or

regression) coefficient (h2). In practice, a scatter plot of Y versus

X is studied. The values of X are subdivided into bins; for each

bin, the X value of the midpoint ( pi) and the average value of Y

(qi) are calculated. The curve of regression is approximated by

connecting the resulting points ( pi, qi) by segments of straight

lines. The nonlinear correlation coefficient between demeaned

signals X and Y is then calculated as follows:

h2yjx ¼
PN

k¼1 yðkÞ
2 �

PN
k¼1ðyðkÞ � f ðxiÞÞ2PN

k¼1 yðkÞ
2

(3)

where f(xi) is the linear piecewise approximation of the non-

linear regression curve.

The measure of association in the opposite direction h2xjy can
be calculated analogously.

4.2. Asymmetry, time delay and direction in coupling

The estimator h2yjx ranges from 0 (Y is completely independent

ofX) to 1 (Y is fully determined byX). If the relationship between

these signals is linear, h2xjy ¼ h2yjx, and thismeasure approximates

the squared linear regression coefficient r2. For a nonlinear

relationship, h2xjy 6¼ h2yjx and the difference Dh2 ¼ h2xjy � h2yjx
indicates the degree of asymmetry of the nonlinear coupling. The

nature of the interdependence can be also traced by using

multivariate surrogate data, as detailed in Appendix A.

By studying the index h2, it is also possible to estimate the

delay in the coupling between the signals. For this purpose, h2

has to be calculated as a function the time delay t. As we

already showed in the linear case, the delay at which the

maximum value for h2 is obtained is used as an estimate of the

time delay between the signals. Indeed, if X causes Y, tyjx
(corresponding to) will be positive and txjy (corresponding to

h2yjx) will be negative, so that the difference Dt ¼ txjy � tyjx will
be also positive.

On combining the information of asymmetry and of time

delay in coupling, the following direction index has been

recently proposed (Wendling et al., 2001) to provide a robust

measure on the direction of coupling:

Dxjy ¼ 1
2
½sgnðDh2Þ þ sgnðDtÞ� (4)

If Dxjy = +1 (or �1), X ! Y (or Y ! X) can be concluded.

Dxjy = 0 indicates bidirectional (X $ Y) coupling between the

signals.

4.3. Applications to neurophysiology

Although the index h2 was proposed almost 15 years back and

offers a very general formulation of coupling analysis with little

assumptions, its applications have been confined exclusively to

epileptic EEGdata analysis (Meeren et al., 2002; Pijn et al., 1990;

Wendling et al., 2001). One of the first applications involved

the recording of epileptiform after-discharges from both
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hippocampus of rats (Filipe et al., 1989).Here, values of h2 and r2

were almost identical for most of the initial epochs, indicating a

predominantly linear relationship between recording sites. But

for the later epochs, h2 was significantly larger than r2, indicating

an emergence of strong nonlinearity; this nonlinearity became

evident when the complexity of the after-discharges increased in

the formation of paroxysmal bursts of multiple spikes. A follow

up study (Fernandes de Lima et al., 1990) investigated the

interhemispheric transfer of hippocampal after-discharges by

estimating time delays through h2. Thus, the authors decipher the

nature (linear or nonlinear) of coupling and the delay (lead or lag)

in transmissionbetweenepileptic foci andneighboringbrain sites

in rats (Meeren et al., 2002). Importantly, from these results they

also suggested that absence seizures have a localized cortical

origin. However, it must be pointed out that, as already

commented, the interpretation of the delay between the signals

in terms of signal transmission time must be done carefully, as in

general it is notpossible tobe sure that the latter one is the causeof

the former one.

Recently, this nonlinear regression technique has also been

applied to study the spatiotemporal organization of epilepto-

genic networks in human (Bartolomei et al., 2001; Chavez

et al., 2003; Wendling et al., 2001). In order to detect a causal

coupling between distant neural populations, the nonlinear

regression coefficient (h2) and the direction index (D) were first

applied (Bartolomei et al., 2001; Wendling et al., 2001) to a

neurophysiologically relevant model of EEG generation

(Jansen and Rit, 1995; Lopes da Silva et al., 1976). The

advantages of using this simulated model are two-fold: (i) for

appropriate choices of parameters, both ictal and interictal EEG

can be simulated, and (ii) the coupling parameters are explicitly

introduced in the model. These two indices were then measured

on stereo-EEG signals of human subjects with temporal lobe

epilepsy. The results showed that both indices described

abnormal functional interactions between cerebral structures of

the temporal regions during seizures. In the previous studies, h2

and D indexes were applied to broadband EEG signals, yet the

epileptic EEG signals have been found to exhibit a dynamically

varying time-frequency structure (Zaveri et al., 1992).

Computing h2 to narrowband EEG signals, a significant change

of coupling in the focal area was found several minutes before

seizure onset in the frequency band between 10–25 Hz, results

that were corroborated afterwards by phase synchrony analysis

(Chavez et al., 2003).

5. Granger causality

5.1. Definition and estimation

In neurophysiology, a question of great interest is whether

there exists a causal relation between two brain regions without

any specific information on direction. Both the cross-

correlation function and the nonlinear correlation coefficient

are, in principle, able to indicate the delay in coupling, but

inferring causality from the time delay is not always

straightforward (Lopes da Silva et al., 1989). This encouraged

the researchers to develop new methods explicitly tailored for
this aim. One of the first attempts involved the method of

structural equation modeling (Asher, 1983), where the direction

of coupling is first assumed and then the coupling strength is

assessed by linear correlation analysis. Methods with similar

ideas have been recently applied to neuroimaging data (Buchel

and Friston, 2000; McIntosh and Gonzalez-Lima, 1992, 1994).

The importance of temporal ordering in the events (i.e., past

and present may cause the future but not vice versa; Granger,

1980) to the inference of causal relations was first mentioned by

the great mathematician Norbert Wiener, who defined causality

in a statistical framework as follows: for two simultaneously

measured signals, if one can predict the first signal better by

incorporating the past information from the second signal than

using only information from the first one, then the second signal

can be called causal to the first one (Wiener, 1956). This general

definition was later given a mathematical formulation by Nobel

Prize winning economist Clive Granger in the context of linear

stochasticmodeling of time series analysis (Granger, 1969). Like

Wiener,Granger argued that ifX is influencingY, then addingpast

values of the first variable to the regression of the second onewill

improve its prediction performance, which can be assessed by

comparing theunivariate andbivariate fitting of theARmodels to

the signals. Thus, for the univariate case, one has:

xðnÞ ¼
Xp

k¼1

axkxðn� kÞ þ uxðnÞ;

yðnÞ ¼
Xp

k¼1

aykyðn� kÞ þ uyðnÞ
(5)

where axk and byk are the model parameters, p the model order,

and ux and uy are the uncertainties or the residual noises

associated with the model. Here, the prediction error depends

only on the past values of the own signal.

On the other hand, for bivariate AR modeling,

xðnÞ ¼
Xp

k¼1

axykxðn� kÞ þ
Xp

k¼1

bxykyðn� kÞ þ uxyðnÞ;

yðnÞ ¼
Xp

k¼1

ayxkyðn� kÞ þ
Xp

k¼1

byxkxðn� kÞ þ uyxðnÞ
(6)

where the prediction error for each individual signal depends on

the past values of both signals.

The prediction performance for both models can be assessed

by the variances of the prediction errors:

VXjX ¼ varðuxÞ andVY jY ¼ varðuyÞ for univariate ARmodel

VXjX ;Y ¼ varðuxyÞ andVY jY ;X ¼ varðuyxÞ
for bivariate ARmodel

(7)

where var(�) indicates variance operator, XjX_ and XjX_,Y_
indicate predicting X by its past values alone and by past values

of X and Y, respectively. If VXjX_,Y_<VXjX_ then Y causes X in the

sense of Granger causality. The Granger causality of Y to X can

be quantified as:

GY!X ¼ ln

�
VXjX

VXjX ;Y

�
(8)
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If the past of Y does not improve the prediction of X, then

VXjX_,Y_ � VXjX_ and the causality measure will be close to zero.

Any improvement in prediction of X by the inclusion of Y leads

to decrease of VXjX_,Y_, thereby increasing the causality

measure. The Granger causality for opposite direction, from

X to Y, is defined accordingly. If both GX ! Y and GY ! X are

high, it indicates a bidirectional coupling or a feedback

relationship between the signals.

5.2. Nonlinear Granger causality

The original formulation of causality by Granger assumes

that the interacting systems are linear. Accordingly, if the

signals are nonlinear, then any measure based on linear

regression such as Granger causality may not be appropriate. In

the field of economics, there have been some attempts to

modify the Granger causality to incorporate nonlinear proper-

ties of the signals (Teräsvirta, 1998; Warne, 2000). One of the

factors limiting a nonlinear extension of Granger causality in

neurophysiology is that the model selected for implementing

this measure must be appropriately matched to the dynamical

characteristics of the signals, and yet there is no general

framework of nonlinear models that are capable of capturing

the broad spectrum of characteristics of neural signals. An

immediate but approximate solution is to substitute the globally

nonlinear model by a locally linear one (Freiwald et al., 1999),

where the AR model parameters depend on the current values

and a different linear regression model is used for each point of

the state-space (Tong, 1990). Recently, a further extension of

nonlinear Granger causality has been proposed, which aims to

detect whether the causal relation between two signals is due to

direct coupling between them or due to a third system that

drives them (Chen et al., 2004). However, this extended

nonlinear Granger causality index has only been applied to

simulated signals, and its practical usefulness is yet to be

demonstrated.

5.3. Applications to neurophysiology

Although Granger causality was introduced more than 35

years back, most of its applications to neural data analysis are

within the last six years. One of the first studies investigated for

the existence of directional or causal interactions by analyzing

local field potentials (LFPs) from the macaque inferotemporal

cortex (Freiwald et al., 1999). Directional interactions were

surprisingly found within the same cortical regions at the same

level of the processing hierarchy. Directional interactions were

also found between spatially separate neuronal populations.

Further, it was found that each state of the system is influenced

by its own past with up to 60 ms delay, as defined by the AR

model order. This method was also applied to the LFP data

recorded from two separate areas (primary and higher visual

areas) of the cat visual cortex, in order to investigate the role of

bottom-up and top-down interactions in a go/no-go task

(Bernasconi et al., 2000) or in a stimulus expectancy task

(Salazar et al., 2004). For both cases, task-specific changes in

the directed interareal couplings were reported. Recently, a
frequency specific Granger causality measure was utilized in

LFP recordings from somatosensory and motor cortices of

macaque monkeys as they performed a motor maintenance in a

visual discrimination task (Brovelli et al., 2004). Synchronous

oscillations in the beta frequency band (�20 Hz) formed a large

scale cortical network with directed influences from primary

somatosensory and inferior posterior parietal cortical areas to

motor cortex during the task. In human, a time-variant Granger

causality measurewas applied to EEG signals from the standard

color-word conflict Stroop task (Hesse et al., 2003). In conflict

situations, a dense cortical network was formed after 400 ms of

stimulus presentation, and there was a strong preference of

direction of influence from posterior to anterior cortical

regions.

5.4. Comments on Granger causality

True causality can only be assessed if the set of two time

series contains all possible relevant information and sources of

activities for the problem (Granger, 1980). From the

neurophysiological point of view, rarely two channels of

observations fulfill this requirement of completeness of

information. As a result, one has to be careful before

emphasizing the aspects of causality obtained from bivariate

time series. Multiple pairwise analysis is also unable to

circumvent this problem (Franaszczuk et al., 1985). There is no

unique way either to determine the size of the information set

relevant for a given problem. Thus, any result of causality

analysis should be interpreted with caution. However, for

practical neural data analysis, the activities are recorded often

from multiple spatial positions in the brain, so one can create a

multivariate modeling framework containing all available

information from different channels.

6. Multichannel analysis

Most of the methods discussed so far are defined for two

signals only: a functional relationship is obtained by pairwise

analysis of bivariate signals. However, as discussed earlier, a

bivariate method for each pair of signals from a multichannel

set of signals does not account for all the covariance structure

information from the full data set. In a simple network

consisting of one driver and two responses, pairwise analysis

is likely to find some correlation between the two responses

due to the common driver component, even when the

response signals might be fully independent. As a result, a

different and maybe erroneous network patterns can be

obtained if pairwise analysis is performed as opposed to a

genuine multichannel method of correlation analysis (Kus

et al., 2004).

6.1. Partial coherence

The first extension of bivariate analysis was made by

incorporating a third signal into the estimation of a new

coherence measure, termed partial coherence. For signals X–Z,

the underlying point is to subtract linear influences from other
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processes to obtain the partial cross-spectrum between X and Y

given all the linear information of Z:

Sxyjzð f Þ ¼ Sxyð f Þ � Sxzð f ÞS�1
zz ð f ÞSyzð f Þ (9)

Similarly, one can obtain the partial auto-spectra Sxxjz( f) and

Syyjz( f). The squared partial coherence is estimated as follows

(Bendat and Piersol, 2000):

k2xyjzð f Þ ¼
jhSxyjzð f Þij2

jhSxxjzð f ÞijjhSyyjzð f Þij
(10)

where, as in the case of normal coherence, h�i indicates average
over M segments. The partial coherence kxyjz( f) can be repre-

sented as the fraction of coherence between X and Y that is not

shared with Z. Thus, if three signals are fully coherent with each

other, partialization of the coherent activity between any two

signals with the remaining signal as the predictor would lead to

a zero coherence. In other words, if Z contributes to the linear

interdependence between X and Y, then the partial coherence

kxyjz( f) will be smaller than the ordinary coherence kxy( f).
However, it must be noted that partial coherence is based on the

assumption of linearity, so any failure in its reduction might be

also caused by nonlinear interaction between signals.

In neurophysiology, partial coherence was first applied to

identify epileptic foci using three electrodes (Gersch and

Goddard, 1970). To this date, partial coherence has been

applied to investigate the nature of connectivity and causal

information in various neural signals from spike trains (Cohen

et al., 1995), hippocampal field oscillations (Kocsis et al.,

1999), intracortical EEG (Lopes da Silva et al., 1980; Mirski

et al., 2003), scalp EEG (Liberati et al., 1997; Tucker et al.,

1986), and functional magnetic-resonance image (fMRI) data

(Sun et al., 2004). However, a recent study demonstrates that

the partial coherence measure is very sensitive to noise

contamination (Albo et al., 2004): if different signals have

different signal-to-noise ratio, this measure tends to identify the

signal with the highest ratio as the most influential or driver

irrespective of the genuine pattern of underlying connectivity.

6.2. Partial directed coherence

This method was introduced recently (Baccala and

Sameshima, 2001b; Sameshima and Baccala, 1999) and

provides a frequency domain measure for Granger causality.

But unlike the original Granger causality, which was introduced

for bivariate time series, partial directed coherence (PDC) is

based on modeling time series by multivariate autoregressive

(MAR) process. Consider an m-dimensional (m signals

simultaneously measured, X1, X2, . . ., Xm) MAR process with

order p as follows:

x1ðkÞ
x2ðkÞ
..
.

xmðkÞ

0
BBB@

1
CCCA ¼

Xp

r¼1

Ar

x1ðk � rÞ
x2ðk � rÞ

..

.

xmðk � rÞ

0
BBB@

1
CCCAþ

e1ðkÞ
e2ðkÞ
..
.

emðkÞ

0
BBB@

1
CCCA (11)

where ei (k) represents independent Gaussian white noise with

covariance matrix
P

, and A1, A2, . . ., Ap are the coefficient
matrices (m � m). This time domain representation can be

translated to frequency domain by computing the power spec-

tral density matrix:

Sð f Þ ¼ Hð f Þ
X

HHð f Þ (12)

where the superscript (�)H indicates the Hermitian transpose. H
is called the transfer function matrix (Hð f Þ ¼ Ā

�1

ð f Þ ¼ ½I� Að f Þ��1
) where A( f) is essentially the Fourier

transform of the coefficients. Let Āð f Þ ¼ ½ā1ð f Þā2
ð f Þ � � � āmð f Þ� and āi jð f Þ is the i,jth element of Āð f Þ. Then,
the PDC measure from signal j to signal i is given by:

pi jð f Þ ¼
āi jð f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

āHj ð f Þā jð f Þ
q (13)

The PDC from j to i represents the relative coupling strength

of the interaction of a given source, signal j, with regard to some

signal i, as compared to all of j’s connections to other signals

(Fig. 2). Thus, PDC ranks the relative strength of interactionwith

respect to a given signal source while fulfilling the following

properties: 0 � jpi jð f Þj2 � 1 and
Pm

i¼1jpi jð f Þj2 ¼ 1, for all

1� j � m. For i = j, the PDC pii( f) represents how much of Xi’s

own past is not explained by other signals.

A very similar measure of causal influence, called directed

transfer function (DTF) was introduced as follows (Kaminski

and Blinowska, 1991):

#i jð f Þ ¼
Hi jð f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hHi ð f Þhið f Þ
q (14)

DTF uses the elements of the transfer function matrix H,

whereas PDC uses those of Ā. Since, unlike DTF calculation,

the computation of PDC does not involve any matrix inversion,

it is computationally more efficient and more robust than DTF.

Further, PDC is normalized with respect to the total inflow of

information, but DTF is normalized with respect to the total

outflow of the information. For comparative results between

these two methods, see (Baccala and Sameshima, 2001a,

2001b; Kus et al., 2004).

6.2.1. Comments on multivariate autoregressive modeling

The successful estimation of PDC or DTF depends primarily

on the reliability of the fitted MAR model, since all the

necessary information is derived from the estimated model

parameters. In practice, this issue boils down to the choice of an

optimal model order and an optimal epoch length. If the model

order is too low, the model will not capture the essential

dynamics of the data set, whereas if the model order is too high,

it will also capture the unwanted component (i.e., noise),

leading to over-fitting and instability. Although there is no

direct cook-book approach, several criteria are available (e.g.,

Akaike Information Criteria, False Prediction Criteria or

Schwartz’s Criteria) that can be used as a guideline for the

selection a proper model order (Marple, 1987). Most of these

criteria were originally proposed for univariate AR modeling,

so special care should be taken to look for consistent results by

comparing the performances of different criteria on a same data
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Fig. 2. A simulated network consisted of five systems (Xi, i = 1, . . ., 5) with causal and direct influences between several of them (upper panel). Each system was

represented by AR model and causality was introduced as time delay in the model. Corresponding PDCs are plotted in a 5 � 5 matrix. Frequency is expressed in

arbitrary units. Off-diagonal PDC is found whenever there is any direct influence. See Baccala and Sameshima (2001b) for details.
window. Further, if there are several data epochs from the same

experiment, it is suggested to fix a common model order for all

the available epochs to be analyzed even if the optimal model

orders may vary between epochs. One of the intermediate but

technically important steps is the use of proper algorithms for

the estimation of MAR parameters. There is an overwhelming

majority of works using the method of Levinson–Robinson–

Wiggins, abbreviated as LWR algorithm, due to its robust

performance (Haykin and Kesler, 1983; Morf et al., 1978). The

next crucial question is how to choose the proper window size:
MAR model assumes that the underlying process is stationary,

but neurophysiological and cognitive events are themselves

transient and may rapidly change their states, insomuch as the

neural signals are often non-stationary (Blanco et al., 1995;

Kawabata, 1973; Thakor and Tong, 2004). Theoretically, the

span of the chosen window can be as short as p + 1 data points,

where p is the model order. Practically, such a short window

would be impossible to achieve for a single realization of the

multivariate data set. As a result, a balance has to be maintained

between time resolution (limited by stationarity) and the



E. Pereda et al. / Progress in Neurobiology 77 (2005) 1–3710
statistical properties of the fitted model. As a rule of thumb,

the window length should possess a few times more data

points than the number of estimated model parameters. If the

signals are found to be non-stationary, time varying MAR

model must be adopted, where the model parameters are

estimated on a recursive basis (Arnold et al., 1998; Gath

et al., 1992; Moller et al., 2001). An alternative solution was

offered recently (Ding et al., 2000), where the collection of

neural signals from successive trials is treated as an ensemble

of realizations of a non-stationary stochastic process with

locally stationary segments. The underlying idea is simple

and elegant: if the data from successive trials of an

experiment are assumed to be different realizations of the

same stochastic process, we can obtain the relevant statistical

properties of the signals by ensemble averaging as opposed

to temporal averaging. In this way, the window length can be

as small as the order of the MAR model (Liang et al., 2000,

2002).

6.2.2. Applications to neurophysiology

Since the concept of causality in terms of directional

influence between separate brain regions is neurophysiologi-

cally very relevant and appealing, the application of PDC and

DTF is becoming gradually popular in the field of neural data

analysis. Further, both of these methods make use of the global

covariance structure in a single multivariate modeling frame-

work.

First we mention the application of these causality

measures to neural spike train data. Since MAR model

works primarily for continuous data, usually the spike trains

are convolved with a Gaussian kernel (Baccala and

Sameshima, 2001b; Kaminski et al., 2001). Such pre-

processing is especially appropriate when the spike train

contains a large number of spikes and the recordings are at

least weakly stationary, but may cause distortion of original

phase information when the spike trains are sparse (Zhu et al.,

2003). PDC analysis showed a clear directional preference

from somatosensory cortex to medial thalamic nucleus during

whisker twitching than other behaviors in freely moving rats

(Fanselow et al., 2001); this suggests that cortex plays a

bigger role in sending signal triggering thalamic bursting

priming the thalamocortical loop for enhanced signal

detection. Another PDC study investigating exploratory

activity of rats also found consistent predominant flow of

information from cortex to thalamus (Baccala and Same-

shima, 2001b). The application of DTF to spike trains of

motor neurons in primary motor cortex of the monkey

revealed an increase in inter-neuronal coupling during

adaptation (Zhu et al., 2003). Restoration of coupling strength

to a pre-adaptation level was observed at the end of adaptation

period, but the connecting architecture of the neuronal

network tended to change as a result of learning and

adaptation. From this latter result, the authors suggested that

changing the network topology may be more efficient than

changing the coupling strength when the target is to achieve a

fast response. The MARmodeling thus shows its usefulness to

characterize changing interaction patterns between neurons.
The DTF analysis of the LFPs recorded from rat’s

hippocampus and other regions of the limbic system showed

a propagation of signals from CA1 field of hippocampus to

enthorhinal-piriform area via subiculum area during locomo-

tion phase but not during resting phase (Korzeniewska et al.,

1997). A short-term DTF analysis revealed causal influences on

a millisecond time scale in the visual cortex of monkeys while

performing task demanding visual pattern discrimination

(Liang et al., 2000). It is noteworthy that, by adopting the

short-window based adaptive MAR approach by Ding et al.

(2000), it was possible to demonstrate the rapidly changing

neuronal network associated with feedforward, feedback and

lateral influences in the ventral regions of the primary visual

cortex. This opens up a new possibility to analyze neural data

when the underlying neuronal dynamics is comprised of

distinct but short cognitive processing steps. Further applica-

tions of causality measures on large scale brain signals recorded

from human are found in numerous research findings

(Franaszczuk et al., 1994; Ginter et al., 2001; Kaminski

et al., 1995; Kus et al., 2004; Supp et al., 2004; Wang et al.,

1992).

6.2.3. Practical remarks

Here, we mention some remarks that need further attention

when applying multivariate linear modeling to determine

causal relation in neural datasets. Causality measures such as

PDC or DTF are meaningful only in statistical sense, because

their computation depends completely on an estimation of the

model parameters. The statistical properties of these new

measures, unlike those of correlation or coherence, have not

been yet properly investigated. For example, the confidence

limit for testing for nonzero PDC at fixed frequencies is not

analytically available (see Kaminski et al., 1997, 2001) for

some suggestive limit by simulations). This problem becomes

acute for higher order models due to the variability of its

estimated parameters. Moreover, we still do not have a clear

idea as to how certain pre-processing steps (such as re-

referencing or smoothing) affect the causality measures.

Finally, it should be mentioned that DTF itself cannot

distinguish between indirect or direct interaction. PDC can

detect direct interaction, so it must be used in combination with

DTF to get further information on directional influence. But

most importantly, no measures based on MAR models, such as

bivariate models, can detect true causality or provide

directional information if the common input is not included

in the model. Nevertheless, we feel that multivariate methods

are a valid alternative to pairwise correlation methods whenever

a set of multichannel observations is available.

7. Information-theory based methods

It might be said that the different methods presented hitherto

have a point in common: they all try to establish whether there

is any common information between the time series as a sign of

their relationship. Therefore, it has become usual to investigate

directly the existence of such relationship by means of

information-theoretic tools.
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7.1. Mutual information

7.1.1. Definition

The bases of information theory were derived almost 60

years back (Shannon and Weaver, 1949). Central to this theory

is the concept of entropy, which can be defined as the average

amount of code necessary to encode the draws of a discrete

variable X with M possible outcomes Xi, each of them with

probability pi. Thus, the Shannon entropy of this set of

probabilities is:

IX ¼ �
XM
i¼1

pi log pi (15)

This entropy is positive and is measured in bits if the base of

the logarithm is 2. The outcomes of X can be partitioned intoM
bins and a first estimation for pi is given by the fraction of

occurrences of Xiði ¼ 1; . . . ;MÞ after N outcomes. Roughly

speaking, entropy can be regarded as a measure of the

uncertainty of the outcome. Thus, a uniform distribution, in

which all the states have the same probability, will have the

largest entropy, whereas a delta-type distribution will have

minimum entropy (see Fig. 3).

Let us now consider a pair of random variables X and Y. The

mutual information (MI) between them is defined as:

MIXY ¼
X

pi j log
pi j
pi p j

(16)

where pij is the joint probability of X = Xi and Y = Yj. This

measure, which has been also referred to as ‘‘transinformation’’

(Eckhorn and Popel, 1974) or ‘‘redundancy’’ (Palus, 1996;

Panzeri et al., 1999), essentially tells how much extra informa-

tion one gets from one signal by knowing the outcomes of the

other one. Thus, if there is no relationship between them,

pij = pipj, so that the MI is zero for independent processes.

Otherwise, MIXYwill be positive, attaining its maximal value of
Fig. 3. One thousand random samples following a uniform distribution (in the [0,1]

and a Poisson distribution (with parameter l = 10, right). The histograms and the co

estimated Shannon entropy IX (Eq. (15)) is indicated for each distribution. The distrib

since all the possible states have approximately the same probability.
IX for identical signals, although it can be modified to be equal

to 1 for this latter case (Wang et al., 2005). MI is a symmetric

measure (i.e., MIXY = MIYX), and therefore it does not provide

any information about the direction of the interaction.

MI is also very useful to study the relationship between a

stimulus and its response (Borst and Theunissen, 1999; London

et al., 2002). In this context, if we regard X as the stimulus and Y

as its response, IYwould be the entropy of the response, whereas

the conditional entropy IYX would be this same entropy given a

certain stimulus. Here, MI represents the reduction in the

uncertainty of the response due to the knowledge of the

stimulus, and in fact it can also be obtained as MIXY = IY � IYX.

Fig. 4 shows an example in the analysis of neural action

potentials.

7.1.2. Estimating mutual information from time series

Despite the apparent simplicity of themeasure, the practical

estimation of MI from experimental time series is not an easy

task. Indeed, as commented above, the easiest way to estimate

the probabilities pi and pj from the corresponding variables

consists in obtaining the histograms of the series of outcomes

and taking, say, pi as the ratio between the number of samples in

the i-th bin of the histogram of X and the total number of

samples. But one limitation of MI is that, to get an accurate

estimate of this measure by using such histogram-derived

probabilities, one should have a large number of samples and

small bins (see for instance Quian Quiroga et al., 2002a).

Moreover, if we take bins of the same size for each individual

variable, it might happen that there are several values of pij = 0

even if pi and pj are not. These null joint probabilities produce

an underestimation of MIXY that cannot be easily cope with

(Kraskov et al., 2004). Optimized estimators can be defined by

using adaptive bin sizes geared to produce homogeneous

values of pij (Darbellay and Vajda, 1999; Fraser and Swinney,

1986). Still, they also suffer from systematic errors, that can be
interval, left), a normal distribution (with zero mean and unit variance, middle)

rresponding probabilities are estimated taken 40 bins of a size in each case. The

ution with the largest entropy (the uniform one) has also the largest uncertainty,
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Fig. 4. Schematic representation of the use of MI to determine the efficiency of a synapse. A distal input spike-train is used to reduce the entropy of the neural output,

previously transformed into a binary signal by means of a sliding window (‘1’: with action potential; ‘0’: no action potential). The difference between the output and

the conditioned entropy (theMI) roughly estimates the efficacy of the synapse. The study of the relationship between this efficacy and several input parameters can be

tackled in this way. See London et al. (2002) for details.
corrected, albeit only partially by using ad hoc asymptotic

series (Grassberger, 1988; Roulston, 1999), a procedure often

used in neurophysiology (e.g., David et al., 2004; Netoff and

Schiff, 2002; Quian Quiroga et al., 2002a). Recently, refined

methods have been derived for the calculation of Eq. (16),

which are not based on the binning of the histograms but on

entropy estimates from k-nearest neighbors distances (Kraskov

et al., 2004). These new algorithms are expected to further

improve the estimation of MI from experimental time series.

The concept of MI can be combined with the procedure of

embedding a time series by means of time delay (Takens,

1980; see also Section 9), in such a way that the probabilities

pi are calculated in the space of delay vectors (see, e.g.,

Duckrow and Albano, 2003; Kraskov et al., 2004; Netoff and

Schiff, 2002; Quian Quiroga et al., 2002a). The difficulties

associated with this approach are similar to those already

discussed for the univariate case (Kraskov et al., 2004; Quian

Quiroga et al., 2002a), but if either the systems or their

coupling are nonlinear, this multivariate extension may be

more sensitive to the interdependence between the signals. If

instead of time delay embedding, space embedding is used

(so that the components of each vector are the values of a

multichannel data set at time t), then we get the average MI

among all these channels (i.e., the common information

among all the recorded sites), which is useful to determine

the global synchronization in spatially extended systems

(Kraskov et al., 2004).

In brief, we can summarize all the above results by saying

that reliable estimations of MI often requires a large amount of

data, a constraint that is sometimes in conflict with the requisite

of stationarity in the case of experimental signals.
7.2. In search of directionality in the interdependence

Despite the difficulties inherent to its estimation, MI is a

useful tool for the assessment of interdependence between

experimental signals. Therefore, it would be interesting to

extend this concept to avoid one of its main limitations: the lack

of asymmetry. As we have already seen for other indexes, the

easiest try consists in introducing a time lag in either of the

variables and calculating Eq. (16) for different lags (Vastano

and Swinney, 1988). If MI attains a maximum value for a given

lag of X with respect to Y, it might be argued that X is the cause

and Y the effect. Although this approach might be useful in

certain situations, it may also be misleading and give rise to

erroneous conclusions (Schreiber, 2000). However, this can be

solved by incorporating dynamic structure in the index.

7.2.1. Transfer entropy

The concept of transfer entropy extends that of Shannon

entropy by taking into account the probability of transitions,

i.e., the probability p(in + 1jin, . . ., in � k + 1) of obtaining a given

value of X at instant n + 1 provided the k former values of X are

known. Thus, one defines the entropy rate of a time series as:

hX ¼ �
X
i

pðinþ1jin; . . . ; in�kþ1Þ log pðinþ1jin; . . . ; in�kþ1Þ

(17)

which is in fact the difference between Shannon entropies

calculated from delay vectors of dimension k + 1 and k (i.e.,

hX ¼ IXðkþ1Þ � IXðkÞ , Kantz and Schreiber, 2004). Following a

similar reasoning to that leading from Shannon entropy to MI,

from Eq. (17) and its equivalent for Y, (hY), it is possible to
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calculate the transfer entropy TX ! Y , which is a measure of

how the transition probabilities of X (i.e., its dynamics) influ-

ence those of Y (Kaiser and Schreiber, 2002; Kraskov, 2004;

Schreiber, 2000). By explicitly incorporating dynamical infor-

mation, transfer entropy is asymmetric (i.e., TX ! Y 6¼ TY ! X

as a rule), so that it gives information about the direction of the

interaction. Unfortunately, as in the case of MI, reliable

estimation of this index is only possible for large data sets,

which may explain why it has found very few applications in

neurophysiology yet (see Kraskov, 2004 for an example in the

case of the EEG).

7.3. Applications to neurophysiology

7.3.1. Information theory, neural coding and synapse

efficiency

As commented above, measures derived from information

theory are especially suited to study stimulus–response

relationships. The importance of this methodology in the field

of neural computation was early recognized (Eckhorn and

Popel, 1974; Stein et al., 1972). Later, measures based on

information theory were able to detect weak interdependences

and to give a better estimation of synaptic connectivity than

traditional linear tools (Yamada et al., 1993). These methods

were also useful to estimate the maximum information that can

be transmitted by a neuron as a function of its firing rate (Wessel

et al., 1996), to validate stimulus–response models in real data

(Theunissen and Miller, 1991) and to determine the minimum

time scale over which neural responses can convey information

(Buracas et al., 1998; de Ruyter van Steveninck et al., 1997;

Panzeri et al., 1999). In this same context, MI has proven useful

both to evaluate the effectiveness of different stimuli in

generating various values of information in the encoding

neurons (Machens, 2002) – from which it has been

hypothesized that neural processing is optimized to represent

natural stimuli (Borst and Theunissen, 1999; Hsu et al., 2004) –

and to calculate the absolute amount of information transmitted

as a test of the goodness of encoding models. Interestingly, in

this latter case the results obtained have led several authors to

the conclusion that nonlinear encoding models are superior to

traditional linear ones (Borst and Theunissen, 1999; Buracas

et al., 1998; de Ruyter van Steveninck et al., 1997; Sharpee

et al., 2004).

MI has been also used as an index of synaptic efficacy by

measuring the relevance of different input parameters such as

synaptic position – distal or proximal –, synaptic charge and

time-to-peak of the excitatory post-synaptic potentials, as

schematized in Fig. 4 (London et al., 2002). This study

demonstrated, using both neural models and real data, that the

nonlinearities inherent to neurons turn this index into an

appropriate tool to study this question. More recently, an in

vitro result confirmed the ability of primary afferent synapses to

transmit the main temporal structure of chaotic impulse trains

(Wan et al., 2004) in a study where the dominant role of brief-

burst stimulation over single presynaptic action potentials was

also suggested in agreement with previous results (Lisman,

1997).
To conclude this section, we mention three recent

theoretical works that have shed light on relevant aspects of

the application of information theory in neurophysiology. The

first one demonstrates that a newly derived directionality

measure based on the concept of entropy can be used to detect

causal interdependencies between neurons (Dzakpasu and

Zochowski, 2005), although results are restricted so far to

neural models. The second one has derived an optimized

entropy estimator, which performs very well in small data

samples, thus opening new possibilities for the information

theoretic analysis of neural responses (Nemenman et al.,

2004). Finally, the third one has shown the validity in neurons

of the data processing inequality (Tiesinga, 2001), which states

that, given three random variables X–Z that form a chain in the

order X ! Y ! Z, the MI between X and Y is greater than or

equal to the MI between X and Z. In other words, information

cannot be recovered after it has been degraded.

7.3.2. Information-theoretic measures in EEG and MEG

data

MI and other indexes derived from information theory have

been comparatively less applied to EEG and MEG data than

they have been to study neural codes. In any case, and since the

classical work of Lopes da Silva et al. (1989) in real and

simulated EEG data, there have been a number of studies on

these signals using this methodology.

A first set of studies was aimed to determine whether there

are differences between control groups and groups of patients

with various neurological disorders, in terms of the flux of

information between different cortical areas. Thus, it has been

shown that schizophrenic patients present higher intra- and

interhemispheric average MI than the normal control group (Na

et al., 2002). A similar result was found in patients with

Alzheimer’s disease, mainly in the frontal and anterior-

temporal regions (Jeong et al., 2001). Regarding epilepsy, it

has been reported that the information content of the EEG

severely decreases prior to a seizure (Chen et al., 2000; Trabka

et al., 1989), so that MI may be used as a good seizure predictor

(Kraskov, 2004; Kreuz, 2004) as well as to identify the site of

seizure onset (Kraskov, 2004; Mars et al., 1985), a question

that, in this context, has been also addressed by asymmetric

information measures similar to transfer entropy (Palus et al.,

2001). Finally, a variant of Shannon entropy, in which

probabilities are calculated not in the time domain but in the

time-frequency representation of the EEG provided by wavelets

(Quian Quiroga et al., 2001; Rosso et al., 2001), has been used

to trace the response of rat’s brain to ischemia (Al-Nashash

et al., 2003). A strong correlation was found between this

entropy in theta, alpha and beta bands and the injury-recovery

cycle (see also Thakor and Tong, 2004).

A second set of studies has dealt with the working of brain

areas during the performance of different tasks. Magnetic

field tomography was used to study brain activity during an

object and emotion recognition task (Ioannides, 2001;

Ioannides et al., 2000), in which MI was able to identify

the spatial extension and time course of the brain activity

associated with the process. Additionally, this tool detected



E. Pereda et al. / Progress in Neurobiology 77 (2005) 1–3714
changes in cortico-cortical connectivity during odor stimula-

tion in subjects classified by occupation (Min et al., 2003). In

fact, it showed a frontal specificity of these changes in

professional perfume researchers as compared to perfume

salespersons and general workers, a result similar to the

increase in synchronization found in a group of artists as

compared to non-artists in other cognitive tasks (see Sections

8.2.1.2.3 and 9.3).

The forecasting ability of information theory measures

has also been tested. Thus, an artificial neural network

trained with data stemming from the series of MI values

between four EEG electrodes was able to classify correctly a

high percentage of patients according to their response to

anesthesia (Huang et al., 2003). MI was also applied to

distinguish between two groups of epileptic patients with

different interictal epileptiform discharges during sleep

(Varma et al., 1997).

There is another useful application of MI in neurophy-

siology, which may seem a little counterintuitive at first

sight. It is related to its theoretical meaning, which directly

estimates the statistical dependence between two time series.

This feature can be used for the purpose of blind separation

of different sources of activity that integrate to produce a

given signal, an idea similar to that carried out in the

framework of independent component analysis (Kraskov,

2004; Kraskov et al., 2004; Kreuz, 2004; Stögbauer et al.,

2004). This approach has been also used to discriminate

between sources of electrical and magnetic activity in

combined EEG-MEG recordings, by minimizing the infor-

mation shared between the gain matrices of both functions

(Baillet et al., 1999).

8. The concept of phase synchronization

It is well known at present that the phases of two coupled

nonlinear (noisy or chaotic) oscillators may synchronize even

if their amplitudes remain uncorrelated, a state referred to as

PS (Pikovsky et al., 2001). By synchronization, it is meant
Fig. 5. Left: Absolute phase difference between the x variables of two Rössler sys

difference grows and is unbounded. (B) Strong PS: The phase difference remains c

uncorrelated (right). See Rosenblum et al. (1996) for details.
here that the following phase locking condition applies for

any time t:

’n;mðtÞ ¼ jnfxðtÞ � mfyðtÞj � constant (18)

where fx(t) and fy(t) are the phases of the signals associated to

each system defined on the real line (unwrapped). An example

of this is shown in Fig. 5. However, experimental signals are

often noisy, and exhibit random phase slips of 2p, so that the

fulfillment of Eq. (18) is normally analyzed from the so-called

cyclic relative phase ’0
n;mðtÞ ¼ ’n;mðtÞmod2p (i.e., the relative

phase difference wrapped to the interval [0, 2p)). Therefore, in

the case of neurophysiological signals, the phase locking

condition must be understood in a statistical sense, for instance,

as the existence of a preferred value in the distribution of ’0
n;mðtÞ

(Rosenblum et al., 2001).

One of the first experimental observations of synchroniza-

tion between two systems was reported by the Dutch scientist

Christiaan Huygens more than three centuries ago (Huygens,

1673): two pendulum clocks hanging from the same beam got

synchronized by attaining their maximal amplitudes at the same

time but at opposite extremes thanks to the weakly coupling

provided by the vibration of the beam in response to their

movement. In this case, both clocks had opposite phases, so that

the phase difference in Eq. (18) was equal to p. It is important to

note, however, that these pendulum clocks were actually

harmonic linear oscillators; the fact that Eq. (18) may also hold

for coupled chaotic oscillators was not proven until recently

(Rosenblum et al., 1996).

In order to study the existence of PS synchronization

between experimental signals, it is first necessary to obtain their

phases, as explained henceforth.

8.1. Extracting the phases

Two closely related approaches are mainly used to obtain the

phases of a neurophysiological signal. In both cases, the

original real-valued signal x(t) is transformed with the help of
tems (a typical nonlinear dynamical system). (A) Uncoupled state: The phase

onstant along time. Even in this latter case, the amplitudes remain completely
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Fig. 6. Left: Real part of a complex Morlet wavelet with centre frequency f = 10 Hz and bandwidth parameters st = 0.301 (solid line) and st = 0.12 (dotted line).

Right: Their normalized power spectral densities. The frequency determines the position of the spectral peak, whereas st determines its width: a greater st gives rise to

a wavelet with better frequency resolution (the sharper peak, more localized peak) but poorer localization in time.
an auxiliary function and into a complex-valued signal, from

which an instantaneous value of the phase is easily obtained.

The most commonly used of these two approaches involves the

use of the Hilbert transform (HT), whereby the analytical signal

z(t) is obtained:

zðtÞ ¼ xðtÞ þ ixHðtÞ (19)

where xH(t) is the HT of x(t), defined as:

xHðtÞ ¼
1

p
P:V:

Z 1

�1

xðt0Þ
t � t0

dt0 (20)

with P.V. denoting the Cauchy principal value.

The second approach makes use of the wavelet transform,

and was recently introduced for EEG signal analysis (Lachaux

et al., 1999, 2000). Here, the function used is the complex

Morlet wavelet:

cðtÞ ¼ ðeiv0t � e�v2
0
s2t =2Þe�t2=2s2t (21)

where v0 and st are the centre frequency of the wavelet and a

bandwidth parameter determining its rate of decay, respec-

tively4 (see Fig. 6). Its width m ¼ v0s
2
t determines how many

cycles of the corresponding frequency it comprises. It is inter-

esting to note that the generally used Morlet wavelet cðtÞ ¼
eiv0t e�t2=2s2t satisfies the zero mean admissibility condition of a

wavelet only for large st (when it comprises several oscilla-

tions). The additional negative term in Eq. (21) is introduced in

order to avoid spurious effects especially if the signal to be

analyzed has nonzero mean or low frequency components

(Quian Quiroga et al., 2002a). The Morlet wavelet has a

Gaussian modulation both in the time and in the frequency

domains and therefore it has an optimal time and frequency

resolution (Mallat, 1999; Sinkkonen et al., 1995), a feature that

makes it very suitable for the analysis of EEG signals (see, e.g.,
4 The exact expressions for wavelet duration and spectral bandwidth are 2st
and 1/pst, respectively.
Sinkkonen et al., 1995; Tallon-Baudry et al., 1996 as earlier

examples in this field).

If this complex wavelet is then convolved with the original

signal, one gets:

WðtÞ ¼ ðc�xÞðtÞ ¼
Z

cðt0Þxðt � t0Þ dt0 ¼ AWðtÞ eifW ðtÞ (22)

thereby obtaining an estimation of the phase, fW(t), for each

sample.

It has been recently shown that the application of both

approaches (i.e., the HT and the wavelet transform) produces

essentially the same result (Quian Quiroga et al., 2002a). The

main difference between them is that the HT is actually a filter

with unit gain at every frequency (Rosenblum et al., 1996), so

that the whole range of frequencies is taken into account to

define fH(t). Therefore, if the signal is broadband – as it usually

happens with the EEG – it is necessary to pre-filter it in the

frequency band of interest before applying the HT, in order to

get a proper value of the phase (e.g., Angelini et al., 2004;

Bhattacharya et al., 2001b; Koskinen et al., 2001). On the other

hand,W(t) is non zero only for those frequencies close to v0, so

that this approach is equivalent to band-pass filtering x(t) at this

frequency, which makes the pre-filtering unnecessary.

A third method for the extraction of phases from

experimental time series is especially suited for signals

presenting marked events (Rosenblum et al., 2001). Here,

each event is regarded as the completion of a new cycle, so that

if tk and tk+1 are the times at which events k and k + 1 take place,

there is an increment of 2p in the phase of the signal between

these times. The phase at every instant in-between is defined by

linear interpolation. Nevertheless, usually the two approaches

mentioned above are preferred for EEG/MEG signals.

8.2. The assessment of phase synchronization

8.2.1. Bivariate phase synchronization

The most common scenario for the assessment of PS in

neurophysiology entails the analysis of the synchronization



E. Pereda et al. / Progress in Neurobiology 77 (2005) 1–3716
between pairs of signals. Thus, in a typical experimental set-up,

q different channels of, say, EEG signals, are recorded, and one

studies the PS between each pair of electrodes (i, j), from which

the series of phases fi(t) and fj(t) have been previously

extracted. The direct analysis of the unwrapped phase

difference wn,m(t) has been seldom used in practical applica-

tions, although it showed the presence of synchronized regimes

in human postural control, as the appearance of PS between

body sway in anterior–posterior and lateral directions from the

stabilograms of two groups of neurological patients (Rosen-

blum et al., 1998). But as we have already commented, PS

between neurophysiological signals must be understood in a

statistical sense, and its assessment must be carried out

accordingly. Henceforth, we detail the different approaches

used for such purpose up to this date.

8.2.1.1. Indexes of bivariate phase synchronization. Three

different indexes have been mostly employed in practice to

assess the degree of PS between two signals. The first one is

based on information theory and makes use of the concept of

conditional probability (Rosenblum et al., 2001). It works by

wrapping the individual phases fx(t) and fy(t) into the intervals

[0, 2pm) and [0, 2pn), respectively. These intervals are then

divided into L bins, and the index measures the probability of

one of the phases to belong to a certain bin provided the other

one has a given value:

ln;m ¼ 1

L

XL
l¼1

jrlðt jÞja (23)

where the index j corresponds to time, rlðt jÞ ¼
ð1=MlÞ

P
eifY ðt jÞfor all j, such that fx(tj) belongs to bin l

and Ml is the number of points in this bin.5 This approach is

also termed as the stroboscopic approach: the phase of one of

the oscillators is observed at those instants where that of the

other one attains a certain value, and then averaged over all the

possible values.

The other two indexes make use of the relative phase

difference, ’0
n;mðtÞ. The second one is termed as mean phase

coherence (Hoke et al., 1989; Mormann et al., 2000), although

it has been also called the phase locking value (Lachaux et al.,

1999) or the synchrony factor (Tallon-Baudry et al., 2001) in

neurophysiological applications. It makes use of the concept of

directional statistics (Mardia, 1972), and is defined as:

gn;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhei’0n;mðtÞij

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos ’0

n;mðtÞi
2 þ hsin’0

n;mðtÞi
2

q
(24)

where h�i denotes average over time. It is the intensity of the

first mode of the distribution of ’0
n;mðtÞ (Rosenblum et al.,

2001), which in simpler words means that it is a measure of how

the relative phase is distributed over the unit circle. If the two

signals are phase synchronized, the relative phase will occupy a

small portion of the circle and mean phase coherence is high.
5 Unfortunately, it is not possible to get any information about the direction of

the coupling by calculating the index in the opposite sense (i.e., taking the

conditional probability on signal Y) because the index is symmetric.
On the contrary, the lack of PS gives rise to a relative phase that

spreads out over the entire unit circle and mean phase coher-

ence is very low (see left side of Fig. 7).

Finally, the third index also makes use of ’0
n;mðtÞ, although in

this case it directly studies its distribution by partitioning the

interval [0, 2p) into L bins6 and comparing it with the

distribution of the cyclic relative phase obtained from two

series of independent phases (Tass et al., 1998). This

comparison is carried out by estimating the Shannon entropy

(Eq. (15)) of both distributions (i.e., that of the original phases,

Iw, and that of the independent phases, IMAX). As usually, the

probability of a phase difference to belong to the i-th bin, pi, is

normally estimated by taking the ratio between the number of

phases in this bin and the total number of samples N. In Fig. 3

we already showed an example of three distributions with their

corresponding entropies for a given N. In the case of

independent phases, no preferred value of ’0
n;mðtÞ is expected,

so that the distribution should be uniform, and pi = L/N, which

would give the maximal value IMAX = log L, whereas in the

synchronized state the phase distribution presents a sharp peak

and has a low entropy. However, due to finite size effects, it has

been shown that the distribution of phase differences is not

uniform as a rule even for completely uncorrelated series

(Kreuz, 2004; top right plot of Fig. 7). Therefore, IMAX must be

estimated ad hoc by constructing a set of two independent

phases, which can be done, for instance, by randomly shuffling

one of the phases while keeping the other unchanged (see

Appendix A for details). A normalized PS index can be

obtained as (see also right side of Fig. 7):

rn;m ¼ IMAX � I’
IMAX

(25)

The three indexes presented above have the same range of

variation: they are close to 0 for uncorrelated signals, whereas
they approach 1 if there is strong PS. However, they do present

some differences. Comprehensive comparative studies of their

performance have been carried out in computer simulated as

well as in EEG and MEG data (Kreuz, 2004; Rosenblum et al.,

2001; Tass et al., 1998). From these results, we can draw some

important conclusions. In assessing 1:1 synchronization (the

most typical case), r1,1 strongly depends on the number of bins

used to calculate the histogram of ’0
n;mðtÞ, so that low values of

this index can be obtained even for perfect PS in numerical

experiments (Rosenblum et al., 2004). On the other hand, r1,1
and g1,1 present the greatest sensibility to the transition from

weak coupling to PS state. In contrast, the conditional

probability index l1,1 is non-zero even in cases where no PS

but only very weak interactions are present. Additionally, it has

a straightforward way of determining its significance threshold

from the data, which may be very useful to avoid spurious

detection of PS in uncoupled signals (Kreuz, 2004). Thus, it can

be concluded that this index is the right choice for the
6 The optimal number of bins can be calculated exactly as a function of the

length of both time series. Thus, for N samples, one has (Otnes and Enochson,

1972).
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Fig. 7. The assessment of 1:1 PS from ’01;1ðtÞ for the signals shown in Fig. 5. Left: The values of ’01;1ðtÞ are shown as solid line arrows in the unit circle. For the sake of
clarity, only five different times are displayed. The length of their average (dashed line arrow) is the estimated mean phase coherence, g1,1. Right: The distribution of

’01;1ðtÞ, whose entropy, Iw, is used to calculate r1,1 following Eq. (25). Top: Unsynchronized state, (line A in Fig. 5). The relative phase is randomly scattered over the

circle (g1,1 � 0) and their values are widely distributed in the [0, 2p) interval (Iw � IMAX and r1,1 � 0). Bottom: Strong PS (line B in Fig. 5). The relative phase is

concentrated in one sector of the circle (g1,1 � 1) and its distribution shows a sharp peak (I’ 	 IMAX and r1,1 � 1).
assessment of weak phase coupling. On the other hand, if our

purpose is to cluster a number of time series into groups

according to their degree of coupling with a given reference, the

other two indexes are more suitable (Rosenblum et al., 2001).

Interesting subtleties must be taken into account when the

signals present n:m synchronization, with n > 1 and/or m > 1.

As already mentioned, this is certainly not the most usual case

in neurophysiological signals, where 1:1 synchronization is

almost always the case under study (Angelini et al., 2004;

Bhattacharya et al., 2001a, 2001b; David et al., 2004; Kreuz,

2004; Le van Quyen et al., 2001; Mormann et al., 2000; Quian

Quiroga et al., 2002a). However, higher order PS is not unlikely

to be present in these data (Bhattacharya and Petsche, 2005b;

Palva et al., 2005; Tass et al., 1998) and actually, the existence

of locking (or entrainment) between frequencies that are close

to rational relation (nv1 � mv2) is one of the hallmarks of this

nonlinear phenomenon. If the signals are investigated for 1:1

synchronization but they present, say, 1:2 synchronization, the

distribution of phase differences is multimodal, and presents

two marked peaks instead of one, which makes the approach

based on this distribution useless (Kreuz, 2004). This case of

broad distribution of the relative phase can also occur in

systems presenting modulated natural frequency, where even if

the correct synchronization regime is detected, both rn,m and

gn,m are of little use (Rosenblum et al., 2001). So in these cases,

the use of ln,m for the assessment of PS is recommended,
although other indexes such as Eq. (25) can certainly be used as

well (Bhattacharya and Petsche, 2005b).

8.2.1.2. Applications to neurophysiology.

8.2.1.2.1. First results. The idea of searching for a

relationship between the phases of two neurophysiological

signals is certainly not new, and early examples can be found

more than 30 years ago (e.g., Butler and Glass, 1974). But in

those cases, the phases were obtained for the harmonics of the

FT. However, the concept of PS is based in the assumption that

there is a dominant frequency in the signal that leads to a well

defined and unique value of the phase for each interacting

oscillator. All the pre-processing steps (such as band pass

filtering) are aimed to extract this signal from its mixture with

other signal and (possibly) broadband noise (Rosenblum et al.,

2004). Therefore, if we restrict ourselves to the PS approach,

the work of Tass et al. (1998) must be regarded as the first

application of this idea in neurophysiology. In this pioneering

study, the authors extended the concept of PS of chaotic

oscillators derived in an earlier work (Rosenblum et al., 1996)

to analyze the relationship between the phases of MEGs and

records of the muscle activity in a Parkinsonian patient. It is

suggested there that the temporal evolution of the peripheral

tremor rhythms directly reflects the time course of the

synchronization of abnormal activity between cortical motor

areas. This work is not only important for their neurological
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Fig. 8. Schematic representation of the dynamics of gamma band (30–60 Hz)

EEG PS in a typical cognitive experiment. The grand-average value of the

bivariate PS index is plotted as a function of the latency after the stimulus for a

set of EEG channels. In all the channels, increased PS with latency of 300 ms is

followed by active desynchronization shortly afterwards. In this example, PS is

greater for central electrodes than for the rest.
implications, but also for showing that the existence of PS,

understood in a statistical sense, can be traced even in noisy

experimental signals from neurophysiological records.

8.2.1.2.2. Phase synchronization and the gamma ban-

d. Another key work in the field demonstrated shortly

afterwards the existence of long-range PS in the gamma band

(�20–60 Hz) of the EEG (Rodriguez et al., 1999). Synchro-

nization in the gamma band of the EEG is thought to reflect the

appearing of an integrative mechanism bringing together

widely distributed sets of neurons to effectively carry out

different cognitive tasks (Damasio, 1990; Roelfsema et al.,

1997; Singer and Gray, 1995; Tallon-Baudry and Bertrand,

1999; Varela, 1995). In their work, Rodriguez et al. (1999)

found increased PS with a latency of 260 ms after the stimulus

in the frequency range between 35 and 45 Hz in a group of adult

human subjects during visual perception of faces, as opposed to

the no-perception situation. It must be noted, however, that a

recent re-examination of this result, despite reporting similar

qualitative outcomes, has indicated the possible effect of the

analysis methods as well as the records used, suggesting that PS

also occurs during non-visual perception but in a different

frequency band (Trujillo et al., 2005).

Another interesting result reported by Rodriguez et al.

(1999) is the existence of a period of strong desynchronization

with latency between 400 and 650 ms after the stimulus,

which allegedly reflects the active uncoupling of the neural

ensembles necessary to proceed from one cognitive state

(visual perception) to another (motor activation) (Rodriguez

et al., 1999; Varela, 1995; Varela et al., 2001). The dynamics

of such periods of synchronization–desynchronization in the

gamma band, which is schematically portrayed in Fig. 8, has

been further studied in subsequent papers. In this regard, PS

indexes have been used to get insight into the functioning of

the sensory cortices (Freeman and Rogers, 2002), and they

have also shown the important role of such periods during

visual attention in humans (Gross et al., 2004). The latest

findings and perspectives on the concept of long-range

neuronal synchronization and desynchronization in motor

control and cognition, in normal as well as pathological

conditions, have been recently reviewed elsewhere (Schnitzler

and Gross, 2005).

Interestingly, PS and desynchronization in the gamma band

is also important for the successful formation of declarative

memory, as demonstrated by the analysis of the relationship

between human EEGs from the hippocampus and the rhinal

cortex (Fell et al., 2001). In a later paper, the interaction

between gamma band PS and coherence in the theta band was

studied (Fell et al., 2003). The authors concluded that, whereas

rhinal-hippocampal gamma EEG PS may be closely related to

actual memory processes, by enabling fast coupling and

decoupling of the two structures, theta coherence might be

associated with slowly modulated coupling related to an

encoding state.

The dynamic patterns of phase clustering and desynchro-

nization have been also analyzed theoretically by means of a

model of sparsely coupled neural cell assemblies and checked

also in human EEG data (Breakspear et al., 2004).
8.2.1.2.3. Phase synchronization and the effect of trai-

ning. The significance of PS between high frequency EEG

bands has been further investigated in a series of studies, in

which the performance of trained artists was compared with

that of non-artists during perception of music (Bhattacharya

and Petsche, 2001; Bhattacharya et al., 2001a, 2001b) and of

paintings (Bhattacharya and Petsche, 2002, 2005a). Interest-

ingly, the artists presented higher degree of PS than non-artists

only during the performance of those tasks for which they were

trained. Thus, musicians showed higher gamma band PS than

untrained subjects during listening to different pieces of music,

but listening to a text of neutral content did not elicit such

difference (Bhattacharya and Petsche, 2001; Bhattacharya

et al., 2001a). In painters, differences during perception were

apparent not only in gamma band, but also in beta band—in

which PS has been also found during the rehearsal of an object

in visual short-termmemory (Tallon-Baudry et al., 1998, 2001).

Moreover, PS in low frequency bands (mainly delta) appeared

during imagery, where also a desynchronization of the activity

in alpha band is reported (Bhattacharya and Petsche, 2002,

2005a). Another interesting result of these works is the

existence of hemispheric dominance in artists as compared to

non-artists during artistry perception.

A recent study has confirmed the influence of training on

gamma band PS (Lutz et al., 2004). In fact, non-specific

‘‘meditation’’ elicits a sharp increase of this synchronization

over a wide range of scalp electrodes in subjects with long-term

meditative instruction in Buddhist mental training practices, as

compared to normal controls. Contrary to the case of artists,

differences were not task-related, but appeared also in baseline.

Thus, the increase in PS is here a permanent feature related to

mental training, and cannot be associated with either increased

attention or concentration during the task—elements that are

known to mediate task-related high frequency synchronization

in humans (Fries et al., 2001; Lutz et al., 2002; Tallon-Baudry

et al., 1997).
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8.2.1.2.4. Phase synchronization during motor tasks. The

performance of different motor tasks is another situation giving

rise to PS between brain areas. Thus, an interesting work using

fMRI activation data found significant PS between the voxel

time series and the reference function of an event-related finger-

tapping task (Laird et al., 2002). Certainly, these two signals

cannot be regarded as stemming from self-sustained oscillators,

so this result must be interpreted with caution. Yet the PS

approach was still useful here in revealing additional

information on the complex nature of the fMRI time series

(Lin et al., 2004). Phase locking between primary contralateral

and secondary ipsilateral sensorimotor cortexwas later found in

the gamma band of the MEG of healthy volunteers around

80 ms after the stimulation of right median nerve at the wrist

(Simoes et al., 2003). Interestingly, these authors demonstrated

that PS was not due to common synchronization of both areas to

the stimulus, but to a true significant PS within the sensorimotor

system. Distinct PS patterns in the gamma band of the MEG of

somatosensory cortex devoted to hand control have been also

found during finger tapping (Tass et al., 2003) and also in

respond to thumb and little finger stimulation (Tecchio et al.,

2004).

Recently, the synchronous activity of a group of single

neurons was analyzed in the caudal supplementary motor area

of monkeys during the performance of visually guided hand

movements (Lee, 2003). The author reported that oscillatory

gamma activity of the average population of neurons showed a

strong tendency to synchronize immediately before and after

the onset of the movement. Furthermore, the duration of the

synchronization increased when the onset of the next target was

delayed, suggesting that gamma band synchronization is

related to anticipation and attention. Interestingly, the phases

of coherent oscillations for a given neuron pair were often

similar across different movements, showing that PS is also

present between individual neurons even at sub threshold level

(Freeman and Rogers, 2002; Makarenko and Llinás, 1998).

8.2.1.2.5. Phase synchronization and pathological brain

rhythms. The concept of PS can be also used to get insight into

the mechanisms underlying certain neurological pathologies,

such as Parkinson’s disease (Tass et al., 1998), mania

(Bhattacharya, 2001), migraine (Angelini et al., 2004) and

especially epilepsy (Bhattacharya, 2001; Jerger et al., 2001;

Kraskov, 2004; Kraskov et al., 2002; Kreuz, 2004; Kreuz et al.,

2004; Le vanQuyen et al., 2001;Mormann et al., 2000, 2003). In

all these works, decreased long-range synchronization for

subjects with pathologies as compared with controls was the

typical result, although in the case of migraine, differences were

apparent only during visual stimuli, but not in spontaneous EEG

(Angelini et al., 2004). In epilepsy, the decrease in synchroniza-

tion presents a dynamical character, because a further decrease

in baseline PS was normally detected prior to the onset of a

seizure (Kreuz et al., 2004; Mormann et al., 2000, 2003).

Additionally, the average synchronization in the focal hemi-

sphere of the brain of epileptic patients was higher than in the

non-focal hemisphere during the interictal period (Kraskov,

2004). The existence of PS in this pathology has also been

studied in vitro by using advanced dual-cell patch-clamp
techniques, where seizure-like activity was pharmacologically

induced in pyramidal neurons (Netoff and Schiff, 2002). This

work also raised an interesting question, because the authors

concluded that a linear method (namely, the cross-correlation

function) was the most sensitive for detecting PS during periods

of highly burst, whereas the nonlinear methodology prevailed in

the pre-seizure state.

Although not pathological, special rhythms appear as well in

the brain activity of subjects under anesthesia. Also here,

specific patterns of PS among different cortical areas and

different frequency bands have been found (Koskinen et al.,

2001), with highly asymmetric behavior between the induction

and the recovery periods in most of the low frequency bands

(<20 Hz).

8.2.1.2.6. Implications of the results. Taken together, the

above results have a double implication. From the analytical

point of view, it is evident that the analysis of bivariate PS from

neurophysiological signals yields new information about the

dynamical co-operation between neuronal assemblies. From a

neurophysiological perspective, it has been claimed that this

kind of synchronization in high frequency bands might be one

of the mechanisms contributing to the so-called temporal

binding model of perception (Engel and Singer, 2001;

Treisman, 1996), a model against which, however, important

concerns have been also raised (Shadlen and Movshon, 1999).

These studies of PS in the gamma band have been also very

helpful in proposing the so-called ‘match-and-utilization

model’, which aims at explaining the significance of gamma

band activity in human as well as in animals within a common

framework (Herrmann et al., 2004). According to this model,

early gamma band responses (with latency after stimulus lower

than 150 ms) would be the result of a match between the

stimulus (bottom-up information) and the memory (top-down

information), whereas late gamma band responses (latency

greater than 200 ms) would reflect the readout and utilization of

the information resulting from this match. If the model proves

correct, it would allow not only understanding the generation of

gamma band oscillations but also predicting the appearing of

these oscillations in different experiments.

Finally, we have also seen that the PS analysis represents a

very useful tool for the assessment of both dynamical and

permanent changes in the connectivity patterns of cortical brain

in connection with abnormal brain rhythms.

8.2.2. In search for directionality and delay in phase

synchronization

Despite the usefulness of the bivariate PS indexes reviewed

above, they are in principle not suited to give any information

about the directionality (if any) of the coupling that produces

the synchronization. However, it is indeed possible to study

whether such directionality exists, provided we make some

assumptions about the dynamics of the phases. Thus, if we

assume that the interaction between the two systems is weak,

the influence of the amplitudes on the phase dynamics can be

neglected. Consequently, this dynamics can be modeled

mathematically with a relatively simple equation that does

not include the amplitudes (Rosenblum and Pikovsky, 2001).
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The basic idea is that, if the dynamics of fx(t) depends more on

fy(t) than vice versa, then there should exist a certain direction

in the interaction from Y to X, which can be assessed from the

series of instantaneous phases by means of different indexes.

We refer the interested reader to the appropriate literature for

details (Rosenblum et al., 2002; Rosenblum and Pikovsky,

2001; Smirnov and Andrzejak, 2005; Smirnov and Bezruchko,

2003). Interestingly this approach has been already applied in

neuroscience with promising results (Cimponeriu et al., 2003;

Gross et al., 2002).

More recently, the question of estimating the delay in the PS

from time series has been also addressed (Cimponeriu et al.,

2004). The existence of delay is an issue of especial relevance

in those cases in which the propagation time of the signal

through the pathway connecting the interacting systems cannot

be neglected in comparison with the characteristic oscillation

period (see Golomb et al., 2001 for an example in the context of

neural populations). The identification of the delay by

analyzing the interrelations between the series of instantaneous

phases of both signals is indeed possible provided the

interacting oscillators are sufficiently noisy (Cimponeriu

et al., 2004), because noise plays a constructive role by

disrupting the coherence between the current and the past

states. These authors also show that, in the case of nonlinear

self-sustained oscillators, information about the delay cannot

be accurately estimated by using linear techniques such as

cross-correlation or coherence. Although there are no applica-

tions of this method in neurophysiology yet, the role of noise

should turn neurophysiological signals into good candidates for

the application of this algorithm.

8.3. Global synchronization of interacting oscillators

8.3.1. Synchronization cluster

Hitherto we have dwelt on the different aspects of assessing

pairwise PS. However, as already commented, in many

neurological studies it may be interesting to investigate the

degree of overall synchronization in a group of multivariate

channels. A picture of the PS of the ensemble can be obtained

by estimating the pairwise synchronization between every

possible pair of channels and then connecting the correspond-

ing sites with lines of different thickness or color according to

the strength of their interaction. Changes in PS between a

control and a trial situation can be also represented in this way

(Bhattacharya et al., 2001b; Rodriguez et al., 1999). Another

possibility consists in averaging the corresponding index for all

the possible pairs of electrodes, thereby obtaining a raw

estimation of the mean PS of the ensemble (see for instance van

Putten, 2003). Nevertheless, it has been pointed out that these

approaches present some drawbacks (Allefeld and Kurths,

2004a). On the one hand, the pairwise representation might be

difficult to interpret if the number of lines is large. Additionally,

this picture conveys no information about the common

integrating structure among the ensemble of electrodes. On

the other hand, the averaging approach, as well as other related

ones aimed to obtain overall indexes of PS among all recording

sites (Haig et al., 2000), normally are not able to either give
topographic details or to preserve much of the information

present in the data. Instead, a new method was recently

proposed (Allefeld and Kurths, 2004a), which combines both

perspectives (i.e., global and local one) by conceiving the

ensemble of oscillators (the different recording sites) as being

part of a cluster to which each oscillator contributes in different

proportion. The cluster has a common rhythm, which is an

average of the oscillations of each oscillator, and its dynamics is

described by a cluster phase, where the degree of participation

of each individual channel can be checked by assessing the PS

between the global and the individual phases. Thus, the

bivariate PS index based on the conditional probability

(Eq. (23)) between every possible pair of channels is used to

estimate the contribution of the individual oscillator to the

cluster, thereby obtaining an estimation of the strength of the

synchronization of each site with the overall system. This

algorithm uses only a few assumptions of the dynamics

underlying the data, which makes it useful as a generic data

analysis method. Indeed, it has been successfully used to show

differences among different experimental situations in the field

of cognitive neuroscience, where it provided information about

brain dynamics in a time and frequency-specific way (Allefeld

and Kurths, 2004a). Hence, it is expected to be useful in EEG

studies where the assessment of overall synchronization of

multivariate data is the main goal.

8.3.2. Synchronization in populations of oscillators: the

mean field approach

Although not directly related to the issue of PS analysis, the

study of the synchronization of large populations of oscillators

as well as its control is a relevant subject in neuroscience, which

has recently received great attention (Golomb et al., 2001;

Montbrio et al., 2004; Rosenblum and Pikovsky, 2004a, 2004b;

Tass, 1999). We cover it here because it might be better

understood in connection with the concept of mean field we

have just reviewed.

Briefly, an appropriate model for many systems composed of

a population of noisy chaotic oscillators is one in which the

elements of the population are supposed to be globally coupled

(i.e., where they are all each-to-each coupled, e.g., Golomb

et al., 2001). In this framework, each unit is regarded as being

driven by the force eX̄, where X̄ ¼
PN

i¼1 xi is the mean field of

the ensemble, xi is an observable of the i-th unit and e is a

parameter that quantifies the strength of the interaction between

the units. In neurophysiology, the counterpart would be a large

neural network where all the neurons are interconnected with

each other. If e remains below a critical value eCR, the variance
of X̄ is small (negligible if N ! 1). Otherwise, macroscopic

oscillations of the mean field appear.

Interestingly, the onset of rhythmical brain activity in

Parkinson’s disease can be regarded as a transition between the

former and the later state in large neural populations (Goldberg

et al., 2004). Deep brain stimulation, which refers to the

electrical stimulation of subcortical brain structures by means

of periodic pulse train delivered via a chronically implanted

electrode, has proven successful in the treatment of Parkinso-

nian patients (Titcombe et al., 2001). But the mechanism by
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which this kind of stimulation reduces the symptoms in these

patients is still unknown. Moreover, its efficiency decreases

with time due to adaptation to the stimulation, so that it is

necessary to understand the way in which this stimulation

suppresses the synchronized behavior in order to improve its

therapeutic efficiency. In this line, it has been recently shown

that collective synchronization can be controlled by using

different time-delayed feedback strategies (Rosenblum and

Pikovsky, 2004b), in which the past values of the mean field are

‘‘reinjected’’ in the population via external feedback control.

The value of the control signal is proportional to the degree of

coupling, but can be of very low magnitude as long as it is

delivered with the appropriate delay and frequency. Although

there have been no practical applications of this result yet, the

authors suggest that it might be useful for neuroscientists

working on neuronal oscillations in brain slices. They also

indicate the possibility of combining this technique with phase-

resetting techniques recently applied to control the oscillations

of neuronal populations (Tass, 2003).

9. Assessment of synchronization in state space

Neurons are highly nonlinear devices, which in some cases

show chaotic behavior (Matsumoto and Tsuda, 1988). Thus, the

study of their collective activity, as measured by EEG or MEG,

could profit from the use of nonlinear measures derived for the

study of chaotic dynamical systems. First encouraging results

claimed that macroscopic EEG signals also have chaotic

structure (Babloyantz et al., 1985), but further studies dit not

find any strong evidence of chaos in EEG (Pijn, 1990; Theiler

et al., 1992; Theiler and Rapp, 1996). At present, there is wide

consensus that EEG signals are, at least in a general sense, not

(low-dimensionally) chaotic (Lehnertz et al., 2000). In spite of

that, as already mentioned in the Introduction, nonlinear

chaotic measures are still used with a more pragmatic goal, as

invariant quantities from the representation of the signals in a

phase space, even if there is no sign of chaoticity, such phase

space representation may reveal nonlinear structures hidden to

standard linear approaches (see for instance Stam, 2005). The

present section details on how measures of synchronization can

be defined from a state space reconstruction of the signals and

describes some applications to EEG data.

The study of synchronization between chaotic systems has

been a topic of increasing interest since the beginnings of the

1990’s. One important step in this direction was the introduction

of the already mentioned concept of GS (Rulkov et al., 1995),

extending previous studies of coupled identical systems

(complete synchronization, Fujisaka and Yamada, 1983) to the

study of coupled systems with different dynamics. Different

observables aimed at detecting interdependencies in realistic

cases were introduced by several authors. Following an original

idea of Rulkov et al. (1995), mutual cross-predictabilities were

definedandafterwardsstudiedbydifferentauthors (LevanQuyen

et al., 1998, 1999; Schiff et al., 1996). In brief, these measures

quantify howwell one can predict the trajectory in phase space of

one of the systems knowing the trajectory of the other. Such a

quantification confounds, however, the true synchronization of
the systemswith theirowndynamicsandhoweasyordifficult is to

predict each system alone. Variants of this idea have been

proposed by different authors in order to improve predictions

(Feldmann andBhattacharya, 2004; Terry andBreakspear, 2003;

Wiesenfeldt et al., 2001). Alternatively, a robust set of measures

were proposed in (Arnhold et al., 1999; Quian Quiroga et al.,

2000, 2002a), where instead of looking for predictions, one

quantifies how neighborhoods (i.e., recurrences) in one attractor

maps into theother. In the followingwedescribe indetail this later

approach, which has turned out to be the most reliable way of

assessing the extent of GS in time series.

9.1. Definition of nonlinear interdependences

From time series measured in two systems X and Y, let us

reconstruct delay vectors (Takens, 1980) xn = (xn, . . .,
xn � (m � 1)t) and yn = (yn, . . ., yn � (m � 1)t), where n = 1, . . .,
N; m is the embedding dimension and t denotes the delay time.

Let rn,j and sn,j, j = 1, . . ., k, denote the time indices of the k

nearest neighbors of xn and yn, respectively. For each xn, the

squared mean Euclidean distance to its k neighbors is defined

as:

RðkÞ
n ðXÞ ¼ 1

k

Xk
j¼1

ðxn � xrn; jÞ
2

(26)

and the Y-conditioned squared mean Euclidean distance is

defined by replacing the nearest neighbors of xn by the equal

time partners of the closest neighbors of yn (see also Figs. 9 and

10),

RðkÞ
n ðXjYÞ ¼ 1

k

Xk
j¼1

ðxn � xsn; jÞ
2

(27)

If the set of reconstructed vectors has an average squared

radius R(X) then, for strongly correlated systems,

R
ðkÞ
n ðXjYÞ � R

ðkÞ
n ðXÞ<RðXÞ, whereas R

ðkÞ
n ðXjYÞRðXÞ
R

ðkÞ
n

ðXÞ for independent systems. Thus, an interdependence

measure can be defined accordingly (Arnhold et al., 1999):

SðkÞðXjYÞ ¼ 1

N

XN
n¼1

R
ðkÞ
n ðXÞ

R
ðkÞ
n ðXjYÞ

(28)

From the reasoning above, it is clear that this measure

ranges between 0 and 1 by construction. Low values of this

index indicate independence between X and Y, whereas the

measure gives a maximum of 1 for identical systems.

Following (Arnhold et al., 1999; Quian Quiroga et al.,

2000), it is possible to define another nonlinear interdepen-

dence measure as:

HðkÞðXjYÞ ¼ 1

N

XN
n¼1

log
RnðXÞ

R
ðkÞ
n ðXjYÞ

(29)

where Rn(X) is the average distance of a vector xn to all the other

vectors. A normalized version of this measure can be also

defined (Quian Quiroga et al., 2002a). Expression (29) is close

to zero if X and Yare independent, while it is positive if nearness
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Fig. 9. Basic idea of the nonlinear interdependencemeasures in the state space. The size of the neighborhood in one of the systems, say X, is compared with the size of

its mapping in the other system. The example shows a Lorenz system driven by a Rössler with zero coupling (upper case) and with strong coupling (lower case).

Below each attractor, the corresponding time series is shown. The (XjY) interdependences are calculated in the sameway, starting with a neighborhood in Y. See Quian

Quiroga et al. (2002a) for details.
in Y implies also nearness in X for equal time partners.

Theoretical studies with coupled chaotic systems (Quian

Quiroga et al., 2000; Schmitz, 2000) have shown that H is

more robust against noise and easier to interpret than S. The

opposite interdependences (S(YjX) and H(YjX)) can be defined

in complete analogy and they are in general not equal to S(XjY)
and H(XjY), respectively. This asymmetry is one of the main

advantages of these indexes over other nonlinear measures, as

we detail in the next section.

9.2. Driver-response relationships

The nonlinear interdependence is an asymmetric measure,

in the sense that H(XjY) 6¼ H(YjX) (the same holds for S). This

asymmetry can in principle give information about driver-

response relationships (Arnhold et al., 1999; Quian Quiroga

et al., 2000; Schiff et al., 1996). Suppose the system X drives Y

via unidirectional coupling. Then, Y has information about its

own dynamics plus that of X, whereas X does not have any

direct information of Y. As a consequence, for relatively small

couplings it is possible to predict the state of X from Y but not
the other way around. If the coupling is strong enough, then Y

will tend to follow X and both systems can be predicted from

each other. Then it is, in principle, easier to predict the state of

the driver from the state of the response than vice versa; i.e.,

H(XjY) > H(YjX), if X ! Y. This asymmetry can indeed show

driver-response relationships, but can also reflect the different

dynamical properties of each system (Quian Quiroga et al.,

2000). In fact, it has been shown by simulations with coupled

dynamical systems that these asymmetries can be biased by

different noise levels and different relative frequencies of the

systems (Quian Quiroga et al., 2000). This problem can be

addressed with the use of proper surrogate testing (see, e.g.,

Quian Quiroga et al., 2002a). In particular, one would like

to see if an apparent driver-response relationship, as reflected

by an asymmetry in the interdependencies, is also present

in data sets with the same characteristics of the original

ones but without any coupling. This question is addressed in

Appendix A.

To conclude this section, we remark that different measures

closely related to the ones described above and different

strategies to form the neighborhood of the reconstructed vectors
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Fig. 10. The concepts of nearest and mutual neighbors in terms of the time series. Two EEG time series of 5 s each (X and Y) recorded from the two hemispheres of a

rat are shown. A reference vector (‘*’) in Y is a temporal pattern yn spanning (m � 1)t samples. Its nearest neighbors (‘*’) ysn;i (i = 1, 2 in this example) are the most

similar patterns in Y, and are entirely determined by the shape of yn. Its mutual neighbors (‘^’) yrn;i , however, are completely determined by the nearest neighbors of

xn, as implied by the arrows. The mutual neighbors give a clue of the influence of X on Y (that of Yon X can be similarly investigated on signal X): in a synchronized

state, they are more similar to the nearest neighbors than randomly picked vectors, whereas they are indistinguishable from these latter ones if the signals are

independent. Measures described in Section 9.1 are aimed to assess this question.
have been recently defined by several authors (Bhattacharya

et al., 2003; Hu and Nenov, 2004; Kramer et al., 2004; Rulkov

and Afraimovich, 2003; Stam and van Dijk, 2002).

9.3. Applications to neurophysiology

Although the proposal of nonlinear interdependence

measures is relatively new, there are already many promising

applications reported in the literature, some of which have been

recently reviewed (Breakspear, 2004). Their first application to

neurophysiological data was by Schiff et al. (1996), who used a

measure similar to the one defined above and showed its

application to coupled dynamical systems and to the study of

data from motoneurons within a spinal cord pool. More

recently, nonlinear synchronization measures were used for the

analysis of EEG data from epileptic patients (Arnhold et al.,

1999; Jerger et al., 2001; Le van Quyen et al., 1998, 1999; Stam

and van Dijk, 2002). In all these works, the main goal was to

localize the epileptogenic zone and eventually predict the

seizure onset, which has certainly a clear clinical relevance.

As it was the case forMI and PS indexes, the use of nonlinear

interdependencies seems particularly suited for this purpose

because: (1) epilepsy can be broadly defined as an abnormal

synchronization in the brain and (2) the landmark of epileptic

activity are spikes,which are highly nonlinear andusually appear
across several recording channels. At this respect, the utility of

nonlinear interdependencies have been based on these arguments

and on examples with chaotic toy models. Very few studies,

though, posed the questionofwhether this holds true for real data.

In particular, it has been shownwith three typical EEGexamples,

two of them containing spikes, that nonlinear interdependences

can disclose information difficult to obtain by visual inspection

(Quian Quiroga et al., 2002a).

Another series of studies, which has been already mentioned

in the section devoted to PS, aimed at understanding howmusic

may be differentially processed by musicians and non-

musicians, as reflected by differences in nonlinear interde-

pendencies (Bhattacharya et al., 2001a, 2001b, 2003). As

commented, these studies showed that musicians had a higher

synchronization in the gamma band in comparison to non-

musicians. Moreover, in musicians synchronization was higher

in the left hemisphere. Such findings may reflect a higher ability

of correlating various acoustical attributes, a higher involve-

ment of short-term memory when processing music, or a

retrieval of larger number of memory patterns from long-term

memory. A later related study focused on the asymmetry of the

measured interdependencies and reported different patterns in

musicians in comparison to non-musicians, thus suggesting

different flows of information in the two groups (Feldmann and

Bhattacharya, 2004).
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Nonlinear interdependencies have also been reported in a

relatively small number of short EEG records of resting

human subjects (Breakspear and Terry, 2002). Segments

showing nonlinear interdependencies have been correlated to

a sharpening of the power spectrum in the alpha band

(Breakspear and Terry, 2002). Interestingly, a disturbance in

the topographic connectivity, as measured by the nonlinear

interdependencies, for subjects with a first episode of

schizophrenia has also been reported by the same group

(Breakspear et al., 2003b), which is in agreement with the

view of schizophrenia as a disturbance of the connectivity

between cortical areas (Lee et al., 2003; Spencer et al., 2003).

Another group has studied the performance of healthy subjects

during a working memory task using nonlinear interdepen-

dencies in different frequency bands (Stam et al., 2002a).

Although these authors did not find a correlation between

these measures and memory performance, they described

differential patterns of activation and variability of inter-

dependence for the different frequency bands. Using a similar

paradigm with MEG data, the same group reported an overall

decrease in synchronization for Alzheimer patients (Stam

et al., 2002b). A similar decrease in GS was also reported for

patients with photo-sensitive epilepsy (Bhattacharya et al.,

2004).

Finally, measures of GS have been used to study the patterns

of human EEG synchronization during sleep in both adults

(Pereda et al., 2001; Terry et al., 2004) and newborns (Pereda

et al., 2003). In these works, changes in the interdependences

were found among the different sleep stages. Moreover, the

combination of GS indexes with the multivariate surrogate data

test (Appendix A) allowed the authors to show that these

interdependences among the analyzed sites were often non-

linear and therefore cannot be explained by using linear indexes

alone.

10. Event synchronization

All the measures covered up to now are defined for

continuous signals, in which we look for linear or nonlinear

correlations between amplitude values, frequencies, phases,

or trajectories in phase space. As described, these measures

have been very useful for different applications. However,

many systems in nature express themselves as point-like

processes and, in this case, the applicability of such measures

may be limited. Examples of point processes in neurophy-

siological signals are spike trains corresponding to the firing

of a neuron or the appearance of epileptic spikes in an EEG

recording. In this section we describe a very simple measure

that can be used for any time series in which we can define

events (Quian Quiroga et al., 2002b). In principle, when

dealing with signals of different character, the events could

be defined differently in each time series, since their common

cause might manifest itself differently in each signal.

This event synchronization (ES) measure is very simple

conceptually and easy to implement. In fact, it can be used

on-line and can show rapid changes of synchronization

patterns.
10.1. Definition of event synchronization and delay

asymmetry

For point-like processes the events and times are already

given. On the other hand, for continuous time series xn and yn,

n = 1, . . ., N, the first step is to define suitable events and event

times txi and tyj (i = 1, . . ., mx; j = 1, . . ., my) by taking, e.g., the

local maxima, subject to some further conditions. If the signals

are synchronized, many events will appear more or less

simultaneously. Essentially, we count the fraction of event pairs

matching in time, and we count how often each time series

leads in these matches. Similar concepts were used by other

authors (Brillinger et al., 1976; Pijn, 1990) and a similar idea is

extended to multivariate data (Grün et al., 1999, 2002a, 2002b).

These measures are also related to the diagonal trace of the

joint-peristimulus-time-histograms (Aertsen et al., 1989),

which basically consists of a matrix showing coincidences of

the spikes of two neurons. Let us first assume that there is a well

defined characteristic event rate in each time series. Counter

examples include strong chirps and onsets of epileptic seizures

where event rates change rapidly. Such cases will be treated

below. Allowing a time lag +t between two ‘synchronous’

events (which should be smaller than half the minimum inter-

event distance to avoid double counting), let us denote by

ct(xjy) the number of times an event appears in x shortly after it

appears in y, i.e.:

ctðxjyÞ ¼
Xmx

i¼1

Xmy

j¼1

Jti j (30)

where

Jti j ¼
1 if 0< txi � tyj � t

1=2 if txi ¼ tyj
0 otherwise

8<
: (31)

and analogously for ct(yjx). Next, it is possible to define the

following symmetrical and anti-symmetrical combinations:

Qt ¼
ctðyjxÞ þ ctðxjyÞffiffiffiffiffiffiffiffiffiffiffi

mxmy
p ; qt ¼

ctðyjxÞ � ctðxjyÞffiffiffiffiffiffiffiffiffiffiffi
mxmy

p (32)

which measure the synchronization of the events and their delay

behavior, respectively. They are normalized to 0 � Qt � 1 and

�1 � qt � 1. We have Qt = 1 if and only if the events of the

signals are fully synchronized. In addition, if the events in X

always precede those in Y, then qt = 1. Fig. 11 gives a sketch of

the steps involved in the calculation of ES using two simulta-

neously recorded EEG channels (see Quian Quiroga et al.,

2002b for details). In cases where we want to avoid a global

time scale t since event rates change during the recording, we

use a local definition tij for each event pair (ij). More precisely,

we define

ti j ¼
minftxiþ1 � txi ; t

x
i � txi�1; t

y
jþ1 � tyj; t

y
j � tyj�1g

2
(33)
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Fig. 11. Idea of event synchronization. On top, two simultaneously recorded EEG channels containing spikes. On bottom a zoom on the data. Firstly, events are

detected using, e.g., local maxima (markers on top of the spikes). Secondly, boxes of length 2t around each event inX are considered. Thirdly, the number of times that

events in X and Y appear within the same box (thick boxes), the events of X precedes events in Y (solid boxes) or vice versa (dashed boxes) are counted. Event

synchronization is just a quantification of the number of quasi-synchronous events (thick boxes) and the delay asymmetry is obtained from the difference between

solid and dashed boxes (Eq. (32)).
Jij is then defined according to Eq. (31) by replacing the

global t with the local tij. In either case, time resolved variants

of Eq. (30) can be obtained as:

cnðxjyÞ ¼
XX

Ji jQðn� txi Þ (34)

i j
where n = 1, . . ., N and Q(x) is the step function (0 for x � 0; 1

otherwise). Similarly, cn(yjx) can be calculated by exchanging

X and Y. This time resolved variants may be seen as a random

walk that takes one step up every time an event in X precedes

one in Y and one step down if vice versa. If the events occur

simultaneously or if it appears only in one of the signals, the

random walk does not move. Exchanging X and Y just reverses

the walk. For non-synchronized signals, we expect to obtain a

random walk with the typical diffusion behavior. With delayed

synchronization we will have a bias going up (down) if X

precedes (follows) Y.

The time course of the strength of ES can be obtained from

Q(n) = cn(yjx) + cn(xjy). If an event is found both in x and y

within the window t (respectively tij), Q(n) increases one step,

otherwise it does not change. Of course, Q(n) will also not

change if there are no new events at all. The synchronization

level at time n, averaged over the last Dn time steps, is thus

obtained as:

Q0ðnÞ ¼ QðnÞ � Qðn� DnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DnxDny

p (35)
10.2. Applications to neurophysiology

ES is particularly well suited when one can define clear

events in the signals (e.g., spikes). In particular, it is very

sensitive to quasi-synchronous appearances of events, even if

these are too sparse. Such behavior may be washed-out by

other standard measures of synchronization that look at the

whole signal. In particular, a measure similar to the one

described abovewas applied to ultra-sparse neuronal data from

different structures in the brain of zebra finches (Hahnloser

et al., 2002). In this study a sparse quasi-synchronous pattern of

activation between different brain structures was correlated to

the generation of song motifs. These results were not that

obvious in the cross-correlation function between the different

spike trains (Hahnloser et al., 2002, see supplementary

material).

ES has been also applied to different sets of EEG data (Quian

Quiroga et al., 2002b). An interesting result was that ES showed

similar outcomes to other synchronization measures, such as

PS, nonlinear interdependencies, cross-correlation, coherency

and MI, for the data sets studied in (Quian Quiroga et al.,

2002a). Remarkably, this holds true even in cases where the

definition of events was not obvious (i.e., a random looking

signal). Moreover, it was possible to obtain a better resolved

time profile of the synchronization pattern. The same study also

reports the application of ES to the study of EEG pre-ictal and

ictal activity. In this case, it was possible to identify the

recording electrode closer to the epileptic focus (according to

clinical evidence) since their events preceded those in the other

channels (Quian Quiroga et al., 2002b).
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A measure of coincidence spikes (Grün et al., 1999, 2002a,

2002b) similar to the one we have just described, was used to

study multiple neuron recordings from the motor cortex of

monkeys (Riehle et al., 1997). This study showed the existence

of a precise synchronization (of the order of 5 ms) among

neurons in the motor cortex, which was associated to distinct

phases of the execution of a motor task.

11. Comparing the different approaches

11.1. The current role of linear methods

After getting acquainted with the different multivariate

nonlinear methods, one might be tempted to favor them in

prejudice of the linear methods or, at least, to relegate these to

the background. But this would be a serious mistake: the

nonlinear tools are not intended to substitute linear ones and

neither they should be claimed to be superior as such. Instead,

they must be regarded as a complement of the linear approach

that allows a more comprehensive picture of the analyzed data.

In fact, we have seen that the information provided by

multivariate nonlinear analysis does not necessarily coincide

with that of the linear methods (e.g., Fell et al., 2003). Both

approaches may assess different parts of the interdependence

between the signals, to the point that the linear methodology

might be even superior in certain cases (e.g., Freeman and

Rogers, 2002). Additionally, from the methodological point of

view, linear methods sometimes present better properties that

their nonlinear counterparts, such as robustness against noise.

In consequence, a rigorous approach to the study of any

neurophysiological data set should not be biased towards

nonlinear methods. Quite on the contrary, the linear approach

should be the initial choice, and it is indeed a healthy practice to

try first the traditional approaches before going to the more

complicated ones. Only if we have good reasons to think that

there is any nonlinear structure either in the data themselves or

in the interdependence between them should the nonlinear

approach be adopted. And even in this case, the best strategy

would consist in using both linear and nonlinear methods alike

to be sure that we have gathered all the information available

from the signals.

11.2. The relationships between the nonlinear indexes

At this point, the question naturally arises as to which of the

nonlinear strategies should be chosen to analyze a given

neurophysiological data set. To clarify this point, comparative

studies have been carried out in either animal (Quian Quiroga

et al., 2002a) and human epileptic EEGs as well as in model

dynamical systems (Kraskov, 2004; Kreuz, 2004; Smirnov and

Andrzejak, 2005). A recent work addressed this issue by

making use of a neural model in which the interdependence

between two simulated neurophysiological signals could be

modified by means of an adjustable parameter, thereby having a

priori knowledge about the results that should be obtained

(David et al., 2004). These works, along with other related and

more theoretical ones, studying the properties of the different
indexes within some specific framework (Pereda et al., 2001;

Rosenblum et al., 2004) and the relationship between different

kinds of synchronization (Parlitz et al., 1996; Zheng and Hu,

2000), allow us to shed some light upon the abovementioned

question.

The first remarkable result is that most of the nonlinear

indexes are somewhat correlated with each other (Kraskov,

2004; Kreuz, 2004; Quian Quiroga et al., 2002a). Indeed, both

the linear correlation coefficient and one information-theoretic

index have shown similar results for MI, PS indexes, GS

indexes and linear correlation indexes. The correlation between

all of them is quite high, although they all cluster in different

groups according to their degree of similarity, which roughly

speaking coincides with the type of synchronization they assess

(Kraskov, 2004). Additionally, GS indexes do not seem to be

superior in general to asymmetric PS bivariate indexes in the

assessment of weak directional coupling (Smirnov and

Andrzejak, 2005). The most significant result is, however, that

it is rather difficult to assess objectively the performance of the

different measures either in dynamical systems or in EEG data

(Kreuz, 2004). Instead, this author suggests a pragmatic

approach, in which the tool to be used depends on the

information that one wishes to extract from the data. In this

comparative study, the PS indexes based on the HT along with

the MI and the cross-correlation function were the most

promising in yielding useful information for diagnostic

purposes in epilepsy patients. But the joint use of different

synchronization measures that gives the maximum non-

redundant information (e.g., those with the lowest correlation)

might be an interesting approach.

The study using the neural mass model also clarified some

important practical issues (David et al., 2004). Concretely, it

assessed the sensitivity of the cross-correlation function and

several nonlinear synchronization indexes for narrow and

broadband signals. The authors concluded that, despite initial

claims of PS being a weaker type of synchronization than GS

(Parlitz et al., 1996), GS indexes are more sensitive than either

PS indexes or MI at weak couplings, which would agree with a

later theoretical result indicating that GS and PS may appear

independently (Zheng and Hu, 2000). In must be noted,

however, that the apparent independence shown in this latter

work may be the consequence of an unfortunate definition of

the phase. David et al. (2004) also showed that MI presented

the greatest variation for a given change of the coupling

parameter at higher synchronization levels. Likewise, these

authors suggest that, although both MI and GS indexes are

useful to study changing interdependences, the latter ones

should be preferred for the analysis of broadband signals,

whereas PS indexes perform well in the narrowband case.

Nevertheless, and despite this result, we would like to stress

that PS indexes can be used whenever one wants to get

information out of the phases disregarding the amplitudes, so

that whether the signals are broadband or narrowband should

not be a criterion for making this decision. Finally, this work

shows that synchronization can be properly detected in

relatively short data segments, in agreement with other studies

(e.g., Bhattacharya et al., 2003), although the detection of
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coupling is clearly improved as the length of the time series

increases.

In conclusion, which is the answer to the question we raised

at the beginning of this section? An accurate response would

have to take into account the type of analyzed data (David et al.,

2004; Kreuz, 2004). It is of course impossible to consider all the

possibilities, but we can dare to make some suggestions for

some typical cases. Thus, if one is interested in checking the

existence of (possibly nonlinear, either symmetric or asym-

metric) synchronization between the amplitudes of integrated

neural activity recordings such as EEG or MEG signals,

methods based on GS, nonlinear Granger causality and the

information-theoretic approach may be preferred. In this case,

the latter advances from these approaches (Andrzejak et al.,

2003; Bhattacharya et al., 2003; Chen et al., 2004; Hu and

Nenov, 2004; Kraskov et al., 2004; Quian Quiroga et al., 2002a;

Rulkov and Afraimovich, 2003) must be taken into account for

optimal performance. If no interdependence between the

amplitudes is found, PS indexes can still be used, in order to

study the existence of the interdependence between the phases

(as it has been done, for instance, during the dynamical

formation and destruction of large scale integrative webs in

cognitive and binding processes). Those PS indexes that are

able to detect the existence of directionality and delay in the

synchronization (Cimponeriu et al., 2003, 2004; Smirnov and

Bezruchko, 2003) might be applied to get further information

about this interdependence. We must stress that, when using the

PS approach, it is fundamental to reliably estimate a mean-

ingful phase from the signals; otherwise the results might be

meaningless. In any case, since GS and PS might appear

independently, the possible synchronization between the

amplitudes and between the phases can be jointly studied,

(see for instance Bhattacharya et al., 2001b; Kraskov, 2004;

Kreuz, 2004; Quian Quiroga et al., 2002a).

In dealingwith evoked potentials, which are intrinsically non-

stationary, the later GS index tailored to cope with non-

stationarity (Kramer et al., 2004) as well as PS indexes can be

used. Finally, information theory-based methods can be used to

study the stimulus–response relationship aswell as the features of

the information encoded in neural action potentials. The ES

indexesmay also play an important role in studying synchroniza-

tion phenomena in such point processes, as well as in all those

signals where marked events can be properly defined.

In all cases, the use of some kind of statistical test for

synchronization (such as the one described in Appendix A) is

advisable, in order to check whether the indexes are actually

reflecting the interdependence between the signals. This avoids

drawing erroneous conclusions about the data based on

spurious values of these indexes. As already commented, this

test may be also useful to get information about the nature of the

relationship, thereby checking the convenience of applying

nonlinear methods.

12. Conclusions

We have reviewed here the current state of the

main nonlinear analysis techniques applied to multivariate
neurophysiological data, a subject that is earning growing

popularity to the extent that these methods have been applied to

almost any kind of neurophysiological signals ranging from

fMRI data to spike recordings of a neuron. Certainly, and

despite its possible advantages, we have also seen that this new

approach is not free of caveats. It might be even argued, as

suggested in the Introduction, that the very nature of

neurophysiological data (which are often non-stationary, short

and noisy) as well as that of the methods – whose complex

mathematical background may be sometimes discouraging –

preclude the growth of this approach in neurophysiology. But

we have seen that actually some nonlinear methods rely much

less on stationarity than linear ones (e.g., ES versus coherence)

and can be also far much simpler (e.g., ES versus Granger

causality). Moreover, the calculation of nonlinear methods can

sometimes be faster than the linear ones.

In any case, it has been clear throughout this work that

nonlinear methods might be useful in giving insight into the

interdependence between neural assemblies at both short and

large time and spatial scales, as they allow the analysis of

complex nonlinear interactions from different perspectives and

complement the information provided by traditional linear

tools. But only the intensive interplay between theorist and

applied scientists that is currently taking place in this

multidisciplinary research field will allow elucidating whether

multivariate nonlinear methods can be actually successfully

integrated as standard analytical tools in neurophysiology.
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Appendix A. The multivariate surrogate data: what can

they do?

The surrogate data method was introduced into practice

more than a decade ago (Theiler et al., 1992) and it is nowadays

the most popular test for non-linearity in experimental data. It

belongs to a more general type of statistical tests known as

hypothesis tests. In the univariate approach, a certain index (the

statistic) that characterizes a time series is calculated from it.

Then, a set of p times series is constructed, which share with the

original many of its characteristics, but lack the property whose

effect on the statistic we want to test. These new series, called

the surrogates, are used to repeat the calculation of the index,

thereby obtaining p + 1 estimations of it. The test consists in

determining the probability that the original value of the

statistic belongs to the distribution of the surrogates (the null

hypothesis, H0), which is equivalent to estimate numerically the

probability that H0 is true. Different kinds of surrogates data are

consistent with different null hypothesis, and different statistics

can be used (for recent reviews see Dolan and Spano, 2001;

Schreiber and Schmitz, 2000). However, what is important in
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our context is that this idea can be extended to deal with

multivariate data. In fact, multivariate surrogates can be used to

get insight into the interdependence between time series in two

ways: by studying the significance of the interdependence, as

measured by the different indexes, and by determining its

nature, i.e., whether it is nonlinear.

A.1. Testing the reliability of the indexes

Sometimes, the synchronization indexes may present values,

which are not reflecting the existence of synchronization

between the time series, but are the result of some feature of the

individual signals (such as their complexity, their limited length

of their non-stationarity, e.g., Bhattacharya et al., 2003; Pereda

et al., 2001; Quian Quiroga et al., 2000). In order to check

whether an index is actually measuring synchronization,

multivariate surrogate data can be constructed to test the

hypothesis that the signals are independent.

The simplest way of achieving this goal is by randomly

shuffling the samples of both time series, thereby obtaining

the so called ‘‘shuffled surrogates’’, with the same distribu-

tion of the original data but completely independent from

each other (Palus, 1996). The problem of these surrogates is

that they change the autocorrelation structures of each

dataset. Additionally, it is known that the autocorrelation of

the data might affect the values of different synchronization

indexes (Pereda et al., 2001). Also, the use of such shuffled,

white noise-like version of the data as a control condition is
Fig. 12. Two EEG segments of a healthy term newborn (electrodes Fp1 (solid line) an

surrogates (bottom). Left: Original EEG traces. Middle: Autocorrelation function (
not recommended, because the prominent autocorrelations

inherent to neurophysiological signals (see, e.g., Linkenkaer-

Hansen et al., 2001) turn this kind of surrogates into very

unlikely realizations of any neurophysiological process.

Hence, a more feasible H0 can be tested, namely that the time

series are two independent, linear stochastic processes with

an arbitrary degree of linear autocorrelation. Surrogate data

consistent with this H0 would be ‘‘traditional’’ univariate

surrogates constructed by any of the available methods,

where the surrogating procedure is carried out independently

for each time series, so that any cross-correlation is destroyed

(see Fig. 12). This idea can be also used to estimate the

significance of the coherence function in the linear frame-

work (Faes et al., 2004). Still, this procedure might be

insufficient if any of the time series does present nonlinear

structure. In such a case, it is necessary to construct

surrogates that preserve all the individual structure

while destroying all interdependences between the signals

(Andrzejak et al., 2003; Quian Quiroga et al., 2002a).

Two possibilities are at hand for this purpose. The first and

simplest one consists in comparing the original version of one

of the signals with temporally shifted versions of the other one

(Bhattacharya et al., 2003; Kraskov, 2004; Netoff and Schiff,

2002; Quian Quiroga et al., 2002a). In a similar way, if one is

dealing with evoked potentials then one has pairs of EEG

channels whose interdependence is analyzed in a series of

several trials. In order to determine the significance of, say, the

PS indexes, one possibility consists in randomizing the order of
d Fp2 (dashed line)) during active sleep (top) and their corresponding univariate

preserved). Right: Cross-correlation function (destroyed).
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trials in one of the channels in order to check that PS is not

spuriously induced by either the measurement devices or the

recording procedure (see, e.g., Gross et al., 2004; Lachaux

et al., 1999; Rodriguez et al., 1999; Simoes et al., 2003). The

second possibility can be used, for instance, in the framework of

GS analysis. As GS indexes are calculated in the state space of

each individual signals, one of the signal is left unchanged,

whereas surrogate versions of the other one are constructed. In

this way, we obtain for the unchanged signal different

estimations of which would be the value of the index if there

were no relationship with the other one, as the surrogate

versions of the second signal are independent from the first one

(e.g., Bhattacharya et al., 2001b, 2003; Pereda et al., 2001).

A.2. The nature of the interdependence

In order to determine whether the interdependence between

two signals is nonlinear, multivariate surrogate data must be

constructed in such a way that they preserve the linear cross-

correlation between the original data. This can be achieved by

keeping constant the relative phase difference between them

(Prichard and Theiler, 1994). Thus, the phases of the signals in

the frequency domain are randomized by adding the same

random quantity to the phases of each signal at each frequency.

Both the phases of the Fourier transform (e.g., Andrzejak et al.,

2003; Dumont et al., 2004; Pereda et al., 2001; Prichard and

Theiler, 1994) or those of the wavelet transform (Breakspear

et al., 2003a) can be used for this purpose. Additionally, it is

also possible to obtain this kind of surrogates by filtering

random Gaussian data using the power spectral density of the

original data (Dolan, 2004; Dolan and Neiman, 2002).

It must be noted that, although the above surrogating

procedure preserves both the autocorrelation of the signals and

their linear cross-correlation, the nonlinear individual structure

of the individual signals, if any, is also destroyed. In other

words, any nonlinearity not only between but also within the

signals is not present in the surrogates. Therefore, these

surrogates only test the hypothesis that the data are bivariate

stochastic time series with an arbitrary degree of linear auto and

cross-correlation (Andrzejak et al., 2003). Nevertheless, if the

two signals studied do have any nonlinear structure, it is not

possible to ascribe a rejection of the hypothesis that the

interdependence is nonlinear to the nonlinearity of the

interdependence, because the nonlinearity of the individual

signals may also play a role. The generation of surrogate data

preserving all the individual structure but destroying only the

nonlinear part of the interdependence is currently one of the

most challenging tasks in the field, and it is a subject of ongoing

research (Andrzejak et al., 2003; Dolan, 2004).

We would like to note that, whether the surrogates are used

to test the existence of interdependence or its nature, the

underlying idea is always the same: a significance threshold is

obtained with the help of the surrogates, beyond which either

the synchronization indexes can be regarded as significant or

the interdependence can be regarded as nonlinear at a certain

level of statistical confidence. It is noteworthy that the

derivation of such threshold is closely linked to the ideas
traditionally used to estimate the significance of linear indexes

such as the cross-correlation or the coherence function. In the

nonlinear case, this significance can be tested in different ways,

as detailed henceforth.

A.3. Assessing the significance of the test

Once the values of the statistic for the original and for the set

of surrogate time series are obtained, it is necessary to check if

the former one is indeed significantly different from the latter

ones. In other words, one has to determine whether the

corresponding H0 can be rejected at the desired level of

confidence. The ‘‘classical’’ approach for this purpose

consisted in estimating the mean and the standard deviation

of the distribution of the statistic from the surrogates and then

comparing them with its value for the original signals. Thus, a

Z-score is calculated as follows:

Z ¼ jj0 � j̄Sj
sS

(36)

Here, j0 and j̄S are the value of the statistic for the original

data and its mean for the surrogate distribution, respectively,

and sS is the standard deviation of this distribution. There is a

direct relationship between the number of generated surrogates,

p, and the minimal value of Z for the difference to be significant.

Typically, for p = 19, in order to reject H0 at the 95% level of

confidence one must have Z > 1.96 for a one-sided test, which

is performed in the multivariate case because synchronization

indexes are expected to be greater for the original that for the

surrogates.

The above approach has been often used in testing for

nonlinearity in univariate data, from which it was easily

adapted to the multivariate case (Schreiber and Schmitz, 2000).

It has the advantage of providing a quantitative measure of

significance, which might be further used, in principle, as an

index of either the degree of coupling or the degree of

nonlinearity in the interdependence. However, by assessing the

significance in this way, we are implicitly assuming that the

indexes from the surrogates are normally distributed, which is

certainly not always the case (Schreiber and Schmitz, 2000).

Therefore, unless the normality of this distribution is explicitly

checked (see Dumont et al., 2004 for a recent example), a more

accurate, nonparametric rank test must be applied, which

provides a qualitativemeasure of significance by rejecting H0 if

and only if j0 is strictly greater than all the values for the

surrogates. Only if such more restrictive condition is fulfilled

can Eq. (36) be regarded as a measure of the extent of the

interdependence and/or of its non-linearity.

An alternative approach can be used to test the significance

of the difference at the group level, when one has a set of n

records carried out in the same experimental situation (Dumont

et al., 2004; Fell et al., 1996). In this case, the n original values

j
j
0 ð j ¼ 1; . . . ; nÞ are compared with the n surrogate values j

j
S

obtained after generating one surrogate pair for each original

time series. A nonparametric test for dependent samples (e.g.,
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7 Dr. Michael G. Rosenblum’s homepage at the University of Potsdam. URL:

http://www.agnld.uni-potsdam.de/�mros/publications.html.
8 R. Quian Quiroga. Software site. URL: http://www.vis.caltech.edu/�rodri/

software.htm.
Wilcoxon signed test) must be performed subsequently to get

the level of statistical significance.

To conclude, we must indicate that there are a few especial

situations (such as the study of PS between two time series when

a base level of synchronization is present) where a different test

for synchronization should be used (Allefeld andKurths, 2004b).

Appendix B. Do it yourself . . . with a little help

It is likely that sooner or later one is tempted to apply some of

the nonlinear methods described here to his/her own data. This

invariably carries the need of programming his/her programming

code, a task that can be considerably eased by being aware of the

work that others have already carried out in the same line, results

that may be available through the Internet. In fact, the World

Wide Web has become a fundamental research resource to the

extent that it is nowadays common tofind references to its content

in almost any scientific document. This is not surprising because

Internet can be regarded, among other things, as a scientific

forumwherewe can seek information about a particularmatter or

simply contribute our ownwork. Considering this, wewould like

to take advantage of this resource by pointing the interested

reader to different web sites where it is possible to get software

code (sometimes even complete programs and/or toolboxes) for

the multivariate nonlinear analysis of experimental signals. In

doing so,we are certainly taking some risks: Internet is a dynamic

environment, in which a given site might suddenly move to a

different location or even disappear, thus making the corre-

sponding link useless. However, we also think that the potential

benefits of including these links clearly outweigh the drawbacks,

and at the same time,we pay a tribute to all those researcherswho

have shared the product of their efforts with the scientific

community for the sake of the advance of science.

In what follows, we will restrict ourselves to resources on

nonlinear multivariate indexes that are publicly available and

possess in our mind a proven reliability in terms of scientific

soundness and potential ability to last in their present locations.

Unfortunately, and contrary to univariate nonlinear analysis –

where the TISEAN package (Hegger et al., 1999) is still the

reference – there is not an equivalent in the multivariate

context, so that different algorithms for the different indexes

must be obtained separately.

Most of the software presented here is coded in MATLAB1.

Even if this program is not free, all the references we give are

for free, and those researchers who do not own the program and

do not want to get it either, can still make use of the code as a

guide to produce his/her own custom-written software in the

desired language. In this regard, it must be noted that there are

two general-purpose file exchange sites that are certainly good

starting points (Mathtools.net; MatlabCentral).

In all cases, Internet addresses are indicated either as

footnotes or in References section.

B.1. Phase synchronization indexes

To the best of our knowledge, there is only one set of scripts

available for the calculation of PS indexes, which can be
downloaded from a personal website.7 These scripts allow

calculating both symmetric bivariate PS indexes and the

directional PS indexes described in Section 8.2.2.

B.2. Mutual information

Some good software is available to calculate the MI between

time series. For instance, the Mutual Information Least

Component Analysis package (MILCA, Stögbauer et al.,

2004) includes thewhole source code alongwith complementary

documentation. It implements a MI estimator that is adaptive,

data efficient and optimized for minimal bias (Kraskov et al.,

2004). On the other hand, the Cross Recurrence Plot Toolbox

(CRPTOOL) also includes an implementation of the MI index

(Roulston, 1999). BothMILCA andCRPTOOL calculate theMI

from either bivariate or multivariate time series as a function of

the time delay. Although the latter toolbox implements a sub-

optimal algorithm as compared to the former one, it presents the

advantage of giving error estimates for the MI, which might be

useful if one does not have long enough data. The TISEAN

package and the Time Series Toolbox (TSTOOL) (see below)

also include routines for the calculation of MI, but they are only

intended for the univariate approach, in which instead of signal Y

in Eq. (16), delayed versions of signal X are used to calculate the

so-called auto-MI. The first minimum of this function is often

used as a good estimator of the time delay for embedding

purposes, but has little usefulness for the multivariate case.

B.3. Generalized synchronization indexes

One of the authors of this review has made available different

routines for the calculation of GS indexes (as presented in Quian

Quiroga et al., 2002a) alongwith the data setsnecessary to test the

results.8 These routines also allow estimating the cross-

correlation and the coherence function. Moreover, similar

software, including thecalculationof a recentlydefinednonlinear

interdependencemeasure (HuandNenov,2004) is availableupon

request from the corresponding author of this review paper.

B.4. Multivariate surrogate data

The already mentioned TISEAN package includes an

implementation to construct multivariate surrogates by using

both constrained randomization and annealing methods.

Furthermore, it is also possible to get a very useful MATLAB1

package for the same purpose from (MatlabCentral).

B.5. Other useful software

Apart from the TISEAN package, there are some other

interesting packages, not directly dealing with multivariate

http://www.vis.caltech.edu/~rodri/software.htm
http://www.vis.caltech.edu/~rodri/software.htm
http://www.vis.caltech.edu/~rodri/software.htm
http://www.vis.caltech.edu/~rodri/software.htm
http://www.vis.caltech.edu/~rodri/software.htm
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analysis that might be anyway of help in our context. For

instance, TSTOOL is a comprehensive MATLAB1 toolbox for

the nonlinear analysis of time series. Besides giving the option to

calculate a whole set of univariate nonlinear indexes, it includes

several useful scripts for general-purpose applications such as

time delay embedding or nearest neighbors search. It comeswith

a complete user manual including a large set of bibliographic

references, which makes it very useful for those researchers

interested in getting started with nonlinear analysis methods.

There are also another two integrated toolboxes worth

mentioning, both of them devoted to MEG and EEG analysis

and representation (BrainStorm; EEGLab). They include many

useful data visualization and processing routines.
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