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Abstract 
 
 
Feature extraction by digital image analysis and cell classification is an important task for 
cell culture automation. In High Throughput Screening (HTS) where thousands of data 
points are generated and processed at once, features will be extracted and cells will be 
classified to make a decision whether the cell-culture is going on smoothly or not. The 
culture is restarted if a problem is detected. In this thesis project HeLa cells, which are 
human epithelial cancer cells, are selected for the experiment. The purpose is to classify 
two types of HeLa cells in culture: Cells in cleavage that are round floating cells (stressed 
or dead cells are also round and floating) and another is, normal growing cells that are 
attached to the substrate. As the number of cells in cleavage will always be smaller than 
the number of cells which are growing normally and attached to the substrate, the cell-
count of attached cells should be higher than the round cells. There are five different 
HeLa cell images that are used. For each image, every single cell is obtained by image 
segmentation and isolation. Different mathematical features are found for each cell. The 
feature set for this experiment is chosen in such a way that features are robust, 
discriminative and have good generalisation quality for classification. Almost all the 
features presented in this thesis are rotation, translation and scale invariant so that they 
are expected to perform well in discriminating objects or cells by any classification 
algorithm. There are some new features added which are believed to improve the 
classification result. The feature set is considerably broad rather than in contrast with the 
restricted sets which have been used in previous work. These features are used based on a 
common interface so that the library can be extended and integrated into other 
applications. These features are fed into a machine learning algorithm called Linear 
Discriminant Analysis (LDA) for classification. Cells are then classified as ‘Cells 
attached to the substrate’ or Cell Class A and ‘Cells in cleavage’ or Cell Class B. LDA 
considers features by leaving and adding shape features for increased performance. 
On average there is higher than ninety five percent accuracy obtained in the classification 
result which is validated by visual classification.  
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1 Introduction 

Computational biology or Bioinformatics covers a variety of fields including genome 
sequencing, biological databases, protein structure modelling, gene expression analysis 
and many more. It is now becoming increasingly common to use digital image processing 
and digital image analysis in the field of bioinformatics. Image cytometry is the 
measurement of cell properties from images. Digital image analysis refers to the 
extraction of information from images with the aid of computers [Lindblad, 2003]. 
Biomedical Image Analysis deals with the research and development of image-guided 
surgery, shape and motion measurement, spectral analysis etc. 
 
Techniques for digital image analysis have a long history [Ballard and Brawn 1982]. 
They have played a part in a number of approaches to feature extraction for cells [Dawe 
et al, 1994; Wied et al, 1989]. Image analysis in cell cytometry was limited to image 
filtration and transformation to make the objects clearer in the image for the analyser or it 
was simply a support for manual and visual classification. Researchers have begun to use 
image analysis and machine learning techniques to assist in the recognition of features 
associated with cells [Turner et al. 1993; Wohlberg et.al, 1993; 1995]. Interaction 
between sub-cellular molecules can be detected with digital image analysis by High 
Throughput Screening (HTS). 
 
Biologists need well-grown cells for further experiments. If the cultured cells have 
aberrant growth or unwanted shapes, further experiments (for example gene expression 
analysis) will be misleading. So, it has to be ensured that the cell-culture is going on 
smoothly. For this, it is often essential to differentiate two kinds of cells in culture; cells 
which are in cleavage and cells which are growing normally.  
 
HeLa cells, which are used in this study, are continuous cell lines as these can continue to 
divide indefinitely. HeLa cells are cancer cells and cancer results from an accumulation 
of mutations that activate proliferation-promoting genes (proto-oncogenes) and inactive 
proliferation-suppressing genes (tumour-suppressor genes) in a single cell and its 
progeny, which therefore proliferate without restraint [Alberts et al., 1998]. The name 
HeLa came from the lady named Henrietta Lacks, who had cervical cancer. HeLa cells 
were extracted from her cervix. 
 
Normal growing HeLa cells are attached to the substrate and floating rounded cells 
indicate that they are in cleavage. Their physical properties are different and they will 
have different mathematical properties. Presence of the correct proportion of these two 
kinds of cells ensures that cells are growing smoothly. In case of HeLa cells, at any time 
point if there are more rounded floating cells than attached cells, it indicates that there are 
some problems in the culture which can be in the culture medium or temperature etc. 
Suspending rounded cells in HeLa cell culture indicates that they are ready to divide or 
they were just divided. Once they have been divided they are again attached to the 
substrate. Dead cells also float and look round. So if there are more rounded cells 
floating, it means that either they are overgrown or dead cells. Either of these cases is 
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unwanted and this situation is to be managed in real time so that if needed the culture 
process can restart [Cann, 2000].  
 
Real time processing needs automation. There may be a huge number of cells to be 
classified. For a human, it is obviously tiring to accomplish this job. Instead, it is 
preferable to have it done by a machine. Another issue will be the efficiency. A computer 
will be able to analyse thousands of cells and classify them more rapidly than a human. 
Thus, high throughput screening should be performed. HTS is obtained through a 
combination of modern robotics and other specialized laboratory hardware. It allows a 
researcher to effectively conduct hundreds of scientific experiments at once. A screen, in 
this context, is the larger experiment, with a single goal (usually testing a scientific 
hypothesis), to which all this data may subsequently be applied [Hann and Oprea, 2004].  
 
From the above discussion it is clear that three different things should be accomplished, 
and they are feature extraction, classification and automation. The scope of this thesis is 
feature extraction and classification of cancer cells. There are as many as twenty features 
that are found from mathematical properties of objects and from image processing 
techniques. Those morphological properties are described in the method section. It is 
intuitively anticipated that feature values will be different for two different types of cells. 
For example, a cell in cleavage will be more round and thus the roundness feature will 
discriminate an attached cell which is irregular in shape, from a floating cell in cleavage, 
which is regular in shape.   
 
The input data here is raw images from cells. There may be thousands of cells in a single 
image. They need to be separated from one another. This is done by segmentation. 
Segmentation is a process in which an image is subdivided into its parts or objects, or, 
more simply stated, it is a process to isolate objects from background [Gonzalez and 
Woods, 2003]. There are many techniques for segmentation but a manual process is used 
here for the experiment, since the topic automatic segmentation is beyond the scope of 
this thesis. When a single cell is found by segmentation and isolation, its different 
features are calculated by digital image analysis. These techniques are repeated for all 
cells in the whole image or a part of the image.  
 
When the features are found for all the cells, they are fed as input data to a machine 
learning algorithm called Linear Discriminant Analysis (LDA) for classification. LDA is 
a classical statistical approach for classifying samples of unknown classes, based on 
training samples with known classes. LDA constructs a line between the training data of 
the two sets in a way that some optimization criterion is fulfilled (maximal distance of 
means versus minimal scatter). Then the classification process is defined by selecting this 
line as a separating criterion although the training set is, in general, not perfectly 
separated. This classification algorithm classifies the given cells as irregular attached 
cells and floating spherical cells which here are called Cell Class A and cell Class B.  
 
Automation is to be carried out in all the steps except input / output of the cell culture 
(flasks). So the above processes (feature selection, segmentation and classification) are 
all to be automated. In addition, in a fully automated cultivation system optical 
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monitoring, cell handling and system control are automated. This work is a part of a 
project called Live Cell Monitoring: Development of a System for Cultivation and 
Monitoring of Living Cells. The aim of this thesis is to design and implement a fully 
automated feature selection and classification algorithm. Other parts of the Live Cell 
Monitoring project, such as cell handling, automatics image segmentation and system 
control are beyond the scope of the thesis. 
 
Chapter 2, Background, presents biological and image processing background material 
relevant to this work. Chapter 3, Project describes the entire project in general which is 
the alliance of four different Fraunhofer institutes and the contribution of this thesis work 
to the project. Chapter 4, Methods, describes different mathematical and image features 
which were used to classify the cells. It also describes the classification algorithm- LDA 
in brief. Chapter 5, Results and Analysis, presents classification results of the experiment 
on five different HeLa cell images using the features described in Chapter 4, Methods. 
Chapter 6, Discussion and conclusion, discusses about the prediction capabilities of the 
classification algorithm using the feature set and concludes with topics of 
misclassification and computational overhead. Chapter 7, Future work, describes about 
enhancement of this work in the area of automatic image segmentation, feature inclusion 
and overhead reduction which were beyond the scope of this thesis. 
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2 Background 

2.1 Biological Background 

Cell classification is an important assay in cell culture. Once in culture, cells exhibit a 
wide range of behaviours, characteristics and shapes. Cultured cells are usually described 
based on their morphology, that is shape and appearance, or their functional 
characteristics. There are three types of cells: Epithelial, Fibroblast and Lymphoblast-like 
cells. Each type of cell has some different properties. 
 
Epithelial cells stay attached to the culture plate. They appear flat and are normally 
polygonal. Fibroblast cells are also attached to the plate or substrate but appear elongated 
and bipolar. They form swirls in culture. Lymphoblast cells do not stay attached to the 
substrate but remain suspended and are round. These are shapes a cell may have but 
culture condition plays an important role in determining cell shape [Ryan, 2003]. 
 
Cell shape is one of the important characteristics which help to evaluate the general 
health of cells in culture. Determining the general health of the cell culture is important as 
they will be subsequently experimented for further research such as cell division, 
programmed cell death, protein identification and gene expression etc. Cell culture needs 
to be constantly monitored; otherwise cells will deviate from normal structure and will 
have unwanted characteristics such as changed expression profile that can adversely 
affect the experiments. 
 
Since both normal cells and cancer cells can be grown in culture, the basic differences 
between them can be studied closely. In addition, it is possible, by the use of chemicals, 
viruses and radiation, to convert normal cultured cells to cancer-causing cells. Thus, the 
mechanisms that cause the change can be studied. Cultured cancer cells also serve as a 
test system to determine suitable drugs and methods for selectively destroying some types 
of cancer [Ryan, 2003].  
 
Figure 2.1 shows healthy HeLa cells in culture. Cells in this figure have defined outer 
membranes. They are angular shaped and the growth pattern forms a patchy monolayer. 
In the figure, few rounded cells can be found, which is normal for actively dividing 
population.  
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Figure 2.1 healthy HeLa cells 

 
But too many stressed and rounded cells as in figure 2.2 indicate a problem in cell culture 
condition which can lead to excessive apoptosis (programmed cell death) or necrosis 
(swell and breakdown). In this figure the cells are overly crowded. The cells are stressed 
by the culture condition. In this situation there will be morphological changes and 
increase in the amount of sub-cellular granular particles in the overly crowded culture. 
Experiment with such cells will be affected as their expression profile is changed. 
 

 
Figure 2.2 stressed HeLa cells 

 
In good culture condition immortalised cells like a HeLa cell-line will grow indefinitely. 
To obtain best experimental results, it is recommended that the cells not to passage more 
than sixty times even in good culture condition. This has to be taken care of else cells will 
have distorted or changed gene expression profiles. 
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As described above, the number of cells in cleavage will be fewer than the number of 
normal growing attached cells. The Live Cell Monitoring system counts the number of 
cells of both types and checks the proportion. If the proportion between the cell counts is 
correct, the culture process is carried on. Otherwise, the condition is reported and a new 
culture is started. 
 

2.2 Image Processing steps for supervised Cell Classification 

Before the description of chapter 2.3, Supervised learning and training data, a short 
overview of the main image processing steps are presented as required in supervised cell 
classification. 

2.2.1 Digital Image and Analysis 

The term image refers to a two-dimensional light intensity function , where ),( yxf x  and 
 denote spatial coordinates and the value of  at any point  is proportional to the 

brightness or gray level. A digital image is an image  that has been discretized 
both in spatial coordinates and brightness. A digital image can be considered a matrix 
where each combination of row and column coordinates identifies a point in the image 
and the corresponding matrix element value identifies the gray level at that point. The 
elements of such a digital array are called image elements or pixels [Gonzalez and 
Woods, 2003]. 

y f ),( yx
),( yxf

 
Cell analysis by digital image processing is the main focus of this work. Image analysis 
techniques are being used in the area of cytometry. Initially most of these applications 
were focused on performing image transformations to make an image clearer and brighter 
to a human analyzer [Dawe et al, 1994; Wied and Bartels, 1989; Wittekind and Schulte, 
1987]. Feature extraction from cell images, cell migration etc are very recent applications 
of digital image cytometry [Wohlberg et al, 1995]. In this work, image analysis is used 
specifically to extract descriptive features of HeLa cells growing in culture.  

2.2.2 Image acquisition 

Cell images are obtained by assembling a camera to the top of the microscope. The 
camera takes the image of the culture plate below the microscope and sends the image to 
the attached computer in the common image formats, such as TIFF, for example. Then, 
for further analysis, the coloured image is transformed to greyscale which has pixel 
values in the range 0 to 255. 

2.2.3 Cell segmentation 
One single cell is analyzed at a time. Hence, the cell to be analyzed needs to be isolated 
from the rest of the group before any further analysis can be carried out. Finding the 
outline of a cell is an important but difficult task. Difficult in the sense that microscopic 
images are noisy. Sometimes it is difficult to differentiate between background and 
foreground. Cells are in foreground and those have to be isolated in such a way that they 
are not associated with the background. For that reason image has to be pre-processed 
before segmentation. Pre-processing consists of smoothing of the image to reduce the 
effect of noise or filtering to reduce the effect of smoothing. Since a general solution for 
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this problem is not available, different segmentation algorithms are used. Here, manual 
segmentation is used for experiment, as this paper is concerned with classification rather 
than with segmentation.  

2.2.4 Feature extraction 
The next step in the analysis process is to extract descriptive feature measures from the 
segmented cells. There are many different, more or less general, features described in the 
literature [Rodenacker and Bengtsson, 2003]. However, the chosen features, if to be of 
any use in the further analysis, have to reflect the property of interest. When working on a 
real world application, it is rarely enough to only use general purpose features. To 
achieve good results from the data analysis, it is almost always fruitful to measure 
additional features specifically designed to capture the property of interest [Lindbald, 
2003]. Features should also have some important properties. Absolute location or 
positioning (horizontal or vertical) of cells are irrelevant to classification. So the features 
should be invariant to translation. Rotation is also irrelevant and thus features should be 
invariant to rotation. Also the size of the cell may not be important. So the shape features 
should be invariant to scale [Duda et al., 2001]. In the Method section a large number of 
features are described which are implemented for the experiment.  
 

2.3 Supervised learning and training data 

Supervised learning is generally more efficient, and therefore to be preferred in those 
cases where it is possible to apply. And that in this case, it is possible to apply it because 
we know which classes should be learnt and we have lots of examples from each class 
which we can use in the training process. In supervised learning training data should 
specify what one is trying to learn (the class). On the other hand, in unsupervised learning 
training data does not say what one is trying to learn [Manning and Schütze, 1999].  
 
The features are input to a learning algorithm of type supervised learning named Linear 
Discriminant Analysis (LDA). This algorithm classifies the observed cell as attached or 
floating depending on the features trained on. Supervised learning is a machine learning 
technique for classification from training data. In supervised learning a class is predicted 
for the data it is trained on. In training set, data objects (cells) and output (label) should 
be present. After seeing a small number of training data, supervised learning algorithm 
should predict the value (label) of the function on input object or new pattern. 
 
The input to the classification algorithm of cells should be the basic feature of an image 
object that is pixels intensities. But pixels-based features suffer form dimentionality 
problem. In the subsections below motivation and importance of concrete features which 
are combination of pixels are presented. 
 

2.3.1 Supervised cell classification  
In the case where cell should be classified, the user can be seen as a human supervisor 
who tells the computer system how to classify cells into different classes. For this 
purpose, given cell centers (detected by a preprocessing module which is not part of this 
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thesis) are identified by mouse clicks together with the attachment of a label such as 
Class A and Class B. 

2.3.2 Training sets 
As a result of the above training step, different sets of image positions (cell centers) are 
given together with the label of the respective class. The basic information relevant for 
the classification consists of a neighbourhood of cell centers consisting of about 30×30 
pixels. This neighbourhood can be interpreted as a set of about 1000 basic features 
consisting of image intensities or the values [0, 1] for the case of a binary image. 
 
In principle, a learning algorithm such as LDA, mainly used in this work, can be based on 
this feature set. In practice, however, pixels as features are not useful for this task mainly 
for two reasons. First, single pixels are corrupted by noise and will not describe the cells 
as precise as is needed by the learning algorithm. Secondly, pixels of a cell 
neighbourhood can be interpreted as a very high (about 1000) dimensional feature vector. 
This means that the dimension of the feature space is much higher than the size of the 
training set. In this case, nearly all learning algorithms, in particular LDA, are able to 
discriminate the samples of the training set perfectly. But this discrimination has very 
poor generalization quality. 
 
To solve this dilemma, quite sophisticated combinations of pixels that result in a set of 
few features are required which are much more robust against noise and have a much 
better generalization quality. Because these features are based on the combination of 
neighbourhood pixels, they can be seen as a result of feature reduction. These features are 
the main topic of this thesis. These features can be roughly separated into two groups. 
One group consists of features directly operating on pixels by combining them, for 
example features derived by moment analysis. The other group consists of features 
working on boundaries of cells, delivered by a segmentation step. Figure 2.3 shows the 
principle in a schematic view. In figure 2.3 (a), (a two dimensional) projection of well 
separated training sets is shown with bad generalisation. In figure 2.3 (b), two training 
sets based on shape features are shown with (possibly) bad separating quality on training 
sets but good generalisation quality are displayed. 
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Fig 2.3 (b) Feature based generalisation Fig 2.3 (a) Pixel based generalisation 
 

2.4 Related work 

In the paper ‘A feature set for cytometry on digitized microscopic images’ [Rodenacker 
and Bengtsson, 2003], a possible feature set was acquired. The feature set described is 
divided into morphometric, densitometric, textural and structural features. The main goal 
of the paper was to bring attention to the need of a common and well defined description 
of features used in cytometry and histological studies. This paper in general is a 
collection of features with definitions.  
 
In the paper ‘Development of algorithms for digital image cytometry’ [Lindbald, 2003], 
appropriate algorithms were presented for image segmentation for fluorescence 
microscope images of cultured cells. It focuses on the development and compilation of 
robust image analysis tools, enabling quantitative measurements of various properties of 
cells and cell structures. An effort was also made in the areas of feature extraction and 
statistical data analysis. A classification method that separates individual cells into three 
classes, depending on their level of activation, is described. The method is based on 
analysis of time series of images. The major contribution of this paper was automatic 
segmentation of nucleus and cytoplasm. The feature set is relatively small and not the 
main focus of the work although some specific features were measured. The set of 
features was used to classify cells depending on level of activation. 
 
The paper ‘Creating classification features for biological images’ [Naik, 1998], presents a 
system based on image processing and machine learning techniques to characterize 
cellular events occurring during the process of cell division, meiosis, and to classify 
images of cells exhibiting these events. The system is based on extraction of features 
from cell images and construction of a classifier that distinguishes cell images of one type 
from other.  
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The paper ‘Classification of cultured mammalian cells by shape analysis and pattern 
recognition’ [Olson et al., 1980] presents a method for classifying cultured cells on the 
basis of shape characteristics. The authors used hierarchical cluster analysis and nearest 
neighbour analysis for classification of cells. LDA was also used but it provided only a 
slight improvement. 4 to 5% misassignments were obtained when they used twenty 
descriptors. The classification result was almost same when the authors used 8 features 
instead of 20.  
 
The novelty of the work presented in this thesis lies in the application of the work. The 
features are implemented in such a way that these can be considered as a broad and 
complete library in Java, based on a common interface. This library can be easily 
extended and integrated into another application. 
 
In this work, the emphasis is on feature selection for all three types of cultured cells, i.e. 
epithelial, lymphoblast, fibroblast-like cell lines. For the experiment, HeLa cells are 
chosen to be classified by the feature set. For every feature, a clear definition is given so 
that the experiment may be repeated. 
 
In some papers the authors used LDA for classifying cells mainly based on a restricted 
feature set but in this work a broad range of features were used. New features may be 
added without degrading the classification performance because the classification 
algorithm retains the best discriminatory features by leaving and adding shape features.  
 
There are some new features used in this work. These features were not mentioned in any 
other cell classification papers. Those features are orientation, eccentricity by moment, 
Euler number, spread of the object, elliptic variance, circular variance, sphericity, solidity 
and bending energy. 
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3 Project 

The name of the project in which this thesis work is included is called Live Cell 
Monitoring: Development of a System for Cultivation and Monitoring of Living 
Cells. 

3.1 The alliance 

In the frame of “Live Cell Monitoring – non-invasive analysis, quality assurance and 
process control of the cultivation and differentiation of (stem) cells” four institutes of the 
Fraunhofer Gesellschaft have established an alliance in order to develop an automated 
system for cell cultivation. The reproducibility and comparability of cell cultures 
presently suffers from different and subjective handling by the technical personnel in the 
cell culture laboratory. For this reason the institutes bundled their competencies in optics, 
automation, informatics and cell systems to develop a platform technology for 
reproducible and standardized cell cultivation as shown in figure 3.1. 
 

 
Figure 3.1 the alliance of four institutes 

3.2 The system concept 

The state-of-the-art of cell cultivation can be described on the one hand as manual 
cultivation of cells in a cell culture laboratory containing an incubator for the climate 
control of the cell culture and hand operated microscopes for the daily glance to decide 
whether passaging or media exchange is necessary. On the other hand there are systems 
on the market that carry out the cell cultivation a rigid industrial process without any 
inspection of the cell culture. The aim of the Fraunhofer alliance is to develop an 
automatic cell cultivation system where after the input of the cell culture flask the whole 
cell culture procedure is executed including optical monitoring, addition of factors, 
exchange of media and passaging. This is only feasible by the optical image acquisition 
of the cell cultures and user-friendly image analysis software that determines the cell 
culture condition in order to control the cell culture process. Thereby the cell culture 
process can be documented and archived, too. Finally the expanded cell line (contained in 
flasks or micro well plates) can be taken out and applied for cell-based screening, toxicity 
tests or other purposes. The whole cultivation process takes place under cultivation 
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conditions (37 °C, CO2, 95 % humidity) to leave the cell culture in an optimal 
environment and to avoid stress because of climate changes. 
 

3.3 Contribution of this work to the project 

The aim of this project is to produce a good descriptor-set that will classify any cell type 
in an experiment. For this work, HeLa cells are used. Two dimensional binary HeLa cells 
are experimented as objects. Several object features which are generally used in 
biomedical image analysis are studied and presented with their mathematical description 
and implemented in Java. The issue here was to see the growth of the cancer cells, so the 
time-varying cancer cell (HeLa) images are obtained for classification (by those 
descriptors or features) such as cells on division and cells on normal growth. So, this 
classification problem is binary. Thus LDA is well suited candidate for this kind of 
classification. LDA was implemented with a special capability of leaving and adding 
object features for increased performance for classification. 
  
This work goes under the Image analysis: determination of cell culture condition of FIT 
as a subset of the whole project (Fig. 3.1). 
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4 Method 

A good set of descriptor features should include the features that capture the most 
important properties of an object and can be used to identify the object uniquely. An 
object can be identified by its two or three dimensional geometrical properties. Such 
properties could be area, perimeter, or moments. An appropriately selected set of such 
features carries sufficient information for the identification of an object and thus for an 
individual cell. Some features which are not directly geometrical but based on geometry 
can be seen as hybrid features. When geometrical features are used, a relatively small 
feature vector is enough for describing an object and thus results in significant data 
compression. Features are extracted from representations of shapes like boundary chain 
code or from a binary image [Pitas, 2000]. Features extracted for this project to describe a 
two dimensional HeLa cell (object) are (in almost all cases) scale, rotation and translation 
invariant, as mentioned before, and they are presented in the following subsections with 
their definition. 

4.1 Perimeter and convex perimeter 

Perimeter is an important feature of an object. Contour based features which ignore the 
interior of a shape, depend on finding the perimeter or boundary points of the object 
[Celebi and Aslandogan, 2005]. The perimeter of an object is given by the integral as 
follows: 
 

∫ += dttytxT )()( 22    (Eq.1) 
This perimeter is used for the parametric boundary representation. By the aid of a 
boundary following algorithm, the object perimeter can be found out. If  is a 
boundary coordinate list, the object perimeter is given by: 
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The convex perimeter is defined by the convex hull of an object. The perimeter of the 
convex hull that encloses the object is the convex perimeter as shown in Fig. 4.1, redrawn 
from [Wirth, 2001]. 
 

 
perimeter

Convex perimeter

 
Figure 4.1 object perimeter and convex perimeter 
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4.2 Moment Descriptors 

Moment-based shape descriptors are used when a region-based analysis of the object is 
performed. Region-based analysis exploits both boundary and interior pixels of an object. 
These shape descriptors are more robust to noise and distortions. Moment is popular for 
region-based analysis as central moments are invariant to translation, rotation and scale. 
They are also computationally simple [Celebi and Aslandogan, 2005].  Moment analysis 
describes essential and frequently used shape features. For a continuous image , 
the moment is given by:  
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For example, the center of gravity is a very common feature. The coordinates of the 
center of mass is given by the object moments as follows: 
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The central moment is defined by using the center of mass: 
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Normally the image is discrete and for that the moment and central moment are defined 
by: 
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Indices , i j  corresponds to the x  and y  respectively. Images in this work are binary 
and for a binary image , the moment calculations are given as follows:  ),( jif
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The object area of a binary image is given by its moment . The following relationship 
gives central moments by up to third order moments [Pitas, 2000]: 
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μμ == 0000 m      (Eq.10) 
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00110 == μμ      (Eq.11) 
2

2020 xm μμ −=      (Eq.12) 
yxm μμ == 1111      (Eq.13) 
2

0202 ym μμ −=      (Eq.14) 
3

203030 23 xxmm μμ +−=     (Eq.15) 
yxxmymm 2

11202121 22 μμ +−−=    (Eq.16) 
2

11021212 22 yxymxmm μμ +−−=    (Eq.17) 
3

020303 23 yymm μμ +−=     (Eq.18) 
 

The angle between the major axis of the object and axis x is called the object orientation 
and is given by the angle θ  as follows: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0220

112arctan
2
1

μμ
μθ     (Eq.19)  

 
Eccentricity of the object is calculated by [Levine, 1985]: 
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Following is an alternative definition of eccentricity [Jain, 1989]: 
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In the above equation, A is the object area. By second order central moment the object 
spread is defined as follows [Hu, 1962]:  
 

2002 μμ +=S      (Eq.22) 
 

4.3 Major and Minor axes 

Major and minor axes are the simplest of all features but yet important. They give 
essential information of an object such as elongation, eccentricity etc. They are also used 
to find other features like elliptic variance. 
 
The major axis points are the two points in an object where the object is more elongated 
and where the straight line drawn between these two points is the longest [Costa and 
Cesar, 2001]. Major axis points are calculated by all possible combinations of perimeter 
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pixels where the line is the longest as shown in Fig 4.2, redrawn from [Wirth, 2001].  The 
length of the major axis is given by: 
 

Major-axis length ( ) ( )2
12

2
12 yyxx −+−=  (Eq.23)  

 

where (  and )11 , yx ( )22 , yx  are the coordinates of the two end points of the major axis. 
 
The minor axis is drawn perpendicular to the major axis where this line has the maximum 
length. Once the end points of the minor axis have been found, its length is given by the 
same equation as the major axis length. It is also called the object width. 
 

 

Minor axis

Major
axis

 
Figure 4.2 major and minor axis 

 

4.4 Compactness 

Compactness is the ratio of the area of the object to the area of a circle. The circle is 
defined by the same center of mass as the object and its radius is defined by the average 
distance from the center of mass to the perimeter of the object [Archard et al, 2000]: 
 

Compactness 
( )2

4
perimeter

area⋅
=

π    (Eq.24) 

As a circle is the object with the most compact shape, a circle takes the maximum value 
of compactness, that is 1, while a square has the value of 4/π . Fig 4.3, redrawn from 
[Wirth, 2001], shows different compactness values for different objects. 
 
 

 

Low compactness High compactness
 

Figure 4.3 different compactness of objects 
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This feature is motivated by the fact that attached normal growing cells will have a low 
compactness value compared to that of floating cells in cleavage. 

4.5 Elongation 

Elongation [Jenkin, 1997] is defined to be the ratio between the width and length of the 
minimum bounding box as shown in Fig 4.4, redrawn from [Wirth, 2001]: 
 

Elongation 
boxbounding
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length
width

−

−=    (Eq.25) 

 
The result varies from 0 to 1. If the object or cell is more or less like a square or circle, 
the values get closer to 1 and if the objects deviate from the above objects then it gets 
closer to 0. 
 
 

 

length

width

 
Figure 4.4 object on the left is more elongated than the object on the right  

 

4.6 Eccentricity 

Eccentricity is the ratio between the length of the short axis to the long axis [Gonzalez 
and Woods, 2003] as defined in the following equation. 
 

Eccentricity 
long

short

axislength
axislength

=    (Eq.26) 

 
The value of eccentricity is between 0 and 1. Eccentricity is also called ellipticity with 
respect to minor axis and major axis of the ellipse. If the major axis gets longer, 
eccentricity gets higher (by the alternative definition of eccentricity Eq. 21) as shown in 
Fig 4.5, redrawn from [Wirth, 2001]. 
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High eccentricity Low eccentricity  
Figure 4.5 Object eccentricity 

 
Irregular cells are longer and expected to have higher eccentricity than that of round 
floating cells. 

4.7 Circularity or Roundness 

Area-to-perimeter ratio is the measure of roundness or circularity [Castleman, 1996]. But 
local irregularities are not reflected by this feature. It is defined as: 
 

( )2

4
meterconvexPeri

areaRoundness ⋅
=

π    (Eq.27) 

 

A circle gets the value of 1, while objects with bumpy boundaries get lower values as 
shown in Fig 4.6, redrawn from [Wirth, 2001]. 
 

 

Lower roundnessHigher roundness  
Figure 4.6 roundness of object 

 
The circularity or roundness feature is likely to be one of the important features because 
it should contribute to classify two different types of cells as they will have different 
values. Cells in cleavage are normally round, so their roundness value will be higher and 
on the other hand normal growing cells are irregular so their roundness value will be 
lower. 

 

4.8 Sphericity 
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Sphericity [Ya, 2003] is the ratio between the radii of the inner circle and the outer circle 
of the object as shown in Fig 4.7, redrawn from [Wirth, 2001]. For a circle the value 
reaches 1.  
 

bingcircumscri

inscribing

R
R

spherity =     (Eq.28) 

 

 

Radius inside

Radius outside

Figure 4.7 spherity defined by Radius 
inside and Radius outside 

 

As seen in figure 3.8 a circular cell will be more spherical than a cell with an irregular 
boundary. 

4.9 Convexity 

The measure of convexity of an object is the ratio of the perimeter of the convex object to 
the original perimeter of the object. It is a relative measure of how much an object differs 
from a corresponding convex object [Shipley and Kellman, 2001]: 
 

perimeter
meterconvexPericonvexity =    (Eq.29) 

 

The value of convexity is 1 for a convex object and the value is lower when the perimeter 
(of the object) is rough as shown in Fig 4.8, redrawn from [Wirth, 2001]. Thus an 
irregular shaped cell will have a low convexity value, while a round (or closer to round) 
cell will have a high convexity value. 
 

 

High convexity Low convexity  
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Figure 4.8 different convexity of objects 

4.10 Aspect Ratio 

Aspect Ratio is the ratio between height and width of the corresponding object. By this 
feature, slender (long and thin) object can be separated from circular or square object 
[Castleman, 1996]. 
 

width
heightoaspectRati =     (Eq.30) 

 
Compared to elongation and eccentricity, aspect ratio is not rotation invariant and is just 
describing height versus width. This simple feature may not be useful for cell 
classification, but is added for completeness.  

4.11 Solidity 

In simple terms density is mass per unit volume [Derry, 2002]. But in two dimensional 
image objects this can be defined as the ratio between the area and convex area of the 
same object: 

convexArea
areasolidity =     (Eq.31) 

 
For a solid object or cell, this value is 1, while the value is lower for an object or cell 
having a rough perimeter or an object which has holes in it as shown in Fig 4.9, redrawn 
from [Wirth, 2001]. 
 

 

Higher solidity Lower solidity  
Figure 4.9 solidity of different objects 
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4.12 Shape variances 

Two different shape variances are presented and they are circular variance and elliptic 
variance. As spherical cells will have less variance (error) compared to a circle or an 
ellipse than cells with irregular boundaries, these properties should be good 
discriminative factors. 
  
When the center of mass of an object and a  point of ellipse form a line with a 
specific angle, there should be a single point of the object perimeter which lies in the 
same line and angle. The difference between object perimeter point and the  point 
of the reference object (in the same line and angle) gives the relative error, and measure 
of all errors is the elliptic variance. For a circle, first the mean radius is calculated from 
the center of mass to the border points of the object, and then the differences of the radii 
to the mean radius are used to calculate the circular variance. 

),( yx

),( yx

 

4.12.1 Circular variance 
A cell or object should sometimes be compared to a reference object, like for example a 
circle as shown in Fig 4.10, redrawn from [Wirth, 2001]. It is necessary to find out the 
variance of the object from a circle. This will give a relative measure of whether the 
object is round (or close to round) or not. The object is compared to a solid circle and for 
a perfect round object the value of the variance is 0. It means that the proportional mean 
squared error is 0. The value increases when the shape is complex or elongated in the 
major axis [Lee et al., 2003]. 
 

 

 
Figure 4.10 circular variance 

 

4.12.2 Elliptic variance 
Elliptic variance is similar to circular variance. A proportional mean squares error with 
respect to a solid ellipse is defined [Agouris and Stefanidis, 2000]. The equivalent ellipse 
is defined as an ellipse that has the same center of mass as the corresponding object (Fig. 
3.13). The elliptical area and perimeter are derived from the major and minor axis of the 
equivalent ellipse. The parametric equation of an ellipse is given by:  
 

θcosax =          (Eq.32)  
θsinby =          (Eq.33) 
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where  and b are semi major and semi minor axis respectively as shown in Fig 4.11. a
 

Semi major axis

Semi minor axis

 
Fig 4.11 eliptic variance 

 

4.13 Bounding Box 

The bounding box is defined by the smallest rectangle [Costa and Cesar, 2000] which 
encloses the object as shown in Fig 4.12, redrawn from [Wirth, 2001]. The minimum area 
of such a bounding box is given by: 
 

area = majorAxisLength * minorAxisLength  (Eq.34) 
 
 
It gives the minimum area of the box.  
 

 

 
Figure 4.12 bounding box 

 

4.14 Topological Descriptors 

One way of obtaining useful global information about an object is to use topological 
descriptors. A topological descriptor gives information about the regions of the image 
plane of an object [Gonzalez and Woods, 2003]. It is unaffected by any deformation such 
as stretching, rotation or transformation. Connected components and holes are important 
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topological features and they are found out by the Euler number. The Euler number  
is defined by the number of connected components  and holes : 

)(E
)(C )(H

 
 

HCE −=       (Eq.35) 
 
It is an important topological descriptor. This simple topological feature as said before is 
invariant to translation, rotation and scaling. For example the object in the Fig. 4.13 has 
the Euler number 0 as it has one connected component and one hole. 
 

 

Hole

Object

 
Figure 4.13 Euler number defined by number of connected 

components 
 
This feature does not contribute to classification but it can be used for object filtering. A 
cell should not have holes in it, since it should be one single connected component. But if 
it contains one, it means that the image of the cell is corrupted and should be filtered out. 
This feature can be used for that purpose.     

4.15 Boundary Descriptors 

There are many features that depend on boundary descriptors of objects such as bending 
energy, curvature etc. For an irregularly shaped object, the boundary direction is a better 
representation although it is not directly used for shape descriptors like centroid, 
orientation, area etc [Kim et al., 2002].  
 
Consecutive points on the boundary of a shape give relative position or direction. A 4- or 
8-connected chain code is used to represent the boundary of an object by a connected 
sequence of straight line segments [Gonzalez and Woods, 2003]. 8 connected number 
schemes are used to represent the direction in this case. It starts with a beginning location 
and a list of numbers representing directions such as Nddd ,,, 21 ⋅⋅⋅⋅ . Each direction 
provides a compact representation of all the information in a boundary. The directions 
also represent the slope of the boundary. In Fig. 4.14, redrawn from [Wirth, 2001], an 8 
connectivity chain code is displayed where the boundary description for the boxes with 
red arrows will be 2-1-0-7-7-0-1-1. 
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Figure 4.14 boundary descriptor 

4.15.1 Curvature 
The rate of change of a slope is called the curvature. As the digital boundary is generally 
jagged, getting a true measure of curvature is difficult. The curvature at a single point in 
the boundary can be defined by its adjacent line segments. The difference between slopes 
of two adjacent (straight) line segments is a good measure of the curvature at that point of 
intersection [Gonzalez and Woods, 2003]. 
 
The curvature of the boundary at can be estimated from the change in the slope is 
given by: 
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Curvature (κ) is a local attribute of a shape. The object boundary is traversed clockwise 
for finding the curvature. A vertex point is in a convex segment when the change of slope 
at that point is positive; otherwise that point is in a concave segment if there is a negative 
change in slope as shown in Fig 4.15, redrawn from [Wirth, 2001]. 
 

 
x(p)

p

convex

concave

convex

concave

Figure 4.15 curvature of a boundary 

 29



4.15.2 Bending Energy 

The descriptor called bending energy is obtained by integrating the squared curvature 
( )pκ  through the boundary length L . It s a robust shape descriptor and can be used for 

matching shapes [Costa and Cesar, 2000].   
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The value R/2π  will be obtained as its minimum for a perfect circle with radius R  and 
the value will be higher for an irregular object. 

4.15.3 Total Absolute Curvature 
Total absolute curvature is the curvatures added along the boundary points and divided 
by the boundary length. 
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1 ρκκ   ∞≤≤ totalκπ2   (Eq.38) 

As the convex object will have the minimum value, a rough object will have a higher 
value. 

4.16 Radial Distance Measures 

Radial distance is the distance from the center of mass to the perimeter point ( ) s 
shown in Fig. 4.16, redrawn from [Wirth, 2001]. So the radial distance is defined as: 
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Here  is a vector obtained by the distance measure of the boundary pixels. A 
normalised vector  is obtained by dividing  by the maximum value of . The 
vector  is used for calculating entropy and Fourier descriptor [Kilday et al, 1993]. 
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Distance

Figure 4.16 radial distance  
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4.16.1 Entropy  

Entropy [Seul et al, 2000] as a measure of information in data is given by the 
sequence : )(nr

∑
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b

b
bb hhE

1
log       (Eq.40) 

where  is the b-bin probability histogram which is the distribution of .  bh )(nr
 
If we analyze the frequencies of the normalized radii by sorting them into a histogram 
with B bins, we get an indication whether the radii are mainly of the same size or whether 
they are oscillating between small and high values. If we have, for examples, 20 radii and 
we sort them into a histogram of size four, we get the probability of the sizes of length   
<0, 0.25) (bin1), <0.25, 0.5) (bin2), <0.5, 0.75) (bin3), <0.75, 1> (bin4). If the values of 
the bins are 5, 5, 5, 5 we have a mixture of all different sizes and a high entropy. If the 
shape is very regular, for example with all its radii between <0.5, 0.75) the bins are 0, 0, 
20, 0 and we get a low entropy. We can measure the entropy by log to base 2. In this 
case, the first example will deliver: -0.25*(-2) - 0.25*(-2)-0.25*(-2)-0.25*(-2) = 2, a high 
entropy. In the second example, we have 0 + 0 -1*1 + 0 = -1, which is a low entropy. 

4.16.2 Fourier Descriptor  

Normalised radial distance  is analysed in spectral domain by discrete Fourier 
transform. The formula for DFT is: 

)(nr

 

∑
−

=

−=
1

0

/2)(1)(
N

n

Nnujenr
N

ua π   1,......,1,0 −= Nu   (Eq.41) 

where  is the complex coefficient and is called the Fourier descriptor [Gonzalez and 
Woods, 2003]. The Fourier descriptor measures the regularity of a shape by analyzing its 
radial distances. The radial distances are ordered; say anticlockwise, and then the 
frequencies of these data are calculated. If, for example, higher Fourier coefficients of 
a(u) are close to zero, the shape radii have only low frequencies and are therefore quite 
regular. If the contrary is true, so the shape has a high fluctuation, i.e., it is quite irregular. 

)(ua

4.17 Linear Discriminant Analysis 

LDA is one of the most popular statistical tools for classification. Although it is just a 
linear classifier, its use is motivated by its high stability and robustness. LDA searches 
for an optimal projection direction of the feature space into one dimension in such a way 
that the projected features of the different classes can be easily separated [Fukunaga, 
1990]. In particular, in this case where the number of training samples is small compared 
to the dimension of the feature space it is much better than classifiers which work directly 
in the high dimensional feature space. Different features could have completely different 
value ranges.  For the reason of numerical stability of the LDA, all features are scaled to 
the same value range [-1:1].  
 
In the context of the project, LDA was mainly used for discriminating the classes. There 
are many other learning algorithms which will work in a similar way to construct a 
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decision plane or surface to classify cells. LDA constructs the decision plane as shown 
schematically in figure 4.17.  
 

 

 
Figure 4.17 LDA separates two groups by a line 

 
The features obtained from this thesis are independent of many learning algorithms so 
that other supervised and unsupervised pattern recognition techniques can be used. In this 
thesis an implementation of LDA was used which was developed at Fraunhofer-FIT 
institute. 
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5 Results and analysis 

There are five different HeLa cell images selected for the experiment. The tasks are to 
calculate the feature values (described in Method section) of the cells and classify them 
according to their morphology. There is a large selection of morphological features which 
are used to classify the cells. As described earlier, it is possible to classify all types of 
cell-lines, but only HeLa cell images are presented here for the experiment. It should be 
observed that not all or the same types of features are required to classify different cells 
types. This is also true for the same type of cell line. For example, in the image in figure 
5.1, six features were needed to correctly classify the cells. But for the correct 
classification of the cells in figure 5.9, eleven features were used. The following five 
experiments are based on five different images.  

5.1 Experiment on the first image 

Fig 5.1 shows the first image which is magnified 10 times its original size. 
 

 
Figure 5.1 HeLa cells before segmentation 

 
In Fig 5.1, there are two types of cells visible, one is round and the other has irregular 
elongated shape. The goal is to separate them automatically into two different classes and 
count their population.  
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Figure 5.2 HeLa cells after segmentation, red color shows cell class A and a 

blue color shows cell class B 
 
Cells in Fig 5.2 have been manually segmented to observe their properties. As described 
in the Introduction the scope of this thesis is feature selection and classification – 
therefore, manually selected cells are obtained for classification and thus for the 
experiment only a subset of cells are selected (manually) from a single image.   The cells 
with irregular shape, colored red, are named Cell Class A and the spherically shaped 
cells, coloured blue, are named Cell Class B. Cells that belong to Cell Class A are 
attached to the substrate and the corresponding cells of Cell Class B are in the cleavage 
stage.   
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Figure 5.3 classified cells as Cell Class A (red), Cell Class B (blue) and 

misclassification in green 
 
Fig 5.3 shows the result from the classification with LDA. The classification algorithm 
has chosen 6 features by leaving and adding shape features. These features yield the best 
classification result. They are EccentricityMomentFeature, VarianceFeature, 
SpreadMomentFeature, BendingEnergyFeature, AreaMomentFeature and 
CircularityFeature. In Cell Class A (red) there are 55 cells and in Cell Class B (blue) 
there are 35 cells.   
 
The tables 5.1 and 5.2 give an overview of how the different features are distributed for 
the data of Cell Class A and Cell Class B in the form of mean and standard deviation. 
They are listed here to give a certain feeling about their discriminative power. 
 
Different learning algorithms may make different use of these features. Some learning 
algorithms combine all features, but give them different weights depending on their 
discriminative quality. The stepwise discriminant analysis creates a subset of 
discriminating features. To achieve this, the scatter of the feature values around the group 
means (within class scatter) and scatter around the common mean (between class scatter) 
is calculated. Good features are those which maximize the between class scatter and 
minimize the within class scatter. In the algorithm the quotient of the between and within 
class scatter is calculated. At each iteration step, every feature is singly removed and the 
quotient is recalculated. If the change of the quotient is below a threshold, the feature 
stays removed. Earlier removed features are added to the feature-set and the quotient is 
recalculated. If the change of the quotient is above a threshold, the feature stays added. 
This is done until no features are either removed or added [Jennrich, 1977]. 
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Table 5.1 shows the results for Cell Class A. Mean and standard deviation is calculated 
for each feature based on all 55 cells belonging to class A.   
 

Cell Class A 
Feature Mean Standard deviation  ( )±

EccentricityMomentFeature -0.8194 0.3725 
CircularVarianceFeature -0.2130 0.2619 
SpreadMomentFeature -0.7392 0.3695 
BendingEnergyFeature -0.5458 0.3571 
AreaMomentFeature -0.4233 0.3568 
CircularityFeature -0.3931 0.2939 

Table 5.1 mean and standard deviation of feature values of Cell Class A of image 1 
 
Table 5.2 shows mean and standard deviation for all involved features, based on the 35 
cells which belong to Cell Class B. 
 

Cell Class B 

Feature Mean Standard deviation  ( )±
EccentricityMomentFeature -0.9993 0.0014 

CircularVarianceFeature -0.1252 0.3720 

SpreadMomentFeature -0.9706 0.0156 

BendingEnergyFeature -0.8070 0.0957 

AreaMomentFeature  -0.7524 0.0682 

CircularityFeature  0.6424 0.3068 

Table 5.2 mean and standard deviation of feature values of Cell Class B of image 1 
 
The mean and corresponding standard deviation shows that there is little overlapping 
between the values of the features. Other features are discarded because of overlapping 
values and only 6 features are enough to discriminate between Cell Class A and Cell 
Class B. This analysis shows the normal distribution given by 
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Here, two randomly selected features named CircularityFeature and BendingEnergy 
Feature are considered for analysis. For the Circularity Feature the mean for Cell Class A 
is and the standard deviation is 0.2939, and the corresponding values for Cell 
Class B are 0.6424 and 0.3068. In Fig 5.4, the normal distribution curves show that these 
two groups are well separated as their means are far apart from each other and the data is 
well distributed around the mean for both of cell classes. 

3931.0−

 

 36



 
Figure 5.4 normal distribution of circularity  feature of Cell 

Class A (left) and Cell Class B (right) 
 
For the BendingEnergyFeature the mean and standard deviation for Cell Class A are 

 and 0.3571 and for Cell Class B they are 5458.0− 8070.0− and 0.0957. These two 
groups are also well separated, although the means of two types of cell classes are 
somewhat closer than the circularity feature but still well separable (Fig.5.5).  
 

 
Figure 5.5 normal distribution of Bending Energy feature of Cell 

Class A (right) and Cell Class B (left) 
 

Both the distribution figures 5.4 and 5.5 show that the Bending Energy Feature and 
Circularity feature are good classifiers for Cell Class A and Cell Class B though there are 
some small overlapping regions.  
 
The classification result is shown in the Figure 5.3. There are two cells in Cell Class B 
that are wrongly classified as Cell Class A (green). The result is tabulated in Table 5.3 in 
the form of confusion matrix. The classification algorithm (LDA) randomly chooses 
thirty percent of the actual data for training. Thus 70% belongs to the test set. 38 cells of 
Cell Class A were used in the prediction, and all 38 cells were predicted correctly. This 
means that no cells of Cell Class A were predicted as type of being Cell Class B. 
Furthermore, of 24 cells of Cell Class B used in the prediction, 22 were classified 
correctly, while two were incorrectly predicted as Cell Class A (Table 5.3).  
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Table 5.3 prediction results for image 1 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 38 0 
Actual 

Cell Class B 2 22 

 

Table 5.4 shows the probability of each type of prediction. All cells belonging to Cell 
Class A are predicted 100% correctly, while the corresponding percentage for the cells 
belonging to Class B is almost 92%, meaning that 8% are classified incorrectly as shown 
in Table 5.4. 
 

 
 
 
 
 
 

 
 

Table 5.4 prediction statistics for image 1 

Predicted 
 

Cell Class A Cell Class B 
Cell Class 

A 1.0000 0.0000 
Actual 

Cell Class 
B 0.0833 0.9167 

5.2 Experiment on the second image 

Fig 5.6 shows the second image from the experiment which is magnified 10 times its 
original size.  
 

 
Figure 5.6 classified cells as Cell Class A (red), Cell Class B (blue) and no 

misclassification 
 
For the image in figure 5.6 only the resulting classified image is shown as the original 
and segmented images give almost the same information.  
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There are 31 attached cells (Cell Class A) and their chosen features are tabulated in Table 
5.5 along with mean and standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.5 mean and standard deviation of feature values of Cell Class A of image 2 

Cell Class A 

Feature Mean Standard deviation ( )  ±

CircularVarianceFeature 0.1938 0.3001 

Eccentricity1MomentFeature 0.1417 0.4447 

SolidityFeature 0.7250 0.2145 

MinorAxisFeature -0.1132 0.3902 

CircularityFeature -0.2156 0.3700 

 
There are only 8 round cells (Cell Class B) in Fig 5.6. The means and standard deviations 
of their corresponding features are shown in Table 5.6. 
 

Cell Class B 

Feature Mean Standard deviation ( )  ±

CircularVarianceFeature 0.3998 0.3586 

Eccentricity1MomentFeature 0.6816 0.2477 

SolidityFeature 0.9823 0.0183 

MinorAxisFeature -0.3423 0.1240 

CircularityFeature 0.6630 0.2675 

Table 5.6 mean and standard deviation of feature values of Cell Class B of image 2 

 
Table 5.7 shows that there is no misclassification. 21 cells of Cell Class A were used in 
the classification and all were predicted correctly. All the 5 cells belonging to Class B 
was also correctly predicted. 
 
 
 
 
 
 
 

Table 5.7 prediction results for image 2 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 21 0 
Actual 

Cell Class B 0 5 
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Table 5.8 shows the probability of each type of prediction. All cells belonging both to 
Cell Class A and to Cell Class B are 100% correctly classified. This means that there is 
no misclassification. 
 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 1.0 0.0 Actual 
Cell Class B 0.0 1.0 

Table 5.8 prediction statistics for image 2 
 

5.3 Experiment on the third image 

Fig 5.7 is the third image for the experiment which is magnified 20 times its original size. 
 

 
Figure 5.7 classified cells as Cell Class A (red), Cell Class B (blue) and no 

misclassification 
 
For this experiment, the classification algorithm has chosen 11 features which yield the 
best classification result, by leaving and adding shape features. There are 47 irregular cells 
attached to the substrate which were segmented as red. Their means and standard 
deviations are given in Table 5.9.  
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Table 5.9 mean and standard deviation of feature values of Cell Class A of image 3 

Cell Class A 

Feature Mean Standard deviation  ( )±
ElongationFeature -0.3061 0.3807 
ConvexPerimeterFeature -0.1182 0.3254 

CircularVarianceFeature 0.0870 0.3963 
RectangularityFeature 0.2390 0.3152 

SpreadMomentFeature -0.7362 0.3590 
RoundnessFeature 0.4009 0.4250 
BoundaryFollowFeature 0.7375 0.2992 
RoundnessGravityFeature 0.0850 0.4225 
MinorAxisFeature -0.3102 0.2721 
CircularityFeature -0.3357 0.3117 
MajorAxisFeature -0.0924 0.3557 
ConvexityFeature 0.8724 0.0745 

 

There are 14 round cells which are assumed to be in cleavage and floating and therefore 
belong to Cell Class B. The means and standard deviations of their features are given in 
Table 5.10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.10 mean and standard deviation of feature values of Cell Class B of image 3 

Cell Class B 
Feature Mean Standard deviation  ( )±

ElongationFeature -0.4032 0.0518 
ConvexPerimeterFeature -0.5991 0.0698 
CircularVarianceFeature 0.2152 0.4164 
RectangularityFeature 0.8749 0.0793 
SpreadMomentFeature -0.9793 0.0142 
RoundnessFeature 0.9429 0.0380 
BoundaryFollowFeature 0.6666 2.2204 
RoundnessGravityFeature 0.8923 0.1117 
MinorAxisFeature -0.4979 0.0778 
CircularityFeature 0.7792 0.1668 
MajorAxisFeature -0.6463 0.0724 
ConvexityFeature 0.9452 0.0499 

 
Table 5.11 gives the result in the form of confusion matrix. There are 32 cells of Cell 
Class A which are also predicted in Cell Class A and there are 9 cells in Cell Class B also 
predicted in Cell Class B. Thus, the result contains no misclassification. 
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Table 5.11 prediction results for image 3 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 32 0 
Actual 

Cell Class B 0 9 

 

For this image as well there is 100% correctly classified result was obtained for both the 
classes. This result is shown in Table 5.12. 
 

 
 
 
 
 
 

Table 5.12 prediction statistics for image 3 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 1.0 0.0 
Actual 

Cell Class B 0.0 1.0 

 

5.4 Experiment on the fourth image 

Fig 5.8 shows the fourth image from the experiment which is magnified 20 times its 
original size.  
 

 
Figure 5.8 classified cells as Cell Class A (red), Cell Class B (blue) and 

misclassification in green 
 

Linear Discriminant Analysis has chosen 7 features as best discriminating features for the 
fourth experiment. There are 49 cells of Cell Class A. Table 5.13 gives means and 
standard deviations of 7 features of Cell Class A. 
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Cell Class A 

Feature Mean Standard deviation 
( )±  

TotalAbsoluteCurvatureFeature 0.7000 0.1921 
CircularVarianceFeature 0.0588 0.3370 
ConvexAreaFeature -0.2863 0.4030 
SpreadMomentFeature -0.7463 0.3362 
RoundnessGravityFeature 0.1031 0.4823 
MinorAxisFeature 0.2692 0.3140 
CircularityFeature -0.2198 0.3567 

Table 5.13 mean and standard deviation of feature values of Cell Class A of image 4  
 
There are 24 cells of type Cell Class B. Means and standard deviations of 7 features of 
this type are given in the table 5.14.  
 

Cell Class B 

Feature Mean Standard deviation  ( )±
TotalAbsoluteCurvatureFeature 0.6184 0.0629 
CircularVarianceFeature 0.1059 0.2529 

ConvexAreaFeature -0.7020 0.1063 

SpreadMomentFeature -0.9617 0.0276 

RoundnessGravityFeature 0.8554 0.0872 

MinorAxisFeature 0.1441 0.1884 

CircularityFeature 0.6795 0.1604 

Table 5.14 mean & standard deviation of feature values of Cell Class B of image 4 
 
Table 5.15 gives the classification result. There are 34 cells of type Cell Class A, among 
which 31 cells are classified in the same class but 3 cells are misclassified in the other 
class. There are 16 cells of type Cell Class B and they were predicted correctly. 
 
 
 
 
 
 
 

Table 5.15 prediction results for image 4 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 31 3 Actual 
Cell Class B 0 16 

 
Table 5.16 shows the probability of prediction of cells in image 5.8. Cells belonging to 
Cell Class A are predicted 91% correctly, whereas the percentage of correct classification 
of cells belonging to Class B is 100%. 8% of Cell Class A are classified incorrectly. This 
result is shown in Table 5.16. 
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Table 5.16 prediction statistics for image 4 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 0.9118 0.0882 Actual 
Cell Class B 0.0 1.0 

5.5 Experiment on the fifth image 

Fig 5.9 shows the fourth image from the experiment which is magnified 20 times its 
original size. 
 

Figure 5.9 classified cells as Cell Class A (red), Cell Class B (blue) and misclassification 
in green 

 
In the fifth and last experiment the classification algorithm found 11 features which are 
discriminating the two classes. There are 37 cells of irregular type of Cell Class A. 
Features with their corresponding means and standard deviations of this class are listed in 
Table 5.17. 
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Cell Class A 
Feature Mean Standard deviation ( )  ±

TotalAbsoluteCurvatureFeature 0.6468 0.2149 
EccentricityMomentFeature -0.8661 0.3553 

ConvexPerimeterFeature 0.0988 0.3119 
CircularVarianceFeature -0.2764 0.2151 
RectangularityFeature 0.2310 0.3352 
ConvexAreaFeature -0.1967 0.4089 
SolidityFeature 0.6822 0.1780 
BoundaryFollowFeature 0.4980 0.1394 
AreaMomentFeature -0.0433 0.4151 

CircularityFeature -0.3572 0.3423 
MajorAxisFeature 0.0310 0.3807 
Table 5.17 mean and standard deviation of feature values of Cell Class A of image 5  

 
There are 34 cells of Cell Class B. Features for those cells with means and standard 
deviations are given in the Table 5.18. 
 

Cell Class B 

Feature Mean Standard deviation  ( )±
TotalAbsoluteCurvatureFeature 0.5979 0.0741 
EccentricityMomentFeature -0.9996 0.0012 
ConvexPerimeterFeature -0.4521 0.1048 
CircularVarianceFeature 0.0041 0.4199 
RectangularityFeature 0.8476 0.0852 
ConvexAreaFeature -0.7292 0.0950 
SolidityFeature 0.9702 0.0186 
BoundaryFollowFeature 0.4705 0.1011 
AreaMomentFeature -0.6104 0.1369 
CircularityFeature 0.6386 0.2149 
MajorAxisFeature -0.5705 0.0911 
Table 5.18 mean and standard deviation of feature values of Cell Class A of image 5 

 
As described in the above experiment, there was 1 misclassification of Cell Class A in 25 
cells and none in Cell Class B in 23 cells as shown in the Table 5.19. 
 
 
 
 
 
 
 

Table 5.19 prediction statistics for image 5  

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 24 1 Actual 
Cell Class B 0 23 
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Among 25 five cells of Cell Class A, 24 are predicted in the same class that is 96% 
correct classification of Cell Class A and 4% are misclassified. In Cell Class B, 100% are 
correctly classified. These statistical results are given in the Table 5.20. 
 
 
 
 
 
 
 

Table 5.20 prediction statistics for image 5 

Predicted 
 

Cell Class A Cell Class B 

Cell Class A 0.9600 0.0400 
Actual 

Cell Class B 0.0 1.0 
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6 Discussion and Conclusion 

For a given cell line only a subset of cell features has real discriminative power. It can be 
noticed, for example; that only 5 to 12 features were used to classify the HeLa cells. 
There were 25 features in total for the experiments. Among those, 18 were actually used 
for classification. CircularityFeature and CircularVarianceFeature are used in all 5 
experiments. 7 properties have no influence on this cell line. If lymphoblast or fibroblast 
cell types are under experiment, other morphological descriptors may be used from the 
database. This is because they will have different properties so they may need different 
descriptors.  
 
Prediction results for the five HeLa images are very good: 

• For the first image, 100% of cell Class A are predicted correctly, while 92% of 
Cell Class B are predicted correctly. 

•  For the second image, 100% of both types of cells were predicted in the right 
group, meaning that there is no misclassification at all. 

• For the third image, there is again 100% correct classification. 
• For the fourth image, 92% cells of Class A are predicted correctly. Cells in class 

B are predicted 100% correctly. 
• For the last image, 96% of Class A are predicted correctly and the rate for Class B 

is 100%. 
 
The result is better when one of the cell types is in minority as seen in the second and 
third image. More or less, this will always be the case as both types cannot be the same or 
even nearly equivalent in number as cells in cleavage are fewer than cells in non-
cleavage.  
 
The misclassification rate may be reduced in a successive run of the classification 
algorithm as experienced during the experiments by the writer of this paper. The 
algorithm randomly chooses 30% of the training data. It may choose better data or the 
worse ones in different successive runs but the result does not vary drastically. Only 1 to 
3% of variation occurs, which is tolerable. Suppose if five successive runs of the 
classification algorithm are taken, the best run could be saved for the best result.  
 
On average, the prediction accuracy is 98% which is at least 3 percentage points better 
than previously reported in the literature. As described in the paper ‘Classification of 
cultured mammalian cells by shape analysis and pattern recognition’ [Olson et al., 1980], 
when LDA or other machine learning techniques were used, as the feature dimensionality 
increased, the performance of the classifier either decreased or remained the same. But 
the LDA used for this experiment uses the property of leaving and adding those features 
which yield the best classification result. Exact mathematical definitions are always 
necessary for repeatability of the experiment. Any black box features with unknown 
definition were not used. Also there are some new features added as cited in the end of 
section 2.4 Related Work.  
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In the context of classification, cross validation can be used to check the goodness of a 
classification by removing one or more training data from the training set and performing 
LDA with the reduced training set and checking then, how well LDA will perform on the 
leaving-out data. Here we have not done this, but we have instead evaluated (classified) 
the whole cell image by hand and used this hand-made classification as a template to 
evaluate the result delivered by LDA and got a good performance of 98%. 
 
Among new features which we used in this work, the circularity and circular variance 
features were used in all five experiments. As described above, they are the most 
common and widely used features which were most important for classification of the 
two kinds of cells, that is Cell Class A and Cell Class B. As these two kinds of cells are 
mainly classified based on whether they are round or not, it is quite intutive that these 
two features should be present in all five experiments. EccentricityMomentFeature and 
SpreadMomentFeature were used in three experiments. The experiment with image1, 
image3 and image 4 used SpreadMomentFeature and the experiments with image1, 
image2 and image 5 used the EccentricityMomentFeature. The RoundnessFeature was 
used in the experiments with image3 and image4. The TotalAbsoluteCurvatureFeature 
was used in the experiments with image 4 and image 5. Other important features which 
contributed to cell classification were the ConvexAreaFeature, the 
ConvexPerimeterFeature, the ConvexityFeature and the BendingEnergyFeature. Unused 
features may be used in other runs of the program. Some features may not be useful for 
one type of cell but will be useful for a different cell line.  
 
HeLa cells are elongated and stay attached to the growing plate, except a few rounded 
cells in cleavage. Other cell types may have completely different characteristics and these 
shape-descriptors can be adapted to that specific cell type. One important issue is to set 
the proportion of the cells in cleavage and cells on normal growth. But when a good 
discriminating result is gained, there is no problem to set a threshold value accordingly 
(depending on cell type) by the user. 
 
There is some computational overhead with feature classification. There are some 
descriptors which have no discriminatory effect on classification for specific cell lines but 
will be there in the repository. Each time when LDA classifies the cells those descriptors 
will also be considered for evaluation which is not necessary. To make the system 
capable to perform classification on all three kinds of cells, it is necessary to add some 
more features to the feature set. This will again cost an extra overhead.  
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7 Future work 

Automatic image segmentation 

Cell images are here segmented manually. But in real time systems it has to be automatic 
and also thousands of cell segmentations have to be done in seconds. This is a 
challenging task because images are noisy. There needs to be lot of pre-processing even 
before segmentation. A method which is successful in many areas of image processing is 
called the watershed transformation algorithm [Pitas, 2000]. In particular, a very 
powerful gray-scale segmentation methodology results from applying the watershed to 
the morphological gradient of an image to be segmented. The watershed algorithm splits 
the image into regions similar to the drainage regions of a landscape. If the intensity of 
the image is interpreted as elevation in a landscape, the watershed algorithm can be used 
to find mountains, lakes and catchment basins in the landscape. This can serve as a 
ground for segmentation algorithms. 
 
More cell descriptors can be added in case of future need 

This experiment was done on HeLa cell images which is a epithelial-like cell line. The 
features used for this experiment work fine to classify this kind of cells. It is also hoped 
that the features used here will also work for other cell lines because very general 
descriptors were used. However, this cannot be confirmed until other kinds of cell lines 
are actually used for the experiment. It is anticipated that in the future other cell lines will 
be used to test the classification result, and if needed other features will be added on 
demand. 
 
Overhead reduction 

As described in the previous section, Discussion and conclusion that there will be 
computational overhead if more and more features are added. Some features will classify 
Epithelial-like cells better and some will classify Lymphoblast-like cells better. It is not 
necessary to calculate all of the features in the database. The classification algorithm can 
be trained for different cell lines so that every cell line will have a specific list of relevant 
features. In this way much of the computational overhead can be avoided. This can be 
incorporated in the future when other cells are used in the experiment. 

 49



 

8 References 

[Achard et al, 2000] Achard, C., Devars, J., Lacassagne, L., 2000. Object Image Retrieval 
with Image Compactness Vectors. Proceedings of the International Conference on 
Pattern Recognition (ICPR'00) 1051-4651/00  
 
[Agouris and Stefanidis, 2000] Agouris, P., Stefanidis, A., 2000. Integrated Spatial 
Databases Digital Images and GIS.  Portland, ME:Springer. 
 
[Alberts et al., 1998] Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., 
and Walte,r P. 1998 Essential Cell Biology, New York:Garland  
 
[Ballard and Brawn, 1982] Ballard, D. and Brown, C. 1982. Computer Vision. 
Englewood Clifffs, NJ: Prentice Hall 
 
[Cann, 2000] Cann, A. J., 2000. Virus Culture. Oxford:Oxford University Press. 
 
[Castleman, 1996] Castleman, K. R., 1996. Digital Image Processing. Upper Saddle 
River, NJ:Prentice Hall. 
 
[Celebi and Aslandogan, 2005] Celebi, M. E., Aslandogan, Y. A., 2005. A Comparative 
Study of Three Moment-Based Shape Descriptors.  International Conference on 
Information Technology: Coding and Computing (ITCC'05). 1, 788-793. 
 
[Costa and Cesar, 2000] Costa, L. F.,  Cesar, R. M., 2000. Shape Analysis and 
Classification. Boca Raton, Florida:CRC Press. 
 
[Dawe et al., 1994] Dawe, R. K, Sedat, J. W, Agard, D. A and Cande, W. Z. 1994. 
Meitotic chromosome pairing in maize is associated with a novel chromatin organisation. 
Cell 76:901-902. 
 
[Derry, 2002] Derry, G. N., 2002. What Science Is and How It Works. Princeton, 
NJ:Princeton University Press. 
 
[Duda et al., 2001] Duda, R. O., Hart, P.E., Stork, D. G., 2001. Pattern Classification. 2nd 
ed. New York, NY:Wiley Interscience. 
 
[Fukunaga, 1990] Fukunaga, K., 1990.  Introduction to Statistical Pattern Recognition. 
2nd ed. San Diego, CA:Academic Press. 
 
[Gonzalez and Wintz, 1987] Gonzalez, R.C., Wintz, P., 1987. Digital Image Processing. 
Reading, MA:Addisson-Wesley. 
 
[Gonzalez and Woods, 2003] Gonzalez, R. C., Woods, R. E., 2003.  Digital Image 
Processing, 2nd ed. Upper Saddle River, N.J.: Prentice Hall.

 50

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Richard%20O.%20Duda&rank=-relevance%2C%2Bavailability%2C-daterank/103-8621772-8300623
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Peter%20E.%20Hart&rank=-relevance%2C%2Bavailability%2C-daterank/103-8621772-8300623
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=David%20G.%20Stork&rank=-relevance%2C%2Bavailability%2C-daterank/103-8621772-8300623


 
[Hann and Oprea, 2004] Hann, M.M., Oprea, T.I. 2004. Pursuing the leadlikeness 
concept in parmaceutical research. Current Opinion in Chemical Biology. 8:255-263. 
 
[Hu, 1962] Hu, M. K., 1962 Visual pattern recognition by moment invariants. IRE 
Transactions on Information Theory. 17-8 (2), 197-187. 
 
[Jain, 1989] Jain, A. K., 1989 Funadmental of Digital Image Processing. Englewood 
Cliffs. NJ:Prentice-Hall. 
 
[Jenkin, 1997] Jenkin, M., 1997. Computational and Psychophysical Mechanisms of 
Visual Coding.  Cambridge:CambridgeUniversity Press. 
 
[Jennrich, 1977] Jennrich, R.I., 1977. Stepwise discriminant analysis. Statistical methods 
for digital computers (K. Enslein, A. Ralston and H.S. Wilf, Eds) 76-95. New York, NY: 
John Wiley. 
 
[Kilday et at., 1993] Kilday, J., Palmieri, F., and Fox, M.D., 1993. Classifying 
mammographic lesions using computerized image analysis. IEEE Transactions on 
Medical Imaging. 12, 664-669. 
 
[Kim et al., 2002] Kim, S., Kim, J.,  Kim, S., Kim, M., 2002. Usefulness of Boundary 
Sequences in Computing Shape Features for Arbitrary Shaped Regions. Proceedings of 
the 16th International Conference on Pattern Recognition (ICPR’02) 1051-4651 
 
[Lee et al., 2003] Lee, S. W., Bulthoff, H. H., Poggio, T., 2003. Biologically Motivated 
Computer Vision. Seoul:Springer. 
 
[Levine, 1985] Levine, M. D., 1985. Vision in man and machine.  New York, 
NY:McGraw-Hill. 
 
[Lindblad, 2003] Lindblad, J., 2003. Development of Algorithms for Digital Image 
Cytometry. Thesis (PhD). Uppsala University. 
 
[Manning and Schütze, 1999] Manning, C. D., and Schütze, H., 1999. Foundations of 
Statistical Natural Language Processing. Massachusetts, MA: MIT Press. 
 
[Naik, 1998] Naik, R., 1998. Creating classification features for biological images. 
Thesis [Master’s]. University of Minnesota Duluth. 
 
[Olson et al., 1980] Olson, A. C., Larson, N. M., and Heckman, C. A., 1980. 
Classification of cultured mammalian cells by shape analysis and pattern recognition. 
Proc. Natl. Acad. Sci. USA. 77 (3) 1516-1520. 
 
[Pitas, 2000] Pitas, I., 2003. Digital Image Processing Algorithms and Applications. New 
York, NY: John-Wiley & Sons. 

 51



 
[Rodenacker and Bengtsson, 2003] Rodenacker, K., Bengtsson, E., 2003. A feature set 
for cytometry on digitized microscopic images. Analytical Cellular Pathology. 25:1-36 
 
[Ryan, 2003] Ryan, J. A. 2003. Introduction to Animal Cell Culture [online]. Acton, 
Corning  Incorporated. Available from:  
http://www.corning.com/lifesciences/technical_information/techdocs/intro_animal_cell_culture.pdf
[Accessed 17 August, 2005]. 
 
[Seul et al, 2000] Seul, M., Sammon, M. J., O'Gorman, L., 2000. Practical Algorithms 
for Image Analysis. Canbridge:Cambridge University Press. 
 
[Shipley and Kellman, 2001] Shipley, T. F., Kellman, P. J., 2001. From Fragments to 
Objects.  Amsterdam:Elsevier 
 
[Turner et al., 1993] Turner, M., Austin, J., Allinson, N., and Thompson, P. 1993. 
Chromosome location and feature extraction using neural networks. Image and Vision 
Computing  11:235-239. 
 
[Wied et al., 1989] Wied, G. L., Bartels, P. H., Bibbo, M. and Dytch, H. E. 1989. Image 
analysis in quantitative cytopathology and histopathology. Human Pathology 20:549-571. 
 
[Wirth, 2001] Wirth, M. A., 2001. Shape Analysis and Measurement [online]. University 
of Guelph. Available from: 
http://hebb.cis.uoguelph.ca/~mwirth/Teaching/CIS6320/Lecture10.pdf
[Accessed 13, March, 2005] 
 
[Wittekind and Schulte 1987] Wittekind, C., and Schulte, E. 1987. Computerized 
morphometic image analysis of cytologic nuclear parameters in breast cancer. Anal.  
Quant. Cytol. And Hist. 9:480-484. 
 
[Wohlberg et al., 1993] Wohlberg, W. H., Street, W. N., Mangasarian, O. L. 1993. Breast 
cytology diagnosis via digital image analysis. Analy. Quant. Cytol. And Hist. 15:396-404. 
 
[Wohlberg et al., 1995] Wohlberg, W. H., Street, W. N., Mangasarian O. L. 1995. Image 
analysis and machine learning applied to breast cancer diagnosis and prognosis. Analy. 
Quant. Cytol. And Hist. 17:77-87. 
 
[Wong and Hall, 1978] Wong, R. Y., Hall, E. L., 1978. Scene matching with invariant 
moments. Computer Graphics and Image Processing. 8 (1), 16-24. 
 
[Ya, 2003] Ya, W. C., 2003. Handbook of Fluidization and Fluid-Particle Systems. New 
York, NY:Marcel Dekker. 
  

 52

http://www.corning.com/lifesciences/technical_information/techdocs/intro_animal_cell_culture.pdf
http://hebb.cis.uoguelph.ca/%7Emwirth/Teaching/CIS6320/Lecture10.pdf

	1 Introduction
	2 Background
	2.1 Biological Background
	2.2 Image Processing steps for supervised Cell Classification
	2.2.1 Digital Image and Analysis
	2.2.2 Image acquisition
	2.2.3 Cell segmentation
	2.2.4 Feature extraction

	2.3 Supervised learning and training data
	2.3.1 Supervised cell classification 
	2.3.2 Training sets

	2.4 Related work

	3 Project
	3.1 The alliance
	3.2 The system concept
	3.3 Contribution of this work to the project

	4 Method
	4.1 Perimeter and convex perimeter
	4.2 Moment Descriptors
	4.3 Major and Minor axes
	4.4 Compactness
	4.5 Elongation
	4.6 Eccentricity
	4.7 Circularity or Roundness
	4.8 Sphericity
	4.9 Convexity
	4.10 Aspect Ratio
	4.11 Solidity
	4.12 Shape variances
	4.12.1 Circular variance
	4.12.2 Elliptic variance

	4.13 Bounding Box
	4.14 Topological Descriptors
	4.15 Boundary Descriptors
	4.15.1 Curvature
	4.15.2 Bending Energy
	4.15.3 Total Absolute Curvature

	4.16 Radial Distance Measures
	4.16.1 Entropy 
	4.16.2 Fourier Descriptor 

	4.17 Linear Discriminant Analysis

	5 Results and analysis
	5.1 Experiment on the first image
	5.2 Experiment on the second image
	5.3 Experiment on the third image
	5.4 Experiment on the fourth image
	5.5 Experiment on the fifth image

	 6 Discussion and Conclusion
	7 Future work
	8 References

