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Abstract

Morphological data on two classes of neurons from mammalian midbrain have quantitatively been
analyzed for dendritic shape parameters. Their frequency distributions were used to optimize the para-
meters of a dendritic growth model which describes dendritic morphology by a stochastic growth process of
segment branching. The model assumes randomness with respect to both the selection of the branching
segment out of the tree segments and the occurrence of the branching event in time. Model-generated trees
have shape properties closely matching the observed ones. The dendritic trees of each of the two classes of
neurons are represented by a specific set of growth model parameters, thus achieving morphological data
compression.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Neuronal architecture is characterized by elongated neurites of which two kinds can be dif-
ferentiated, i.e. axons and dendrites which often built widely branching structures. The mor-
phological complexity of dendritic and axonal arborizations to a large extent determines their
functional properties. An interesting phenomenon in studying arbor morphologies is the large
variability of their shapes both within and between different cell types and species. This variability
is reflected in metrical shape parameters (dimensions of soma size, diameters and lengths of the
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constituting segments, surface area and volume of the arbor) and correlations between them, as
well as topological characteristics (the number and the connectivity pattern of the segments).

The development of arbor shape is partly determined by genetic factors and partly by inter-
actions with the surrounding tissue (e.g. [1]). Since a large number of (in many cases scarcely
understood) mechanisms is involved, it is reasonable to consider arbor pattern formation as a
stochastic process.

In this study, the focus is on topological aspects of dendritic tree shape. There are several
methods for describing trees topologically (for review, see [2]). We used topological measures and
parameters of a stochastic model for dendritic growth to compare dendrites of neurons from cat
superior colliculus (SC) previously published [3-5]. The SC is a part of the midbrain involved in
eye movement control [6].

2. Parameters of dendritic shape

The study was done on a data set obtained from SC neurons stained with HRP [3,4]. The
sample of cells selected for analysis comprised a triplet of neurons each from superficial (SLNs)
and deep (DLNSs) SC layers (Fig. 1). The dendritic arborization of the SC neurons is described as a
set of hierarchically arranged segments. A segment is defined as a portion of dendrite extending
between two ramification nodes (intermediate segments), or between a node and a tip (terminal
segments). On the whole, the sample contained all dendritic trees of the six SC neurons recon-
structed (26 trees from DLNs, and 12 trees from SLNSs).

Categorizing dendritic trees according to topological type depends on the patterning of seg-
ments, and is independent of metrical and orientation features. The following parameters have
been used to characterize the trees (Fig. 2):

Fig. 1. Projected image of two SC neurons. Left: SLN, right: DLN, each with dendrogram of one dendrite indicated by
arrow (below).
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Fig. 2. Topological representation of a dendrite. (A) The tree is depicted by a set of connected segments which are
labeled by (B) the degree of their subtrees and (C) their centrifugal order.

Order (y). This represents the topological distance from the soma. Its value is an integer in-
cremented at every bifurcation (‘centrifugal order’). A value of y = 0 is assigned to the primary
segments, i.e. those emerging directly from the soma.

Degree (n). This represents the number of tips of a subtree (or partition) stemming from a
segment. In a binary tree, it is related to m, the number of segments of the partition, by
m=2n—1.

Asymmetry index (A). It is defined as the mean value of the asymmetry of its partitions (sub-
trees)

1
A:n—l EAp(r,-,si). (1)
The summation runs over all #» — 1 branch points of the tree with degree n while the partition
(;,5;) denotes the degrees of both subtrees at branch point i, and 4, denotes the partition
asymmetry

| — sl

T for r+s>2 and 4,(1,1)=0. (2)

The values of tree asymmetry range from zero for perfectly symmetrical trees to approaching one
for most asymmetrical trees [7].

3. Growth model

The dendritic growth model has recently been presented in [8,9]. The full model is a metrical
growth model as dendritic growth is modeled by a stochastic, non-stationary process of segment
branching and elongation. In the following, only the modeling of topological aspects is consid-
ered. Dendritic growth is assumed to proceed by a sequence of branching events. At each
branching event a new (terminal) segment is attached to one of the already available tree seg-
ments, thus creating a new bifurcation point. Randomness is assumed with respect to (i) the se-
lection of the branching segment out of the tree segments and (ii) the occurrence of the branching
event in time.



150 J. van Pelt, A. Schierwagen | Mathematical Biosciences 188 (2004) 147-155
3.1. Modeling topological variation (QS-model)

Topological variability emerges by branching events occurring on different segments of the
growing tree. In the OS-model the selection probability of a segment for branching is assumed to
depend on the type of a segment and its order. The branching probability of a terminal segment at
centrifugal order y is given by

prs=C-275, (3)

with parameter § modulating the dependence on centrifugal order. C is a normalization constant
(see below). The selection probability of an intermediate segment for branching can be calculated
from that of a terminal segment of the same order by

ps =prs-Q/(1 - Q). (4)

The parameter Q (0 < Q < 1) determines the total branching probability of intermediate segments,
with O =0 and 1 corresponding to no branching and exclusive branching of intermediate seg-
ments, respectively.

With the two parameters Q and S a great variety of growth modes can be described, including
the well-known random terminal growth mode, (Q, S) = (0,0), and the random segmental growth
mode, (Q,S) = (0.5,0), the latter allowing all segments to branch with equal probability. The
topological variability of dendrites of several neuron types and species has been accurately de-
scribed by the S-model, i.e. assuming branching to occur at terminal segments only (Q = 0), see
[7,10]. Therefore, Q = 0 is assumed in the following.

3.2. Modeling degree variation (BE-model)

The degree of a dendrite is determined by the number of branching events during growth. In the
BE-model branching events occur at random points in time. The developmental period 7 is di-
vided into a number N of time bins. The branching probability of a terminal segment per time bin
is given by p; = B/Nn”, with n; the actual number of terminal segments in the tree at time bin i.
Parameter B denotes the expected number of branching events at an isolated segment in the full
period. Parameter £ determines how strong the branching probability of a terminal segment
depends on the actual number of segments. For £ = 0 the branching probability is constant,
independently of the present tree degree.

3.3. Modeling the variation of both the topological structure and the degree (BES-model)

In the BE-model all terminal segments have equal probability for branching, and the topo-
logical variation produced by the BE-model is similar to that produced by the random terminal
growth mode (Q =0, S = 0). An accurate account of the topological variability is given in the
combined BES-model taking the branching probability p; of a terminal segment per time bin
also dependent on the centrifugal order of the segment as described in the S-model. Thus,

pi=C-2"5B/Nnf, (5)
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while C =n;/ > 275 is a normalization constant with summation running over all »; terminal
segments. The normalization ensures that the summed branching probability per time bin of all
the terminal segments in the tree is independent of the value of S.

3.4. Simulation procedure

The simulation of the growth process for the general BES-growth model proceeds according to
the following algorithm. For a given tree at a given time bin, the branching probabilities are
calculated for all of the » terminal segments while, for S # 0, the centrifugal order y is considered
for each of them. Then, using a uniform random number between 0 and 1, it is decided for each
terminal segment whether a branching event indeed occurred in the given time bin, i.e. if the
random number is smaller than or equal to the branching probability for that segment. A
branching event implies that a new terminal segment is attached to the branching segment. When
no branching happened, the tree structure is unmodified transferred into the next time bin. The
process starts at the first time bin with a single (root) segment and stops at the last time bin (the
number of time bins is arbitrarily chosen but such that the branching probability per time bin is
much smaller than unity).

3.5. Parameter optimization

The model parameters B, E, S need to be set in such a way as to minimize the differences be-
tween model-generated trees and a particular set of experimentally discovered branching patterns.
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Fig. 3. Relationship between degree of dendritic tree and model parameters B and E. Displayed is the mapping of the
(B, E) parameter grid onto the (mean, SD) plane. For many (B, E) pairs the corresponding values of mean and standard
deviation of the degree distribution resulting from the model are plotted as data points in the (mean, SD) plane.
Continuous and dotted lines connect points with equal £ and B value, respectively. Adapted from [9].
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Table 1

Shape properties of observed and modeled dendrites of SC neurons
Shape variables Observations Model outcomes

Nobs Mean SD Mean SD

DLNs
Degree 26 12.58 7.46 12.49* 7.39*
Tree asymmetry 26 0.41 0.15 0.41* 0.14
Centrifugal order 628 3.58 1.74 3.53 1.70
SLNs
Degree 12 28.3 18.1 28.6 17.7
Tree asymmetry 12 0.39 0.14 0.42* 0.1
Centrifugal order 659 5.03 2.06 4.92 2.04

Model outcomes are indicated by = if the corresponding shape variables were fitted to the observed values by parameter
optimization. Shape variables unmarked are model predictions. Ny, denotes the number of experimental findings of
dendritic trees. Model outcomes result from 100 model-generated trees each.

In general, this is a multidimensional optimization task which can be done using various para-
meter search methods [11].

The structure of this model facilitates determining optimal parameter values in two steps [9].
Parameter S is estimated from the value of the topological asymmetry-index as follows. A set of
trees of different degrees is generated as a function of S, and the expected value of the asymmetry-
index of the set is calculated according to Egs. (1) and (2).

The following method has been used for finding the optimal values for the parameters B and E
for a given set of observed dendrites. The (mean, SD) values of the observed degree distribution
are plotted as a data points in the parameter map (Fig. 3), and the corresponding (B, E) values are
derived from the position of this point in the (B, E) parameter grid. The shape of the model degree
distribution, calculated for these model parameters, is subsequently tested against the shape of the
observed distribution by means of the »? test.

4. Results

The observed frequency distributions of the shape parameters were used to optimize the pa-
rameters of the growth model. The parameters of SLNs (B =4.94, E = 0.20, S = 0.25) clearly
differ from those of DLNs (B = 3.89, E = 0.29, S = 0.40).

The shape properties of 100 model trees each generated with these parameter values are given
by their mean and SD and compared to experimental values in Table 1. In the last two columns it
is indicated whether the agreement is the result of parameter optimization or predictions derived
from model simulations.

Observed (dashed histograms) and model generated (continuous lines) frequency distributions
of shape properties are contrasted in Fig. 4. By the y? test the model distributions were shown to
be not significantly different from the observed ones.
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Fig. 4. Frequency distributions of shape parameters of SC neurons (dashed histograms) and model-generated trees
(continuous lines) using the optimized parameter values.

In Fig. 5, the (B, E) values calculated for the two classes of SC neurons are compared with those
of various neuron types from several species analyzed previously [11]. With respect to topological
shape, SC neurons (h) are close to motoneurons (f and g) and interneurons (e), respectively. In
contrast, cortical pyramidal and non-pyramidal neurons (a, b) significantly differ from SC neu-
rons.

5. Discussion

The growth model describes dendritic growth as a stochastic branching process. The model is
simple in structure, based only on order and size dependent branching probabilities. The corre-
spondence between frequency distributions of shape parameters derived from reconstructed SC
neuron dendrites and model-generated trees indicates, however, that the stochasticity assumptions
employed in building the dendritic growth model are successful in explaining the variability of
neuronal dendrites. It is important to note that agreement between model outcomes and empirical
data was obtained also for parameters which were not used for optimization (see Table 1). Thus,
the dendritic trees of each of the two classes of SC neurons have been effectively represented by a
specific set of the model parameters B, E and S, as it has been achieved in previous studies on
other neuron types, too [11,12]. In this way, a considerable compression of the morphological
data has been obtained, and the analysis and comparison of the dendritic shapes of neuron classes
during development, maturity and disease become feasible.
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Fig. 5. Scatterplot of the growth model parameters B, E optimized for (a) — rat cortical pyramidal basal dendrites,
(b) — rat cortical multipolar non-pyramidal neurons, (¢) — rat motoneurons, (d) — human dentate granule cells, (¢) —
cultured cholinergic interneurons, (f) — cat motoneurons, (g) — frog motoneurons and (h) — cat SC neurons. Data
corresponding to (a)-(g) were taken from Ref. [11].

Three aspects have been considered in modeling dendritic growth, viz. (1) the basic process of
branching of an isolated segment, defined by the expected number B of branching events during
the developmental period, (2) the increase of the segment number in the growing tree, and (3) the
adjustment of the basic branching probability by the increasing degree of the tree (determined by
parameter £) and the position of the segment in the tree (determined by parameter S).

In a previous study based on data from several neuron types [11], parameters B and E were
shown to be uncorrelated in the analyzed data sets. This suggests that aspects (1) and (3) reflect
different mechanisms in dendritic branching while all aspects together finally determine the shape
of tree degree distribution.

The optimized (B, E) values tend to show clustering (see Fig. 5). Parameter £ evidently dis-
criminates between rat cortical pyramidal dendrites and other neuron classes, including SC
neurons. The larger £ value of pyramidal cells indicates that during growth of their dendrites the
branching probabilities decrease stronger with increasing tree degree than in the other neuron
types. On the other hand, the clustering also suggests a differentiation in B values between the
other neuron groups. Although the statistics need to be improved, it seems reasonable to deduce
from these results that the parameters B and £ may both represent basic cell-type specific
mechanisms of dendritic growth.

If the full growth model is employed, the metrical properties of dendritic trees (length and
diameters of segments showing great variability) are included. Meanwhile it has been shown in
several studies that both the topological and metrical properties of the empirically observed
dendritic trees can be accurately reproduced by the full model using optimized parameters for the
particular neuron types (for review see [8,9]).
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The full growth model also provides a tool for generating sets of random dendritic trees which
can be used to explore the functional implications of morphological variations. The method of
choice then is to employ one of the powerful neuron function simulators, e.g. NEURON (http://
neuron.duke.edu) or GENESIS (http://www.genesis-sim.org/GENESIS). A question of topical
interest in this realm has been to what extent neurons can be treated as integrators summing up a
number of small synaptic inputs over some characteristic period, or as coincidence detectors
which fire when a few synaptic inputs arrive at the trigger zone within that period. Simulations
with NEURON showed that the geometry of dendritic branching pattern indeed influences SC
neuron function. While the functional parameters (signal attenuation, delay and time window)
derived on SLNs are compatible with time-critical functions, DLNs in contrast show integrator
traits [13]. NEURON simulations with a set of dendritic trees generated by the growth model have
demonstrated that dendritic morphology also might influence firing patterns [14].
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