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Abstract

The recognition of objects from imagery in a manner that is independent of scale, posi-

i
tion, and orientation may be achieved by characterizing an object with a set of extracted
nvariant features. Several different recognition techniques have been demonstrated that

g
utilize moments to generate such invariant features. These techniques are derived from
eneral moment theory that is widely used throughout statistics and mechanics. In this

a
paper, basic Cartesian moment theory is reviewed and its application to object recognition
nd image analysis is presented. The geometric properties of low-order moments are dis-

.
F
cussed along with the definition of several moment-space linear geometric transforms

inally, significant research in moment-based object recognition is reviewed.



1. Introduction

The recognition of objects from imagery may be accomplished for many applications by

t

r

identifying an unknown object as a member of a set of well-known objects. Various objec

ecognition techniques utilize abstract characterizations for efficient object representation

s

e

and comparison. Such characterizations are typically defined by measurable object feature

xtracted from various types of imagery and any a priori knowledge available. Similarity

,

t

between characterizations is interpreted as similarity between the objects themselves

herefore, the ability of a given technique to uniquely represent the object from the avail-

.

S

able information determines the effectiveness of the technique for the given application

ince no one representation technique will be effective for all recognition problems, the

c

r

choice of object characterization is driven by the requirements and obstacles of a specifi

ecognition task.

Several important issues may be identified that distinguish recognition tasks. One

e

a

fundamental characteristic is whether or not the objects are occluded. In this paper, w

re primarily interested in the class of tasks that involve strictly unoccluded (segmented)

,

m

objects and, consequently, may be solved utilizing global feature techniques. Furthermore

any tasks require that objects be recognized from an arbitrary viewing position for a given

o

s

aspect. This requirement necessitates the extraction of object features that are invariant t

cale, translation, and/or orientation. The type of imagery will also determine the utility of

-

d

a given representation technique. For example, techniques based solely on object boun

aries or silhouettes may not be appropriate for applications where range imagery is col-

f

lected. Another important issue is the presence of image noise and robustness of object

eatures to such corruption. Finally, space and time efficiency of a representation tech-

s

nique is an issue for applications where the compactness of the object characterization and

peed of classification is critical.

Research has been performed investigating the use of moments for object characteriza-

a

tion in both invariant and non-invariant tasks utilizing 2-dimensional, 3-dimensional, range

nd/or intensity imagery. The principal techniques demonstrated include Moment Invari-

M

ants, Rotational Moments, Orthogonal Moments, Complex Moments, and Standard

oments. Schemes for fast computation of image moments have been explored including

l

m

optical, VLSI, and parallel architectures. Performance comparisons of the principa

oment and other competing global-feature techniques have also been presented based on

both theoretical analysis and experimental results.

The first section of this paper is a review of general moment concepts. The applicabil-

g

ity of moments to object image analysis is presented along with a description of the

eometric properties of the low order moment values. Several moment-space geometric

-

i

transforms are also described. The following two sections are a survey of research explor

ng the principal moment techniques for object recognition (as outlined above). A brief
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2

xplaination of each technique is presented along with subsequent improvements, applica-

c

tions and relationships to other techniques. In section 4, some novel techniques for the fast

omputation of moments are considered. Special purpose hardware and optical architec-

h

tures are discussed. Section 5 is a summary of moment performance comparisons that

ave been performed.

2. Moment Theory

In general, moments describe numeric quantities at some distance from a reference

f

r

point or axis. Moments are commonly used in statistics to characterize the distribution o

andom variables, and, similarly, in mechanics to characterize bodies by their spatial distri-

b

bution of mass. The use of moments for image analysis is straightforward if we consider a

inary or grey level image segment as a two-dimensional density distribution function. In

s

t

this way, moments may be used to to characterize an image segment and extract propertie

hat have analogies in statistics and mechanics.

2.1. Cartesian Moment Definition

The two-dimensional Cartesian moment, m , of order p + q , of a density distribution

function, f (x , y ), is defined as
pq

(2.01)m ≡ x y f (x , y ) dx dypq
−∞

∞

−∞

∞
p q∫ ∫

sThe two-dimensional moment for a (N × M ) discretized image, g (x , y ), i

(2.02)m ≡ x y g (x , y )pq
y =0

M −1

x =0

N −1
p qΣ Σ

pq d

c

A complete moment set of order n consists of all moments, m , such that p + q ≤ n an

ontains 1⁄2(n +1)(n +2) elements. Note that the monomial product x y is the basis function

for this moment definition.

p q

The use of moments for image analysis and object representation was inspired by Hu

-

z

[1]. Hu’s Uniqueness Theorem states that if f (x , y ) is piecewise continuous and has non

ero values only in the finite region of the (x , y ) plane, then the moments of all orders

)exist. It can then be shown that the moment set {m } is uniquely determined by f (x , ypq

qp s

fi

and conversely, f (x , y ) is uniquely determined by {m }. Since an image segment ha

nite area and, in the worst case, is piecewise continuous, moments of all orders exist and

e

i

a moment set can be computed that will uniquely describe the information contained in th

mage segment. To characterize all of the information contained in an image segment

l

s

requires a potentially infinite number of moment values. The goal is to select a meaningfu

ubset of moment values that contain sufficient information to uniquely characterize the

image for a specific application.
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2.2. Properties of Low-Order Moments

The low-order moment values represent well-known, fundamental geometric proper-

o

ties of a distribution or body. To illustrate these properties and show the applicability to

bject representation, we can consider the moment values of a distribution function that is

s

f

binary and contiguous, i.e. a silhouette image of a segmented object. The moment value

or this distribution may be easily explained in terms of simple shape characteristics of the

2

object.

.2.1. Zeroth Order Moments : Area

The definition of the zeroth order moment, {m }, of the distribution, f (x , y )00

(2.03)m ≡ f (x , y ) dx dy00
−∞

∞

−∞
∫

∞

∫

represents the total mass of the given distribution function or image. When computed for a

2

silhouette image of a segmented object, the zeroth moment represents the total object area.

.2.2. First Order Moments : Center of Mass

The two first order moments, {m , m }, are used to locate the center of mass (COM)

o
10 01

f the object. The coordinates of the COM, (x� , y� ), is the intersection of the lines, x = x� and

e

z

y = y� , parallel to the x and y axis respectively, about which the first order moments ar

ero. Alternatively, x = x� and y = y� represent lines where all the mass may be concen-

t

trated without change to the first order moments about the x and y axes respectively. In

erms of moment values, the coordinates of the COM are

(2.04ab)� �������

m
m

� ������� y� =
m
m

x� =
00

10

00

01

-

e

The COM defines a unique location with respect to the object that may be used as a refer

nce point to describe the position of the object within the field of view. If an object is posi-

(

tioned such that its COM is coincident with the origin of the field of view, i.e. (x� = 0) and

y� = 0), then the moments computed for that object are referred to as central moments and

are designated by µ . (Note that µ = µ = 0)pq 10 01

2.2.3. Second Order Moments

The second order moments, {m , m , m }, known as the moments of inertia, may be

u
02 11 20

sed to determine several useful object features. A description of each feature follows.

Principal Axes

The second order moments are used to determine the principal axes of the object.

The principal axes may be described as the pair of axes about which there is the minimum
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and maximum second moment (major and minor principal axes respectively). In terms of

moments, the orientation of the principal axes, φ, is given by

(2.05)� ���������������
� �
�µ2

µ
��� tan

��
� µ −

1
2

φ = −1

20 02

11

n

t

Note that in equation (2.05), φ is angle of the principal axis nearest to the x axis and is i

he range −π/4 ≤ φ ≤π/4. The angle of either principal axis specifically may be determined

efrom the specific values of µ and (µ − µ ). Table 2.1 illustrates how the angle of th11 20 02

.major principal axis, θ, may be determined by the second moments and the angle φ

Table 2.1. Orientation of the Major Principal Axis. �� �����������������������������������������������������������������������������������������
µ µ − µ φ θ�

11 20 02
�������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������

+
0 – 0 +π/2

– 0 > φ > −π/4 +π/2 > θ > +π/4

+
+ 0 0 +π/4

+ +π/4 > φ > 0 +π/4 > θ > 0

–
0 0 0 0

+ 0 > φ > −π/4 0 > θ > −π/4

–
– 0 0 −π/4

– +π/4 > φ > 0 −π/4 > θ > −π/2�

											� �����������������������������������������������������������������������������������������		
		
		
		
		
	

		
		
		
		
		
	

		
		
		
		
		
	

		
		
		
		
		
	

s

t

The angle of the principal axis of least inertia may be used as a unique reference axi

o describe the object orientation within the field of view (in-plane rotation). Note that θ

.

T

alone does not guarantee a unique orientation since a 180 degree ambiguity still exists

he third order central moments may be used to resolve this ambiguity (described below).

Image Ellipse

The first and second order moments also define an inertially equivalent approximation

t

i

of the original image, referred to as the image ellipse [2]. The image ellipse is a constan

ntensity elliptical disk with the same mass and second order moments as the original

m

image. If the image ellipse is defined with semi-major axis, α, along the x axis and semi-

inor axis, β, along the y axis, then α and β may be determined from the second order

moments using

(2.06a)�
�����������������������������������������������������������������
� �
�]2 [ µ + µ + (µ − µ ) + 4µ

µ
α =

��
�

00

20 02 20 02
2

11
2

1⁄2
√� ���������������������������

(2.06b)�
�����������������������������������������������������������������
� �
�]2 [ µ + µ − (µ − µ ) + 4µ

µ
β =

��
�

00

20 02 20 02
2

11
2

1⁄2
√� ���������������������������

yThe intensity of the image ellipse is then given b
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(2.07)� ���������

µ
β

I =
π α

00

-

g

If we additionally require that all the moments through order two to be the same as the ori

inal image, we can center the ellipse about the image COM and rotate it by θ so that the

s

major axis is aligned with the principal axis. the image ellipse for a silhouette image of a

pace shuttle is shown in figure 2.1.

Radii of Gyration

Another property that may be determined from the second order moments are the

e

f

radii of gyration (ROG) of an image. The radius of gyration about an axis is the distanc

rom the axis to a line where all the mass may be concentrated without change to the

second moment about that axis. In terms of moments, The radii of gyration ROG andx

R yOG about the x and y axes respectively are given by

(2.08ab)� �������

m
m

� ������� ROG =
m
m

ROG =x
00

20
y

00

02

T

√ √
he radius of gyration about the origin is the radius of a circle centered at the origin

e

o

where all the mass may be concentrated without change to the second moment about th

rigin. In terms of second order central moments, this value is given by

(2.09)� ���������������

µµ +
µ

ROG =com
00

20 02

c

√
omThe ROG has the property that it is inherently invariant to image orientation and, con-

2

sequently, has been used as a rotationally invariant feature for object representation.

.3. Moments of Projections

An alternative means of describing image properties represented by moments is to

f

t

consider the relationship between the moments of an image segment and the moments o

he projections of that image segment. Specifically, the moments in the sets {m } and

{ 0q

p 0

m } are equivalent to the moments of the image projection onto the x axis and y axis

,respectively. To illustrate this, consider the vertical projection, v (x ), of an image segment

f (x , y ), onto the x axis given by

(2.10)v (x ) = f (x , y ) dy
−∞

∞

∫

p yThe one-dimensional moments, m , of v (x ) are then given b

(2.11)m = x v (x ) dxp
−∞

∞
p∫
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substituting (2.10) in (2.11) gives

(2.12)m = x f (x , y ) dx dy = mp
−∞

∞

−∞

∞
p

p 0

T

∫ ∫

he moment subsets corresponding to the x and y axis projections are shown in figure 2.2.

y

d

Now, if we consider the projection of an image segment onto an axis as a probabilit

istribution, properties of central moments of an image segment may be described using

s

o

classical statistical measures of this distribution. For example, the second central moment

f a projection of an image segment onto the x axis are given by

(2.13)µ = x f (x , y ) dx20
−∞

∞

−∞

∞
2∫ ∫

.

2

which is proportional to the variance of the distribution

.4. Moments of Order Three and Greater

Moments of order three and greater are most easily described using properties of the

2

projection of the image onto the x or y axis rather than properties of the image itself.

.4.1. Third Order Moments : Projection Skewness

eThe two third order central moments, {µ , µ }, describe the skewness of the imag30 03

-

t

projections. Skewness is a classical statistical measure of a distribution’s degree of devia

ion from symmetry about the mean. The coefficient of skewness for image projections onto

the x and y axes are given by

(2.14ab)� ���������µ� ��������� Sk =
µ

µ
Sk =

µx
20

3/2
30

y
02

3/2
03

s

s

The signs of the coefficients are an indication as to which side of an axis the projection i

kewed as shown in table 2.2.

Table 2.2. Skewness of Projections based on signs of Sk and Sk .
� �������������������������������������������������������������

x y

Sk X Projection Skewed� x�������������������������������������������������������������� �������������������������������������������������������������

0
+ left of y axis

symmetric about y axis
� – right of y axis�������������������������������������������������������������
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

� �������������������������������������������������������������
Sk Y Projection Skewed� y�������������������������������������������������������������� �������������������������������������������������������������

0
+ below x axis

symmetric about x axis
� – above x axis�������������������������������������������������������������
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

.Note that Sk = 0 or Sk = 0 does not guarantee that the object is symmetricx y
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As mentioned previously, the third order moments may be used to resolve the 180

o

degree ambiguity of the principal axis rotation. This is based on the fact that the rotation

f an image by 180 degrees changes the sign of the skewness of the projection on either

axis. Additionally, the sign of the coefficient of skewness dependents only on the sign of µ30

o 03 20 02r µ since µ and µ are always positive. Specifically, if the image is rotated by the

e

s

negative of angle θ so that the major principal axis is coincident with the x axis, then th

ign of µ may be used to distinguish between the two possible orientations.

2

30

.4.2. Fourth Order Moments : Projection Kurtosis

eTwo of the fourth order central moments, {µ , µ }, describe the kurtosis of the imag40 04

-

b

projections. Kurtosis is a classical statistical measurement of the "peakedness" of a distri

ution. The coefficient of kurtosis for projection of the image onto the x and y axes is given

by

(2.15ab)� ������� − 3
µ

� ������� − 3 K =
µ

µ
K =

µx
20

2
40

y
02

2
04

a

fl

A kurtosis of zero is the value for a Gaussian distribution, values less than zero indicate

atter and less peaked distribution, while positive values indicate a narrower and more

2

peaked distribution.

.5. Transformations of Moments

In addition to providing a concise representation of fundamental image geometric pro-

o

perties, basic geometric transformations may be performed on the moment representation

f an image. These transformations are more easily accomplished in the moment domain

s

m

than the original pixel domain. A complete derivation of each of the following transform

ay be found in [3].

n2.5.1. Scale Transformatio

A scale change of α in the x dimension and β in the y dimension of an image, f (x , y ),

results in a new image, f ′(x , y ), defined by

(2.16)

T

f ′(x , y ) = f (x /α, y /β)

he transformed moment values {m ′ } are expressed in terms of the original moment

v pq

pq

alues {m } of f (x , y ) as

(2.17)m ′ = α β m α ≠ βpq
1+p 1+q

pq

(2.18)m ′ = α m α = βpq
2+p +q

pq



2.5.2. Translation Transformation

10

A translation of α in the x dimension and β in the y dimension of an image, f (x , y ),

results in a new image, f ′(x , y ), defined by

(2.19)

T

f ′(x , y ) = f (x −α, y −β)

he transformed moment values {m ′ } are expressed in terms of the original moment

v pq

pq

alues {m } of f (x , y ) as

(2.20)
q
��

α β ms
p
�����

rm ′ =
��

pq
r =0

p

s =0

q
p −r q −s

rs

2.5.3. Rotation Transformation

Σ Σ

A rotation of θ about the origin of f (x , y ) results in a new image, f ′(x , y ), defined by

)

T

f ′(x , y ) = f (x cos θ + y sin θ, −x sin θ + y cos θ) (2.21

he transformed moment values {m ′ } are expressed in terms of the moment values

{ pq

pq

m } of f (x , y ) as

(2.22)
q
��

(−1) (cos θ) (sin θ) ms
p
�����

rm ′ =
��

pq
r =0

p

s =0

q
q −s p −r +s q +r −s

p +q −r −s ,r +s

N

Σ Σ

ote that the transformed moments are a combination of the original moments of the same

2

order or less.

.5.4. Reflection Transformation

A reflection about the x axis of f (x , y ) results in a new image, f ′(x , y ), defined by

(2.23)

T

f ′(x , y ) = f (−x , y )

he transformed moment values {m ′ } are expressed in terms of the original moment

v pq

pq

alues {m } of f (x , y ) as

(2.24)m ′ = (−1) mpq
p

pq

n

a

The analogous result holds for reflection about the y axis. Note that reflection about a

rbitrary axis is achieved by first rotating the reflection axis to be aligned with the x or y

-

t

axis, performing the reflection, and then rotating the moments back to the original orienta

ion.

2.5.5. Intensity Transformation

A uniform intensity (contrast) change α on f (x , y ) results in a new image, f ′(x , y ),

defined by
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(2.25)f ′(x , y ) = α f (x , y )

yThe transformed moment values {m ′ } in terms of {m } are simplpq pq

(2.26)m ′ = α mpq pq

2.5.6. Discrete Convolution

The convolution of an image, f (x , y ), with a discrete N × M kernal, w (i , j ), may be

t

v

considered the sum of a series of translations and scalings [4]. The convolved momen

alues {m ′ } are expressed in terms of the original moment values {m } of f (x , y ) aspq pq

(2.27)
q�� w (i , j ) α β ms

p�����
rm ′ = ��

pq
i =0

N −1

j =0

M −1

r =0

p

s =0

q
p −r q −s

rsΣ Σ Σ Σ

(2.28)����� − j

��	M
2

� ��� − i

��	 β =

��
N
2

This may be rewritten as

α =

��


(2.29)m ′ = Ω (r , s )mpq
r =0

p

s =0

q

pq rsΣ Σ

(2.30)�����
��	 i j w (i , j )M

2
� ���

��	
��
N

2
q −s�� (−1)

��

l

p −r�����
k

q�����
s

p�����
rΩ (r , s ) = ��

pq
k =0

p −r

l =0

q −s
k +1

p −r −k q −s −l

l =0

N −1

j =0

M −1
k l

N

Σ Σ Σ Σ

ote that for a given convolution kernal, w , the set of coefficients, Ω, need only be calcu-

3

lated once and may then be reapplied using equation (2.29).

. Moment Techniques for Object Representation

m

m

Several techniques have been demonstrated that derive invariant features fro

oments for object representation. These techniques are distinguished by their moment

f

definition, the type of image data exploited, and the method for deriving invariant values

rom the image moments. Various moment definitions are characterized by the choice of

o

basis functions, which may be orthogonal or non-orthogonal polynomials, and the sampling

f the image, which may be rectangular or polar. Moments have been defined for 2-

-

l

dimensional (silhouette and boundary), 21⁄2-dimensional (range), 3-dimensional, and grey

evel (brightness) imagery. Most invariant characterizations achieve object scale and trans-

t

lation invariance through feature normalization since this is easily accomplished based on

he low-order moments. The difficulty in achieving object rotation invariance has inspired

much of the moment research.

Five principal moment-based invariant feature techniques may be identified from the

rresearch to date. The earliest method, Moment Invariants, is based on non-linea
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combinations of low-order two-dimensional Cartesian moments that remain invariant under

l

M

rotation. Alternative moment definitions based on polar image representations, Rotationa

oments, were also proposed as a solution for their simple rotation properties. Moment

r

definitions utilizing uncorrelated basis functions, Orthogonal Moments, were developed to

educe the information redundancy that existed with conventional moments. Furthermore,

d

orthogonal moments have more simply defined inverse transforms, and may be used to

etermine the minimum number of moments required to adequately reconstruct, and thus

,

p

uniquely characterize, a given image. Related to orthogonal moments, Complex Moments

rovide straightforward computation of invariant moments of an arbitrary order. Finally,

f

Standard Moments are unique in that they achieve invariance completely through image

eature normalization in the moment domain rather than relying on algebraic invariants.

3.1. Moment Invariants

The first significant work considering moments for pattern recognition was performed

e

i

by Hu [1]. Hu derived relative and absolute combinations of moment values that ar

nvariant with respect to scale, position, and orientation based on the theories of invariant

r

algebra that deal with the properties of certain classes of algebraic expressions which

emain invariant under general linear transformations.

e

t

Size invariant moments are derived from algebraic invariants but can be shown to b

he result of a simple size normalization. Translation invariance is achieved by computing

-

i

moments that have been translated by the negative distance to the centroid, thus normal

zed so that the center of mass of the distribution is at the origin (central moments). Hu

o

d

recognized that rotation invariance was the most difficult to achieve and proposed tw

ifferent methods for computing rotation invariant moments.

t

m

The first method, the method of principal axes, is based on the observation tha

oments may be computed relative to a unique set of principal axes of the distribution and

,

t

will therefore be invariant to the orientation of the distribution. It was noted, however

hat this method breaks down for rotationally symmetric objects, i.e. objects with no unique

-

m

set of principal axes. Principal axes were utilized in early character recognition experi

ents performed by Giuliano, et.al [5]. However, very little research followed based on this

e

m

method. The second proposed technique for rotation invariance is the method of absolut

oment invariants. This technique, and its subsequent variations, proved to be basis for

3

the majority of the moment research to date.

.1.1. Two-Dimensional Moment Invariants

The method of moment invariants is derived from algebraic invariants applied to the

t

i

moment generating function under a rotation transformation. The set of absolute momen

nvariants consists of a set of non-linear combinations of central moment values that
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emain invariant under rotation. Hu defines seven values, computed from central moments

s

o

through order three, that are invariant to object scale, position, and orientation. In term

f the central moments, the seven moment invariants are given by

(3.01a)M = µ + µ1 20 02

(3.01b)M = (µ − µ ) + 4µ2 20 02
2

11
2

(3.01c)M = (µ − 3µ ) + (3µ − µ )3 30 12
2

21 03
2

(3.01d)M = (µ + µ ) + (µ + µ )4 30 12
2

21 03
2

2M 5 30 12 30 12 30 12
2

21 03= (µ −3µ )(µ +µ )[(µ +µ ) −3(µ +µ ) ]

(3.01e)+ (3µ −µ )(µ +µ )[3(µ +µ ) −(µ +µ ) ]21 03 21 03 30 12
2

21 03
2

(3.01f)M = (µ −µ )[(µ +µ ) −(µ +µ ) +4µ (µ +µ )(µ +µ )6 20 02 30 12
2

21 03
2

11 30 12 21 03

yOne skew invariant is defined to distinguish mirror images and is given b

M = (3µ −µ )(µ +µ )[(µ +µ ) −3(µ +µ ) ]7 21 03 30 12 30 12
2

21 03
2

(3.01g)− (µ −3µ )(µ +µ )[3(µ +µ ) −(µ +µ ) ]30 12 21 03 30 12
2

21 03
2

n

f

It should be noted that, just as for the method of principal axes, this method breaks dow

or objects that are n-fold symmetric since the seven moment invariants for such an object

are all zero.

Hu demonstrated the utility of moment invariants through a simple pattern recogni-

d

tion experiment. The first two moment invariants were used to represent several known

igitized patterns in a two-dimensional feature space. An unknown pattern could be

d

classified by computing its first two moment values and finding the minimum Euclidean

istance between the unknown and the set of well-known pattern representations in

n

p

feature space. If the minimum distance was not within a specified threshold, the unknow

attern was considered to be of a new class, given an identity, and added to the known pat-

i

terns. A similar experiment was performed using a set of twenty-six capital letters as

nput patterns. When plotted in two-dimensional space, all the points representing each of

v

the characters were distinct. It was observed, however, that some characters that were

ery different in image shape were close to each other in feature space. In addition, slight

t

i

variations in the input images of the same character resulted in varying feature values tha

n turn lead to overlapping of closely spaced classes. Hu concluded that increased image

resolution and a larger feature space would improve object distinction.
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s3.1.2. Three-Dimensional Moment Invariant

Sadjadi and Hall [6] have extended Hu’s two-dimensional moment invariants to

s

g

objects defined in three dimensional space. The definition of three dimensional moments i

iven by

(3.02)m ≡ x y z f (x , y , z ) dx dy dzpqr
−∞

∞

−∞

∞

−∞

∞
p q r

U

∫ ∫ ∫

sing the theory of invariant algebra and properties of ternary quantics, Sadjadi and Hall

l

m

presented a derivation of moment invariants that are analogous to Hu’s two-dimensiona

oment invariants. Three relative moment invariants values are derived from second

order central moments and are given by

(3.03a)J = µ + µ + µ1 200 020 002

(3.03b)J = µ µ − µ + µ µ − µ + µ µ − µ2 020 002 011
2

200 002 101
2

200 020 110
2

(3.03c)∆ = det

���
� µµ
µ

µ
µ
µ

µ
µ
µ � ��

�2

101

100

200

011

020

110

002

011

101

Two absolute moment invariants are then defined by

(3.04ab)� �����∆� ����� I =
J

J
J

I =1
2

1
2

2
1
3
2

l

m

Experiments were conducted to confirm the invariance of these values. Three-dimensiona

oment invariants were calculated for a rectangular solid, a cylinder, and a pyramid in

h

o

several different orientations. The computed values were shown to be invariant for eac

bject.

3.1.3. Boundary Moment Invariants

Dudani, Breeding, and McGhee [7] applied moment invariants to a model-based

a

three-dimensional object recognition system. The system was developed to perform

utomatic classification of aircraft from television images using moment invariant feature

t

i

vectors computed from silhouette and boundary information. Calculation of the momen

nvariants was based on Hu’s seven invariants with the exception of size normalization.

t

Size normalization was based on the object to sensor distance and the radius of gyration of

he object. It was claimed that high frequency details in the image are best characterized

t

r

by moments derived from the object boundary while overall shape characteristics are bes

epresented by silhouette moments. Moment invariants were therefore calculated for both

t

c

the silhouette and the boundary of each object to create a feature vector. Objec

lassification was based on a distance-weighted k-nearest-neighbor rule between the object
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eature vector and all the feature vectors of the model database. Their results showed the

moment based classification to be more accurate than several qualified human observers.

Sluzek [89] proposed a method for using moment invariants to identify objects from

a

f

local boundaries. If the object boundary is represented by a closed curve, x (t ) and y (t ),

ragment of this curve may be specified by a starting point, t = α, and a length, β. The

moment definition for this fragment is then

(3.05)�������
� �
� dtyd

t
������� +

d
xd
t

m (α,β) = x (t ) y (t )

��
�

dpq
α

α+β
p q

2

2

2

2
1⁄2

T

∫

he basis for Sluzek’s technique is the notion that these moments and, subsequently,

t

moment invariants derived from these moments, are continuous functions of α and β and

hat these functions may be determined for each object. A complete object is then

s

d

represented by analytical descriptions of the functions of the first two moment invariant

esignated by I (α, β) and I (α, β). To determine a match between the moment invariants1 2

1 2of a fragment, I ′ and I ′ , and an object, one attempts to solve the following system of equa-

tions for α and β

(3.06ab)I ′ = I (α, β) I ′ = I (α, β)1 1 2 2

-

c

The existence of a solution indicates a match. Additionally, the determined α and β indi

ates which segment of the object boundary matched the fragment. Sluzek, however,

identifies that analytic descriptions of the moment invariants I (α, β) and I (α, β) are com-1 2

.

3

plex and a unique solution to equations (3.06a) and (3.06b) is not guaranteed

.1.4. Other Applications of Moment Invariants

n

b

Gilmore and Boyd [10] utilized Hu’s seven moment invariants to identify well-know

uilding and bridge targets with infrared imagery. In their application, the orientation and

e

c

range of the image sensor was known so the expected shape and size of the target could b

alculated based on a target model. First, the scene was segmented and thresholded into

t

g

several silhouette regions. A preprocessing step was then used to disqualify regions tha

reatly differ from the expected target. The seven moment invariants were then computed

y

w

from silhouettes of each of the potential target regions. Since the sensor to scene geometr

as known, the actual region area was determined and used for size normalization.

e

Classification was based on a weighted difference between the region moments and the

xpected target moments. Correct classification of targets was demonstrated with this tech-

nique.

Sadjadi and Hall [11] investigated the effectiveness of moment invariants for scene

t

w

analysis. Through a simple experiment, they showed that moment theory was consisten

ith empirical results when applied to grey-level imagery. The moment values were com-

puted from a grey-level image subject to various size and rotation transformations. The
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.seven invariant values were found to be similar for all the transformed images

Wong and Hall [12] used moment invariants to match radar images to optical images.

u

Square sub-regions of the optical image were compared to sub-regions in the radar image

sing a correlation based on the log of the moment values. The log was used to reduce the

l

f

dynamic range of the moment values. The moment invariants were shown to be usefu

eatures for matching the images, however, it was assumed that radar and optical images

3

were of the same scale and orientation.

.1.5. Alternative Moment Invariant Techniques

y

i

Maitra [13] presented a variation of Hu’s moment invariants that are additionall

nvariant to contrast change. These new moments are also inherently size invariant and

s

i

thus do not require size normalization. In terms of Hu’s moment invariants, Maitra’

nvariants are defined by

(3.07a)���������

M
β =

M1
1

2√
�����

(3.07b)� �������������

µM
M

β =
M2

1 2

3 00

(3.07c)�������

M
M

β =3
3

4

(3.07d)���������

M
β =

M4
4

5√
�����

(3.07e)� �������������

M
M

β =
M5

1 4

6

(3.07f)�������

M
M

β =6
3

4

e

e

Maitra demonstrated moment invariance with two digitized images of the same scen

ach taken with a different camera position to provide a difference in scale, illumination,

.

M

position, and rotation. The six invariants are computed for each image and compared

aitra claimed that the variation in invariant values is an improvement over previous

results.

Abo-Zaid, Hinton, and Horne [14] also suggest a variation of Hu’s moment invariants

s

b

by defining a new moment normalization that is used to cancel scale and contrast change

efore the computation of the moment invariants. In terms of central moments, the new

normalization factor is defined by
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(3.08)� ���������������
� �
�µ

µ
� �����

��
� µ +

1µ′ = µ
µpq pq

00 20 02

00 2
p +q� �������

e

m

Abo-Zaid, et.al. claim that in addition to being position, contrast, and size invariant, thes

oments have decreased dynamic range when compared to moments that have been size

s

t

normalized using equation (2.18). Decreased dynamic range allows higher order moment

o be represented without resorting to logarithmic representation and without loss of accu-

3

racy.

.2. Rotational Moments

Rotational moments are an alternative to the conventional Cartesian moment

h

definition. These moments are based on a polar coordinate representation of the image and

ave well defined rotation transform properties. The (complex) rotational moment D of

order n is defined by [15]
nl

(3.09)D = r e f (r ,θ) r dr d θ 	 l 	 ≤ n n − l = evennl
0

2π

0

∞
n il θ∫ ∫

Rotational moments may be derived from conventional moments by

(3.10)
1⁄2(n −l )

�� ��
k
l
�� m 0 ≤ l ≤ njD = (−i )

��
nl

j =0

1⁄2(n −l )

k =0

l
k

n −l +k −2j ,l −k +2j

T

Σ Σ

o illustrate the simplicity of a rotation transformation, consider an image, f (r ,θ),

rotated by an angle φ. The transformed rotational moments are defined by

(3.11)D = r e f (r , (θ−φ)) r dr d θnl
0

2π

0

∞
n il θ∫ ∫

In terms of the original rotational moments, the transformed moments are

(3.12)D ′ = e Dnl
(il φ)

nl

r

t

A rotation of φ is thus achieved by a phase change of the rotational moments. Anothe

ransform easily accomplished with rotational moments is dilatation or radial scale change.

g

In terms of the original radial moments, a radial scale of α results in transformed moments

iven by

(3.13)D ′ = α Dnl
n +2

nl

,

a

Intensity (contrast) change is also easily defined. In terms of the original radial moments

n intensity change of β results in transformed moments given by

(3.14)D ′ = β Dnl nl
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otational moments, however, have complicated translation transformations. Conse-

c

quently, rotational moment techniques typically rely on Cartesian moments to find the

enter of mass and then compute the rotational moments about that point. (i.e. central rota-

3

tional moments)

.2.1. Rotational Moment Invariants

Smith and Wright [16] used a simplified rotational moment technique to derive invari-

-

t

ant features for characterizing noisy, low resolution images of ships. The given image func

ion, f (x , y ), was considered in polar coordinates with the polar origin located at the image

eCOM, ( x� , y� ), to provide position invariance. Two new moment values Ĉ and Ŝ wernl nl

defined as

(3.15)Ĉ = r cos l θ f (r ,θ) r dr d θnl
n∫ ∫

(3.16)Ŝ = r sin l θ f (r ,θ) r dr d θnl
n∫ ∫

These moment definitions are the real-valued parts of the rotational moments.

h

o

Intensity invariance was achieved by normalizing the moment values with the zerot

rder moment m . Rotation invariance was achieved by measuring θ relative to the angle00

pof the principal axis θ . The resulting invariant moments were given by

(3.17)���������������������������������������������
θŜ sin l θ + Ĉ cos l

m
C =nl

00

nl p nl p

(3.18)���������������������������������������������
θŜ cos l θ − Ĉ sin l

m
S =nl

00

nl p nl p

p .which are the real-valued rotational moments rotated through angle θ

Polynomials of these moments, through order three, derived using a linear regression

.

A

technique, were used to estimate the length and aspect ratio of the ship for classification

lthough moments through order five were used, it was observed that moments through

order three were most useful as they were less sensitive to noise.

Boyce and Hossack [17] derived rotational moments of arbitrary order that are invari-

t

ant to rotation, radial scaling (dilatation), and intensity change. Based on the rotation

ransform for rotational moments, as given in equation (2.22), it follows that the product of

rotational moments

D (n , l ) for which l = 0
i

Π Σi i
i

i

ln s

a

will be invariant under rotation. (Note that D (n , l ) = D ) Dilatation invariance i

chieved by choosing quotients of the above products such that the sum
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n + 2)
i
Σ i

is the same for the numerator and denominator, thus canceling out the radial scale factor.

n

Finally, intensity invariance is achieved by ensuring that the number of terms in the

umerator and denominator are equal. These rotational moment invariants are defined in

terms of rotational moments, D (n , l ), for a given order, n , with
�
l
�

≤ n and n − l = even .

For n even , the moment invariants are given by

(3.19a)� ��������������������������������������������������� 0 ≤ m < 1⁄2 (n −2))D (n , n −2m ) D (n , −n +2m
)D (n , 0 2

(3.19b)� ������������������������������������������������������� 2 ≤ m < 1⁄2 (n −2))D (n , n −2m ) D (n −2, −n +2m
)D (n , 0) D (n −2, 0

(3.19c)� ���������������������������������)D (n , 0) D (0, 0
)D (n −2, 0) D (2, 0

(3.19d)� �����������������������������������������������������������)D (n , n ) D (n −2, −n +2) D (2, −2
)D (n , 0) D (n −2, 0) D (2, 0

eand for n odd , the invariants ar

(3.19e)������������������������������������������������������������������� 0 ≤ m ≤ 1⁄2 (n −1))D (n , n −2m ) D (n , −n +2m ) D (0, 0
)D (n −1, 0) D (2, 02

(3.19f)� ������������������������������������������������������� 1 ≤ m ≤ 1⁄2 (n −1))D (n , n −2m ) D (n −2, −n +2m
)D (n −1, 0 2

(3.19g)� �����������������������������������������������������������)D (n , n ) D (n −2, −n +2) D (2, −2
)D (n −1, 0) D (2, 02

Two special-case definitions are provided for the last two invariants when n = 3. In these

-

a

invariants, the term, D (n −2, l ), will always be zero causing the invariant to always evalu

te to zero. The special invariant definitions are given by

(3.19h)�����������������������������������������������)D (3, 1) D (2, −2) D (0, 0
)D (2, 0 4

2

(3.19i)� �����������������������������������������������������������)D (3, 3) D (3, 1) D (2, −1) D (0, 0
)D (2, 0 4

s3.2.2. Radial and Angular Moment Invariant

Reddi [18] presented an alternative formulation of moment invariants based on the

l

m

image representation in polar coordinates. The definition of the radial and angular centra

oments is given by
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(3.20)ψ (k , f ) = r f (r , θ)drr
0

∞
k∫

(3.21)ψ (p , q , f ) = cos θsin θ f (r , θ)d θθ
−π

π
p q∫

(3.22)ψ(k , p , q , f ) = r cos θsin θ f (r ,θ)drd θ
−π

π

0

∞
k p q∫ ∫

(3.23)µ = ψ(p +q +1, p , q , f )pq

Hu’s moment invariants based on radial and angular moments of order three are defined as

follows

(3.24a)M = ψ (3, ψ (f ))1 r θ

(3.24b)M =
�� ψ (3, ψ (f e ))

��
2 r θ

j 2θ
2

(3.24c)M =
�� ψ (4, ψ (f e ))

��
3 r θ

j 3θ
2

M 4 is derived from Hu’s moment invariant for illustration

)M = (µ + µ ) + (µ + µ4 30 12
2

21 03
2

2= 2
��
ψ(4, 3, 0, f ) + ψ(4, 1, 2, f )

��
+

��
ψ(4, 2, 1, f ) + ψ(4, 0, 3, f )

��

� ��
=

���
r cosθ(cos θ + sin θ)f (r ,θ)drd θ

� �� +

���
r sinθ(cos θ + sin θ)f (r ,θ)drd θ

−π

π

0

∞
4 2 2

2

−π

π

0

∞
4 2 2

2

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
2∞

4

0

π

π

∞
4

2

−0

π

π
=

−

���
r cosθ f (r ,θ)drd θ

� �� +

���
r sinθf (r ,θ)drd θ

� ��

=
��
ψ (4, ψ (1, 0, f ))

��
+

��
ψ (4, ψ (0, 1, f ))

��
r θ

2
r θ

2

= r θ r θ
2

�� ψ (4, ψ (1, 0, f )) + j ψ (4, ψ (0, 1, f ))
��

=

��� r (cosθ+ j sinθ)f (r , θ)drd θ

���
−π

π

0

∞
4

2

∫ ∫

(3.24d)=
�� ψ (4, ψ (f e ))

��
r θ

j θ
2

(3.24e)M = Re[ψ (4, ψ (f e )).ψ (4, ψ (f e ))]5 r θ
j 3θ

r
3

θ
−j θ
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(3.24f)M = Re[ψ (3, ψ (f e )).ψ (4, ψ (f e ))]6 r θ
j 2θ

r
2

θ
−j θ

(3.24g)M = Im[ψ (4, ψ (f e )).ψ (4, ψ (f e ))]7 r θ
j 3θ

r
3

θ
−j θ

A general form of radial and angular invariant is presented as

(3.25)I =
�
� ψ (k , ψ (e ))

�
� for any k and lkl r θ

jl θ
2

-

b

Using this definition, absolute moment invariants can be derived without the use of alge

raic invariants. Furthermore, it is noted that if the image, f (r ,θ), is radially scaled by a

factor α, the resulting radial moments are given by

(3.26)ψ (k , f (αr ,θ)) = α ψ (k , f (r ,θ))r
−(k +1)

r

s

t

This allows size invariant moments to be derived by choosing fractions of radial moment

hat cancel α.

Yin and Mack [19] compared the effectiveness of radial and angular moment invari-

a

ants with Hu’s (Cartesian) moment invariants for object classification from both silhouette

nd grey-level imagery. Moment based feature vectors were computed for objects from

r

a

video and FLIR imagery. Classification was based on a weighted k-nearest neighbo

pproach. They found that both moment techniques provided similar results. It was

a

observed, however, Hu’s moment invariants require less computation time than radial and

ngular moments.

s3.3. Orthogonal Moment

Teague [2] presented two inverse moment transform techniques to determine how

,

m

well an image could be reconstructed from a small set of moments. The first method

oment matching, derives a continuous function

(3.27)g (x , y ) = g + g x + g y + g x + g xy + g y + . . .
00 10 01 20

2
11 02

2

pq ,

t

whose moments exactly match the moments, {m }, of f (x , y ) through order n . However

his method is shown to be impractical as it requires the solution to an increasing number

of coupled equations as higher order moments are considered.

The second method for determining an inverse moment transform is based on orthogo-

nal moments. Teague observed that the Cartesian moment definition

(3.28)m ≡ x y f (x , y ) dx dypq
p q∫ ∫

p q .

R

has the form of the projection of f (x , y ) onto the non-orthogonal, monomial basis set, x y

eplacing the monomials with an orthogonal basis set (e.g. Legendre and Zernike polynomi-

als), results in an orthogonal moment set with an approximate inverse moment transform.
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3.3.1. Legendre Moments

The Legendre polynomials, P (x ), are defined byn

(3.29)� ������������������������������������� x!(2n −2m )
!

����� (−1)
m ! (n −m )! (n −2m )

1P (x ) =
2n n

m =0

n /2
m n −2m

or more simply

Σ

(3.30)P (x ) = C xn
k =0

n

nk
k

nk

Σ

ywhere the Legendre coefficients, C , are given b

(3.31)� ������������������������������������������� n − k = even!(n +k )
!

�����

[(n −k )/2]! [(n +k )/2]! k
1C = (−1)

2nk
(n −k )/2

n

The Legendre polynomials are orthogonal over the interval −1.0 ≤ x ≤ 1.0.

d

i

The nature of the monomial basis functions and Legendre polynomials are illustrate

n figures 3.1-3.3. In figure 3.1, monomials up to order 5 are shown for the interval

t

−100 ≤ x ≤ 100. These monomials increase very rapidly in range as the order increases, but

hey do have the advantage that simple integer data representation may be used with

.

T

discrete digitized imagery. Figure 3.2 shows the monomials up to order 5 for −1.0 ≤ x ≤ 1.0

he range of the monomials is now −1.0 ≤ f (x ) ≤ 1.0, however, a precision problem still

c

remains and a floating point or scaled data format is necessary. The monomials are highly

orrelated and the important information is contained within the small differences between

e

d

them. As the order increases, the precision needed to accurately represent thes

ifferences also rapidly increases. The Legendre polynomials through order 5 for

r

−1.0 ≤ x ≤ 1.0 are shown in figure 3.3. Since these polynomials are orthogonal over this

ange, less precision is needed to represent differences between the polynomials to the

same accuracy as the monomials.

Teague utilized Legendre polynomials P (x ) as a moment basis set and defined the

pq

n

sorthogonal Legendre moment, L , a

(3.32)� ����������������������������� P (x ) P (y ) f (x , y ) dx dy)(2p + 1)(2q + 1
4

L =pq
−1

1

−1

1

p q

N

∫ ∫

ote that for the moments to be orthogonal, the image f (x , y ) must be scaled to be within

the region −1.0 ≤ x ,y ≤ 1.0.

If the Legendre polynomials are expressed in terms of their coefficients, C , then the

relationship between conventional and Legendre moments is defined by
nk

(3.33)� ����������������������������� C C µ)(2p + 1)(2q + 1
4

L =pq
r =0

p

s =0

q

pr qs rsΣ Σ
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eague derived a simple approximation to the inverse transform for a set of moments

through order N given by

(3.34)f (x , y ) ∼∼ P (x ) P (y ) L
n =0

N

m =0

n

n −m m n −m ,m

T

Σ Σ

he Legendre based inverse transform has an advantage over the method of moment

L

matching in that there are no coupled algebraic equations to solve. Furthermore, the

egendre moments are easily computed from the conventional moments and the well-

defined polynomial coefficients.

Teague performed image reconstruction on increasing order moment sets (through

t

w

15th order) and computed the pixel error between the original and reconstructed images. I

as found that the pixel error image steadily decreased as higher order moments were

s

used. Teague demonstrated that higher order moments (greater than order three) contain

ignificant information and may be necessary to sufficiently characterize an image for a

e

r

given application. He notes, however, that although higher order moments may b

equired, the set of moment values is still small when compared to the pixel representation

of the image.

Reeves and Taylor [4] identify that the problem of perfectly reconstructing a binary

s

d

valued, discretely sampled image directly using the method described above by Teague i

ifficult, since the original image violates the necessary continuity assumptions. Conse-

g

quently, even increasing the order of the moment set used in the reconstruction will not

uarantee a good result. In an effort to compensate for this problem, an iterative scheme

using error feedback was devised to help reconstruct silhouette images.

The fundamental approach in the iterative scheme was based on the fact that the

o

i

moment transform is a linear operation. For example, moments of the difference of tw

mages are the same as the difference of the two images moments. Using this property, an

e

c

error image can be constructed from the moment set error, and then subtracted from th

urrent reconstruction to enhance its accuracy. When compared with Teague’s approach,

g

the iterative scheme demonstrated substantially improved results. Results for simple

eometric shapes indicate that moment sets as small as order 4 may produce good recon-

-

t

structions. In general, objects showed their best results for 12th order moment reconstruc

ions. Additionally, complex shapes required lower feedback than simpler shapes, to pro-

3

duce stable iterations that would result in an improved image reconstruction.

.3.2. Zernike Moments

To derive orthogonal, rotationally invariant moments, Teague used the complex Zer-

,nike polynomials as the moment basis set. The Zernike polynomials, V (x , y ), of order nnl

are defined by
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(3.35)V (x , y ) = R (r ) e 0 ≤ l ≤ n n − l = evennl nl
il θ

ywhere the real-valued radial polynomial is given b

(3.36)� ����������������������������������������������������������� r!(n −m )
!

R (r ) = (−1)
m ! [(n −2m +l )/2]! [(n −2m −l )/2]nl

m =0

(n −l )/2
m n −2m

or more simply

Σ

(3.37)R (r ) = B rnl
k =l

n

nlk
k

nlk

Σ

ywhere the Zernike coefficients, B , are given b

(3.38)������������������������������������������������������� n − k = even![(n +k )/2]
!

B = (−1)
[(n −k )/2]! [(k +l )/2]! [(k −l )/2]nlk

(n −k )/2

2 2 s

t

The Zernike polynomials are orthogonal within the unit circle x + y = 1. Figure 3.4 show

he Zernike polynomials through order 5 in the interval 0.0 ≤ r ≤ 1.0 for various values of l .

m

Notice that these polynomials have desirable dynamic range characteristics but become

ore correlated as the radius approaches 1.

sThe complex Zernike moment Z is defined anl

(3.39)����������� V (r , θ) f (r , θ) r dr d θ)(n +1
π

Z =nl
0

2π

0

∞

nl
*

w

∫ ∫

here * indicates the complex conjugate. Note that for the moments to be orthogonal, the

image must be scaled to be within a unit circle centered at the origin.

Zernike moments may be derived from conventional moments µ bypq

(3.40)
q
�����

m
l
��

B µj
����������� (−i )

��
)(n +1

π
Z =nl

k =l

n

j =0

q

m =0

l
m

nlk k −2j −l +m , 2j +l −mΣ Σ Σ

nk yZernike moments may be more easily derived from rotational moments [2] , D , b

(3.41)Z = B Dnl
k =l

n

nlk nkΣ

yAn approximate inverse transform for a set of moments through order N is given b

(3.42)f (x , y ) ∼∼ Z V (x , y )
n =0

N

l
nl nl

T

Σ Σ

o illustrate the rotational properties of Zernike moments, Teague showed that a dis-

tribution, f (r ,θ), rotated through an angle φ, results in the transformed moments

(3.43)����������� R (r ) e φ)f (r , θ − φ) r dr d θ)(n +1
π

Z ′ =nl
0

2π

0

∞

nl
(−il

which is equivalent to

∫ ∫
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(3.44)Z ′ = Z enl nl
−il φ

a

p

Under a rotation transformation, the angle of rotation of the Zernike moments is simply

hase factor. Like rotational moments, however, the disadvantage of Zernike moments is

the complex translation transformation.

Boyce and Hossack [17] demonstrated the effectiveness of image construction using

e

m

Zernike moments. A 64 × 64 by 256 grey-level image was reconstructed using Zernik

oments of increasing order. The normalized squared error between the original, f (x , y ),

and then reconstructed, f ′(x , y ), images was computed using

(3.45)� �����������������������������������������������

�
��

� f (x , y ) − f ′(x , y )

)
error =

f (x , y ) f ′(x , y
x ,y

2

x ,y

2

x ,y

2

√Σ Σ

I

Σ

t was shown that Zernike moments of order 6 were sufficient to reconstruct the image with

n

w

an error of 10%. Utilizing Zernike moments through order 20 resulted in a reconstructio

ith an error of 6%.

Khotanzad and Hong [2021] present a set of rotationally invariant features based on

e

m

the magnitudes of the Zernike moments. As shown in (3.44), the rotation of Zernik

oments only causes a phase shift. Therefore, the magnitudes of the Zernike moments

remain invariant under rotation.

To determine the order of Zernike moment required for object representation, increas-

l

a

ing order moments were used to reconstruct an object until the error between the origina

nd reconstructed object images was below a preselected threshold. The Hamming distance

t

was used as the dissimilarity measure. Additionally, this technique can be used to identify

he contribution of the ith order moments to object representation. It was shown that the

m

information content of the moments may be inferred by comparing the reconstructions from

oments inclusive and exclusive of a specific moment order.

-

a

Experimental results demonstrated 99% recognition rate on a set of 24 English char

cters using 23 Zernike features and nearest neighbor classification. In comparison,

h

moment invariants allowed only 87% accuracy. A second experiment utilized 10 classes of

and printed numerals. Using 47 features, an 84% classification accuracy was achieved.

With noisy data, Zernike moments are described as good for SNR of 25 dB.

In other work, Khotanzad and Lu [22] utilized Zernike moment based features with a

-

d

neural network classifier. The neural network was a multi-layer perceptron with one hid

en layer. Back projection was used for network training. The neural network was com-

i

pared with nearest-neighbor, Bayes, and minimum-mean distance. Additionally, moment

nvariants and Zernike moments of varying order were compared. Experimental results

demonstrated that the neural net outperforms the competing classifiers, especially for low
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.SNR images. Additionally, Zernike moments are shown to outperform moment invariants

Belkasim, Shridhar, and Ahmadi [23] derived a generalized form of Zernike moment

o

invariant (ZMI) for the nth order. These invariants are based on the rotational properties

f Zernike moments shown in (3.44).

The primary invariants are given by

(3.46a)ZMI = Zn 0 n 0

(3.46b)ZMI =
�� Z

��
nL nL

And the secondary invariants are given by

(3.46c)ZMI =
��
Z Z

��
±
��
Z Z

��
n ,n +z mh

*
nL
p

mh
*

nL
p

*

H

T

where h ≤ L , m ≤ n , p = h /L , 0 ≤ p ≤ 1, z = L /

he number of independent ZMI of order n is n +1 and are defined for odd and even n

f

as

or n even :

(3.47a)ZMI and ZMI for L = 2,4,6,...,nn 0 nL

(3.47b)ZMI = 2
�� Z

�� �� Z
�� cos(p φ −φ ) for L = 4,6,8,...,n p = 2/L z = L /2n ,n +z n 2 nL
p

nL n 2

(3.47c)ZMI = 2
�� Z

�� �� Z
�� cos(φ −φ )n ,n +1 n −2,2 n 2 n −2,2 n 2

for n odd :

(3.48a)ZMI =
�� Z for L = 1,3,5,...,nnL nL

(3.48b)ZMI = 2
�� Z

�� �� Z
�� cos(p φ −φ ) for L = 3,5,7,...,n p = 1/Ln ,n +L n 1 nL
p

nL n 1

(3.48c)ZMI = 2
�� Z

�� cos(φ −φ )n ,n +1 n −2,1 n −2,1 n 1

.Analogous invariants were also derived for pseudo-Zernike moments

A normalization technique is described that is claimed to reduce dynamic range and

information redundancy. The normalized Zernike moments (NZM) are given by

(3.49a)� ����������� for Z ≠ 0 and L < n
Z

NZM =
ZnL

n −2,L

nL
n −2,L
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(3.49b)NZM = Z for Z = 0 or L = nnL nL n −2,L

-

n

Experimental results showed normalized Zernike moment invariants outperform Zer

ike, pseudo-Zernike, Teague-Zernike [2], and moment invariants.

3.3.3. Pseudo-Zernike Moments

Teh and Chin [24] presented a modification of Teague’s Zernike moment based on a

-

a

related set of orthogonal polynomials that have properties analogous to Zernike polynomi

ls. These polynomials, called pseudo-Zernike polynomials, differ from the conventional

Zernike in definition of the radial polynomial R . The pseudo-Zernike radial polynomialsnl

are defined by

(3.50)� ����������������������������������������������� r n = 0, 1, 2,..., ∞ 0 ≤ l ≤ n!(2n +1−m )
!

R (r ) = (−1)
m ! (n −l −m )! (n +l +1−m )nl

m =0

n −l
m n −mΣ

2 f

d

The set of pseudo-Zernike polynomials contains (n + 1) linearly independent polynomials o

egree ≤ n , while the set of Zernike polynomials contain only 1⁄2 (n + 1)(n + 2) linearly

o

independent polynomials. Figure 3.5ab shows the pseudo-Zernike polynomials through

rder 5 for l = 0,1. These polynomials exhibit a wider dynamic range than conventional

.

M

Zernike polynomials and similarily become more correlated as the radius approaches 1

oments based on pseudo-Zernike polynomials were theoretically shown to be less sensitive

to noise than the conventional Zernike moments.

Belkasim, Shridhar, and Ahmadi [23] derived a generalized form of an nth-order

d

pseudo-Zernike moment invariant. These moment invariants are analogous to invariants

erived for Zernike moments described in the previous section. As with the Zernike

w

moments, a normalization scheme that reduces dynamic range and information redundancy

as also described.

s3.4. Complex Moment

The method of Complex moments, presented by Abu-Mostafa and Psaltis [25] is based

-

w

on yet another alternative to the moment definition and provides a simple and straightfor

ard technique for deriving a set of invariant moments.

s3.4.1. Two-Dimensional Complex Moment Invariant

The two-dimensional complex moment, C , of order, (p , q ), is defined bypq

(3.51)C ≡ (x + iy ) (x − iy ) f (x , y ) dx dypq
−∞

∞

−∞

∞
p q∫ ∫

pp pq -

g

If f (x , y ) is non-negative real then C is non-negative real and C is the complex conju

ate of C . Complex moments may be expressed as a linear combination of conventionalqp
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moments by

(3.52a)q
��

(−1) x (iy ) f (x , y ) dx dys
p
��

x (iy )
��

rC =
��

∫ ∫pq
−∞

∞

−∞

∞

r =0

p
r p −r

s =0

q
q −s s q −sΣ Σ

(3.52b)
q
��

x (iy ) (−1) (i ) ms
p
�����

rC =
��

pq
r =0

p

s =0

q
r p −r q −s (p +q )−(r +s )

r +s ,(p +q )−(r +s )Σ Σ

mWhen considered in polar for

(3.53)C ≡ r e f (r ,θ) r dr d θpq
0

2π

0

∞
p +q i (p −q )θ∫ ∫

ythe complex moments are related to rotational moments b

(3.54)C = Dpq p +q ,p −q

e

m

and may also be shown to be related to Zernike moments. Like rotational and Zernik

oments, the result of a rotation of angle φ is defined as

(3.55)C ′ = C epq pq
−i (p −q )φ

-

mula

Moment invariants may be derived from complex moments using the following for

(3.56)(C C + C C ) where (r − s ) + k (t − u ) = 0rs tu
k

sr ut
k

This combination of complex moments cancels both the imaginary moment and the rota-

tional phase factor thus providing real-valued rotation invariants.

Abu-Mostafa and Psaltis [25] utilized complex moments to analyze the informational

d

properties of moment invariants to arrive at a theoretical measure of moments ability to

istinguish between patterns. Information loss, suppression, and redundancy in moment

t

m

invariants were considered and compared with Zernike moments. It was determined tha

oment invariants suffer from all of the above, while Zernike moments mainly suffer only

i

from information loss. From this, they concluded that moment invariants are not good

mage features, in general. They note, however, there are specific instances when perfor-

mance is not degraded by these informational properties.

In other work, Abu-Mostafa and Psaltis [26] investigated the use of moments in a gen-

t

eralized image normalization scheme for invariant pattern recognition. They first redefined

he classical image normalizations of size, position, rotation (principal axis), and contrast, in

-

c

terms of complex moments. They then systematically extended the normalization pro

edures to higher orders of complex moments. Moment invariants were shown to be deriv-

able from complex moments of the normalized imagery.
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Abo-Zaid, Hinton, and Horne [14] presented an alternate technique for computing nor-

l

m

malized complex moments based on linear combinations of normalized conventiona

oments. They derived normalized complex moments from

(3.57)� ���������������
� �
� C

µ
µ

� �����
��
� µ +

1C =
µpq

norm

00 02 20

00 2
p +q� �������

pq
central

central
qw phere C are complex moments generated using equation (3.52b) with central

3

moments.

.4.2. Three-Dimensional Complex Moment Invariants

g

g

Lo and Don [27] presented a derivation of three-dimensional complex moments usin

roup representation theory. A vector of computing complex moments is computed from a

-

m

vector of conventional moments via a complex matrix that transforms between the mono

ial basis and the harmonic polynomial basis. A group-theoretic approach is then used to

s

a

construct three-dimensional moment invariants. Complex moments and moment invariant

re derived for second and third order moments using this technique.

3.5. Standard Moments

The first technique not based on algebraic invariants, standard moments, was intro-

s

duced by Reeves and Rostampour [28]. In general, this technique takes advantage of the

imple linear transform properties of moments and achieves invariance through image

3

feature normalization in the moment domain.

.5.1. Two-Dimensional Standard Moments

Two-dimensional standard moments are based on robust normalization criteria for

scale, position, orientation, and aspect ratio. Initially, a raw moment set, {m }, of desiredpq

n

t

order is computed from the given image silhouette using equation (2.02). The normalizatio

ransformations are then performed on the raw moment set to derive the standard moment

set, {M }. A description of each normalization follows.pq

Size normalization is achieved by transforming the moment set so that the resulting

moments represent the object image at a scale that makes the object area 1.

Translation normalization is achieved by transforming the moment set so that the

,

s

resulting moments represent an object whose origin is at a unique point within the image

pecifically, the center of gravity (central moments). This normalization results in a new

moment set with (M = M = 0).10 01

Rotation normalization is performed by rotating the moment set so that the moments

o

represent an object with its principal axes aligned with the coordinate axes. This is based

n Hu’s original idea of rotation normalization by Principal Axes. There are four possible
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otation angles that align the principal axes with the coordinate axes (φ + 1⁄2 n π). To deter-

l

a

mine a unique orientation of the principal axes, n is chosen such that the major principa

xis is aligned with the x-axis and the projection of the object onto the major axis is skewed

o

M

to the left. This is accomplished by constraining the rotationally transformed moments t

≥ M and M ≥ 0 respectively. In addition to the above constraints, the normalized20 02 30

11moment set has M = 0 since θ = 0. If reflection normalization is desired, an additional

constraint, M ≥ 0, may be imposed. This constraint causes the projection of the object03

onto the minor principal axis to be skewed towards the bottom.

e

a

Reeves and Rostampour [1528] utilized standard moments for global generic shap

nalysis. Four "ideal" symmetric generic shapes were selected; a rectangle, ellipse, dia-

fmond, and concave object. The kurtosis of the major axis (x-axis) projection, K , of each ox

these shapes was computed from standard moments using

(3.58)� ��������� − 3
M

K =
Mx

20
2

40

s

a

Additionally, the normalized length and width was determined for the first three shapes a

function of the second order moments. These values are given in table 3.1.

sTable 3.1. Kurtosis and Normalized Dimensions of Generic Shape
� �����������������������������������������������������������������������������������������

Shape K Length Widthx� �����������������������������������������������������������������������������������������
rectangle −1.2 12M 1/ 12M√

� ���������
√
� ���������

020 2

020 2
�

√
� ���������

√
� ���
M

d
ellipse −1.0 16M 1/π

iamond −0.6 24M 1/ 6M
�

√
� ���������

√
� �����

0

� concave >−0.6
20 2

�����������������������������������������������������������������������������������������
��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

-Standard moments, {M }, were computed for segmented test input images. The genpq

eral shape of the input object was determined from the kurtosis of the major axis projec-

n

tion. The length or width of an object was then estimated by multiplying the calculated

ormalized values by m . This technique was used successfully to distinguish between√
� �����

00

low resolution aerial views of buildings, a storage tank, and an airplane.

n

i

Reeves, Prokop, et.al [29]. demonstrated the technique of aspect ratio normalizatio

n order to improve the behavior of standard moments. It was observed that if the object

o

image coordinates were constrained to (−1.0 ≤ x ,y ≤ 1.0) (i.e. a 2 × 2 square centered at the

rigin), the magnitudes of the moments decrease as their order increased. Additionally, if

the moment set is size normalized with (M = 1) then all the moments have a magnitude00

≤ 1. Aspect ratio normalization is an attempt to meet these constraints by changing the

s

e

ellipsoid of inertia of the object to a circle while leaving the object area unchanged. This i

quivalent to differentially scaling the object so that the transformed moments are

sM = M and M = 1 respectively. Improved representation performance wa20 02 00
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demonstrated through aspect ratio normalization. Additionally, the aspect ratio was util-

S

ized as a highly discriminating object feature. In summary, the low-order moments of a

tandard Moment Set have the values given in table 3.2.

sTable 3.2. Two-Dimensional Standard Moment� ���������������������������������������������������������������������� Standard Moment Normalization���������������������������������������������������������������������
M = 1 area00

10M = 0 x - translation
nM = 0 y - translatio01

11M = 0 rotation
nM ≥ M rotatio20 02

30M ≥ 0 rotation
oM = M aspect rati20 02� �����������������������������������������������������������������������

��
��
��
��

��
��
��
��
��

��
��
��
��
��

3.5.2. Grey-Level Standard Moments

Reeves [15] defines the grey-level moments, {m }, of order (p +q +r ), of an image,

f (x , y ), as
pqr

(3.59)m = x y f (x , y ) dx dypqr
−∞

∞

−∞

∞
p q r∫ ∫

pqr d

c

A complete moment set of order n consists of all moments, m , such that p +q +r ≤ n an

ontains 1/6 (n +1)(n +2)(n +3) elements. (Note that the set {m } are the silhouette

m pq 1

pq 0

oments and the set {m } are the moments of the grey-levels.)

-

t

Since the grey-levels may have an arbitrary mean and variance due to the illumina

ion and sensor characteristics, they must be normalized with respect to these values. Nor-

-

t

malization of the moments requires operations to offset and scale the grey-levels. The addi

ion of a bias, α, to the grey-levels (translation in the z direction) is defined by

(3.60)m ′ = x y (α + f (x , y )) dx dypqr
p q r∫ ∫

(3.61)m ′ =
��
s
r�� α mpqr

s =0

r
r −s

pqs

A

Σ

scale change of the grey-levels by a factor β (scaling in the z dimension) is defined by

(3.62)m ′ = x y (β f (x , y )) dx dypqr
p q r∫ ∫

(3.63)m ′ = β mpqr
r

pqr

g yThe grey-level mean of the image segment, M��� , is given b
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(3.64)���������m
m

M
���

=g
001

000

g yand the variance, V , is given b

(3.65)���������m
m

V =g
000

002

gg
�

√
� �

)

a

The grey-level moments are normalized with α = −M
���

and β = V using equations (2.57

nd (2.59) respectively. Grey-level standard moments have values shown in table 3.3.

Table 3.3. Grey-Level Standard Moment Values�����������������������������������������������������������������������
� Standard Moment Normalization���������������������������������������������������������������������

M = 0 mean001

002M = 1 variance �

���������������������������������������������������������������������������
��

��
��

s

a

Taylor and Reeves [4] extended the grey-level moment transforms to include rotation

bout the x and y axes. In terms of grey-level standard moments, M , a positive rotation,

θx

pqr

, of the coordinate system about the x axis is given by the transform

(3.66)
q�	�
�

w
r �	 (−1) (cos θ ) (sin θ ) MsM ′ = 
�

pqr
s =0

q

w =0

r
s

x
q −s +w

x
s +r −w

p ,q −s +r −w ,s +w

A y

Σ Σ

positive rotation, θ , of the coordinate system about the y axis is given by the transform

(3.67)
p�	�
�

w
r �	 (−1) (cos θ ) (sin θ ) MsM ′ = 
�

pqr
s =0

p

w =0

r
r −w

y
p −s +w

y
s +r −w

p −s +r −w ,q ,s +wΣ Σ

s3.5.3. Range Standard Moment

Reeves and Wittner [30] used standard moments to represent 21⁄2-dimensional imagery

,

o

derived from a range sensor. The technique requires computation of two sets of moments

ne for the range image and a second for a silhouette of the image. First, a standard

-moment set, {S }, is computed from the raw silhouette moments. The transform paramepq

ters computed for the silhouette moments are then used to normalize the raw range

,moments. In this way, the object represented by the normalized range moment set, {R }pq

.

A

will be consistent with the object represented by the normalized silhouette moment set

dditionally, it is assumed that the depth dimension of the range image is of the same scale

t

as the width and height of the image. Therefore, to keep the image depth consistent with

he width and height, the scale factor used for size normalization is also used to scale the

c

depth dimension of the range moments. Scaling the depth is equivalent to an intensity

hange and is accomplished using equation (2.18). The range data, however, requires the

further normalization of image volume and position in the depth (z ) dimension.
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Reeves, Prokop, and Taylor [31] presented a range normalization method that

-

t

accounts for both depth position and volume and is easily implemented with the informa

ion at hand. A robust representation for the entire object is contrived using a reasonable

t

and consistent set of assumptions about the occluded part of object. First, it is assumed

hat the back of the object is flat and parallel to the image plane. In addition, it is assumed

g

b

that the cross-section of the occluded part of the object has the same shape as the occludin

oundary. Finally, it is assumed that the occluded part has a depth (intensity) represented

a

r

by α. Figure 3.6 illustrates these assumptions. The top of this figure is an example of

anged sensed object. For this view the range sensor is at z = ∞. Note that the coordinate

l

o

axis are drawn only for direction reference, no assumption is made concerning the actua

bject position in space. The lower part of figure 3.6 is the assumed cross-section of the

object at the x axis.

Based on the given assumptions, the moments for the visible part of the object are R q

pq

p

e

e

and the moments for the occluded part of the object are {α S }. The moments for th

ntire contrived object are given by

(3.68)M = R + α Spq pq pq

e

(

Volume normalization is accomplished by computing α in the above expression to mak

M = 1). Depth position normalization is accomplished by setting the origin of the depth

d
00

imension to the assumed back of the object.

s3.5.4. Three-Dimensional Standard Moment

Reeves and Wittner [30] also extended standard moments to represent objects defined

e

m

in three-dimensional space. Note that this differs from range moments in that rang

oments represent the object shape and surface characteristics while three-dimensional

t

moments represent internal information about an object. The three-dimensional analogies

o the two-dimensional silhouette and range moments are referred to as solid and density

moments, respectively.

The three-dimensional Cartesian moment, m , of order, (p +q +r ), is defined bypqr

(3.69)m ≡ x y z f (x , y , z ) dx dy dzpqr
−∞

∞

−∞

∞

−∞

∞
p q r

S

∫ ∫ ∫

olid moments are generated when the object description is binary (i.e. f (x , y , z ) = 1

w

within the object and f (x , y , z ) = 0 outside the object). Density moments are generated

hen the object function represents an object with a varying internal density distribution.

s

a

The properties, transformations, and normalizations of three dimensional moment

re completely analogous to the two-dimensional case. Consequently, a three dimensional

standard moment may be defined for solid moments as for silhouette moments. The three
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.dimensional standard moment set has the low order moment values given in table 3.4

Table 3.4. Three-Dimensional Standard Moment Values
���������������������������������������������������������������������������������
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M = 1 volume
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o

Note that aspect ratio normalization had not been defined for moments when this work wa

riginally presented. However, the analogous 3-dimensional requirement for aspect ratio

normalization would be

M = M = M = 0

A

200 020 002

s of this point, a normalization technique for density moments, the-three dimensional

analogy to range normalization, has not yet been explored.

Reeves and Wittner also conducted three-dimensional generic shape analysis experi-

l

c

ments similar to those presented in previous work [28]. Analogous to the two-dimensiona

ase, the moment set {M } is the set of moments of a projection of a three-dimensional

s
p 00

hape onto the x axis. The kurtosis in each dimension is defined by

(3.70abc)� ������� − 3
S
S

� ������� − 3 K =
S
S

��������� − 3 K =
S
S

K =x
3d

200

4
2
00

y
3d

020

0
2
40

z
3d

002

0
2
04

r

w

The generic shapes under consideration were a rectangular solid and an elliptical cylinde

ith a resolution of 32 × 32 × 32. Standard moments and a weighted Euclidean

t

w

classification scheme were used to distinguish between fifty random views of each objec

ith 100% accuracy. Kurtosis values of the shapes were then used to estimate the object

dimensions. It was noted that the relative deviation (standard deviation / mean) for M 020

w 200 002as more that ten times greater than for S and S . This is attributed to the fact that

s

a rotation about the major or minor principal axis of a three dimensional rigid body is

table while rotation about an intermediate principal axis is unstable. This effect was also

r

reflected in the kurtosis values. While kurtosis in the x and z dimensions was stable and a

obust predictor of the basic shape of the object, the kurtosis in the y dimension was con-

siderably smaller than the ideal values in all tests.
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4. Fast Moment Computation

In each of the principal moment techniques, a significant amount of computation is

required to generate the original moment values, {m }, from the imagery. To allowpq

-

c

moment techniques to be used in real-time image processing and object classification appli

ations, various special purpose architectures have been proposed for the fast calculation of

4

moments.

.1. Optical Moments

Optical moment calculation takes advantage of the relationship between moments and

-

b

the Fourier transform of a distribution. Specifically, the characteristic function of a distri

ution may be defined as

(4.01)Φ(u , v ) = f (x , y ) e dx dy
−∞

∞

−∞

∞
−i 2π(ux +vy )

w

∫ ∫

hich is the Fourier transform of f (x , y ). Furthermore, if moments of all orders exist,

then Φ(u , v ) may be also expressed as a power series in terms of moments, m , aspq

(4.02)� ����������������� u v m)(−i 2π
!

Φ(u , v ) =
p !qp =0

∞

q =0

∞ p +q
p q

pq

T

Σ Σ

eague [32] describes a system that calculates moments based on the derivatives of

,

F

the optically computed Fourier transform of an image. Given the Fourier transform

(ξ, η), of an image plane irradiance distribution, f (x , y ), the moments, m , may be com-

puted using
pq

(4.03a)�����
� �
� F (ξ, η)

� �
�∂

η
�����

� �
�

	�

 ∂

∂
ξ

� �����������������
��
�
	�

 ∂

1
)

m =
(−i 2πpq p +q

p q

ξ=η=0

(4.03b)� ����������������� ∆ ∆ F (ξ, η)1
)

∼∼
(−i 2π p +q ξ

p
η
q

ξ=η=0

k

o

Optical calculation of moments with this method requires a lens, phase plate and a networ

f mirrors, beam splitters, and detectors to determine the Fourier transform. The partial

t

derivatives are then estimated by the method of finite differences and measured by stra-

egic spacing of the detectors in the Fourier plane.

-

p

Casasent and Psaltis [33] describe a hybrid optical/digital processor that optically com

utes all the moments, {m } of a 2-dimensional image in parallel. A laser light passes

t
pq

hrough a transparency of an image, f (x , y ), then through a mask, g (x , y ), then through a

s

a

Fourier transform lens and the final pattern is collected in a photodetector. In thi

rrangement, the amplitude at the photo detector, u (ω , ω ), is given byx y
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(4.04)u (ω , ω ) = f (x , y ) g (x , y ) e dx dy∫ ∫x y
−j (ω x + ω y )x y

,A simple case to consider is the on-axis amplitude, u (0, 0)

(4.05)u (0, 0) = f (x , y ) g (x , y ) dx dy∫ ∫

Proper selection of the mask will cause the on-axis output to be a specific moment value.

For example, if g (x , y ) = xy , then the on-axis value will be m . Calculation of moments in11

t

a

this manner, however, would require a different mask for each moment value. Casasen

nd Psaltis propose a single mask function

(4.06)g (x , y ) = e exe ye
y

that results in a light pattern given by

j ω0x j ω0

(4.07)���������

m
!

u (p ω , q ω ) =
p !q0 0

pq

qp y

c

thus computing all the moments in parallel. Once the moments, m , have been opticall

omputed, digital processing is used to compute moment invariants.

-

t

Casasent, Pauly, and Fetterly [34], utilize the hybrid optical/digital moment genera

ion for classification of ships from infrared imagery. A new estimation approach is

m

presented motivated by statistical analysis that shows raw moments to be superior to

oment invariants for the task at hand.

Casasent, Cheatham, and Fetterly [35] utilize the hybrid optical/digital computation of

,

g

moments in a robotic pattern recognition system. In this work, a simpler mask function

(x , y ), is presented that may be used to generate moments of finite order. This mask is

m

based on translating the input function, f (x , y ), into the first quadrant so that all the

oments are positive. The positive and real mask is given by

(4.08)g (x , y ) = x y [B + cos(ω + p ω )x ][B + cos(ω + q ω )y ]
p =0

P

q =0

Q
p q

p 1 0 q 1 0

T

Σ Σ

he optical processor using this mask is referred to as a Finite-Order Cosine processor.

m

Note that the moments generated in this system are that of a shifted input function. The

oments of the original unshifted input function, however, may be obtained by simple

translation in the moment domain.

In other work, Cheatham, Casasent, and Fetterly [36] utilize the Finite-Order Cosine

,

a

processor scheme and present a recognition system that is invariant to scale, translation

nd in-plane rotational distortions.
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4.2. Hardware Architectures

Reeves [37] has proposed a parallel, mesh-connected SIMD computer architecture for

e

rapidly manipulating moment sets. This architecture is a triangular matrix of processing

lements, one for each moment value in a complete moment set of a given order. Each pro-

l

cessing element contains an ALU capable of both multiplication and addition, and some

ocal memory. Performance is characterized by computational cost, speedup and processor

-

e

utilization on the parallel moment computer for a host of moment operations including gen

ration, scaling, translation, rotation, reflection, and superposition. The architecture offers

m

a reasonable speedup over a single processor for high speed image analysis operations and

ay be implemented in VLSI technology.

Hatamian [38] , has proposed an algorithm and single chip VLSI implementation for

,

m

generating raw moments at video rates. It is claimed that 16 moments

(p = 0, 1, 2, 3, q = 0, 1, 2, 3) (a complete moment set of order 3 + additional higher

o
pq

rder moments), of a 512 × 512 × 8 bit image can be computed at 30 frames/sec. The

-

t

moment algorithm is based on using the one dimensional discrete moment generating func

ion as a digital filter. Z-transform analysis of the impulse response of this filter derives an

5

implementation that is a 2 dimensional array of single-pole digital filters.

. Moment Performance Comparisons

Teh and Chin [24] performed an extensive analysis and comparison of the most com-

c

mon moment definitions. Conventional, Legendre, Zernike, pseudo-Zernike, rotational, and

omplex moments were all examined in terms of noise sensitivity, information redundancy,

c

and image representation ability. Both analytic and experimental methods were used to

haracterize the various moment definitions.

In terms of sensitivity to additive random noise, in general, high order moments are

m

the most sensitive to noise. Among the explored techniques, it was concluded that complex

oments are least sensitive to noise while Legendre moments are most severely affected by

p

noise. In terms of information redundancy, orthogonal techniques (Legendre, Zernike, and

seudo-Zernike) are uncorrelated and thus have the least redundancy. In terms of overall

performance, Zernike and pseudo-Zernike proved to be the best.

An experimental comparison of moment techniques was performed by Reeves, Prokop,

a

et.al [29]. In this work, moment invariants, Legendre moments, standard moments, as well

s Fourier descriptors [39] were compared based on their performance as invariant features

s

w

for a standardized six airplane experiment. Note that the method of Fourier descriptor

as provided as a representative non-moment technique. The task involved the

i

classification of synthetically generated noiseless and noisy silhouette and/or boundary

mages of each of six aircraft viewed from 50 random angles as compared to a library of 500

sviews of each uniformly sampled over the entire viewing sphere. This experiment i
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considered to be representative of a difficult task since it involves a wide range of shapes

d

(given all possible views of an aircraft) yet the basic three-dimensional shapes of the

ifferent objects are very similar. Feature vectors for each object image were generated

d

t

utilizing the various techniques. A nearest-neighbor Euclidean distance classifier was use

o compare the feature vectors. Varing feature vector lengths were tested to determine the

7

minimum length for unique object representation. (Moment invariants were fixed at length

.)

Classification results showed that moment invariants were the least effective for this

s

F

task. Legendre moments performed better than moment invariants but not as well a

ourier descriptors. Fourier descriptors were shown to be adversely affected by noise.

o

Feature vectors defined from standard moments of silhouette imagery outperformed all

ther tested methods for both uncorrupted and noisy imagery.

-

i

In other work, Reeves, Prokop, et.al [31]. revised the six airplane experiment to util

ze a worst-case set of 252 unknown views that are evenly spaced about the viewing sphere

-

d

as well as being intersitually located between the library views. In addition, synthetic 21⁄2

imensional (range) imagery was generated to evaluate moment techniques that exploit

i

such information. A model of range noise was also developed to produce noisy range

magery.

Experimental results demonstrated that feature vectors comprised of a combination of

b

silhouette and range standard moments provided the best classification results as well as

eing robust in the presence of noise.

Cash and Hatamian [40], performed an extensive comparison of the effectiveness of

E

moment feature vector classification schemes including Euclidean distance, weighted

uclidean distance, cross correlation, and Mahanalobis distance. An optical machine-

-

n

printed character recognition task was performed utilizing feature vectors of size

ormalized, third order, central moments.

The highest classification rates were achieved using a cross correlation measure

l

f

weighted by the reciprocal of the mean of the intra-class standard deviations. For severa

ont classes the recognition rate was over 99%. Similar results were achieved for a

m

Euclidean distance measure using the same weight. It was noted that the Euclidean

ethod is probably more desirable of these two since it requires much less computation.

6. Conclusion

The method of moments provides a robust technique for decomposing an arbitrary

t

i

shape into a finite set of characterisitic features. A major strength of this approach is tha

t is based on a direct linear transformation with no application specific "heuristic" parame-

ters to determine.
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The moment techniques have an appealing mathematical simplicity and are very ver-

m

satile. They have been explored for a wide range of applications and image data types. A

ajor limitation of the moment approach is that it cannot be "tuned" to be sensitive to the

l

s

specific object features or constraints. Furthermore, it can only be directly applied to globa

hape identification tasks.

The principal moment techniques presented may be distinguished by four basic

p

characteristics. The first is the basis function used in the moment definition. The

resented techniques used a variety of orthogonal and non-orthogonal basis functions.

t

Second is the type of image sampling used; i.e., rectangular or polar. The applicability of

echniques to different forms of imagery is another important distinguishing feature.

t

Finally, whether invariance is achieved through algebraic invariants or feature normaliza-

ion may be considered. The characteristics of the principal techniques are summarized in

table 6.7.

Table 6.7. Moment techniques.
����������������������������������������������������������������������������������������������������������������������������������������������������������
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Moment Invariants monomials rect 2-D, 3-D

O
Rotational Moments circular harmonics polar 2-D

rthogonal Moments Legendre rect 2-D
D

p
Zernike polar 2-

seudo-Zernike polar 2-D
DComplex Moments circular harmonics rect polar 2-

spherical harmonics rect polar 3-D
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Note that all techniques utilize algebraic invariants except standard moments.

It is not clear from the studies conducted to date which technique is best for a given

n

t

application. Some studies have implied [2] that important information may be contained i

he higher order moments. Whereas, most practical experiments have shown little

o

improvement in identification performance when moment orders are increased beyond

rder 4 or 5 [2931]. In general, high order moments are more sensitive to noise.

t

a

There are few image feature techniques that can be directly compared to the momen

pproach. One technique that may be directly compared to moments for binary shape

t

b

identification is Fourier descriptors. The Fourier descriptors, which are based on the objec

oundary rather that the silhouette, may be shown to be more sensitive to more types of

f

s

boundary variations. However, for a practical application involving a large number o

hapes it is very difficult to predict which technique would provide the best performance

without performing empirical experiments.

Object identification using the moment method involves two stages (1) object charac-

terization and (2) object matching. This survey has focused on feature generation
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techniques. In many cases, object matching is achieved by a nearest neighbor approach

l

m

after, possibly, some preconditioning of the moment features. Once again, the optima

atching technique is application dependent. In general, moment techniques have proved

to be very effective for global recognition tasks involving rigid objects.
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