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Background
Artificial intelligence (AI) has seen rapid progress over the last few decades, made pos-
sible due to the ever increasing amount of computational power, novel algorithms and 
available data. This growing amount of data is witnessed across all industries, includ-
ing health care. All kinds of patient data are recorded and stored into electronic health 
records such as laboratory results, reports, DNA analysis, and activity and health data 
from wearables. A major volume of healthcare data comes from medical imaging. Due 
to advances in medical image acquisition, novel imaging procedures are introduced and 
the amount of diagnostic imaging procedures is growing fast [1]. From 2D X-rays in the 
early days, medical imaging evolved to multimodal, dynamic and 3D computed tomog-
raphy (CT), magnetic resonance imaging (MRI), single-photon emission computed 
tomography (SPECT) and positron emission tomography (PET) examinations. This ris-
ing amount and complexity of imaging data increases the workload of radiologists. The 
Royal College of Radiologists, for example, has warned of shortages in the radiology 
workforce growing every year [2]. Radiologists struggle to meet the rising demand for 
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imaging examinations resulting in delayed diagnoses and potentially affecting the accu-
racy of clinical decisions.

At the same time, the increasing amount of healthcare data contains a wealth of infor-
mation that presents opportunities for personalized and precision medicine. As the 
huge amount of data is overwhelming for physicians, we need sophisticated AI algo-
rithms to exploit all this information. A key requirement to develop these AI algorithms 
is sufficient training data. Hence, the rising amount of healthcare data not only exerts 
great pressure on the medical industry, but simultaneously provides the opportunity to 
revolutionize health care. In the case of medical imaging, artificial intelligence can be 
employed to improve the entire imaging pipeline. This is also reflected in the amount 
of publications about AI in radiology on PubMed as shown in Fig. 1. AI can be applied 
during image acquisition and reconstruction to advance image quality, acquisition speed 
and reduce costs. Moreover, it can be used for image denoising, registration and trans-
lation between different modalities. Finally, a lot of AI applications are developed for 
medical image analysis including abnormality detection, segmentation and computer-
aided diagnosis.

Medical image analysis is, however, complex. The imaging data are often 3D which 
adds an additional dimension of complexity. They can have large variations in resolution, 
contain noise and artifacts, and lack contrast which influences the performance of AI 
algorithms. Many applications also require information from multiple images combin-
ing different contrasts, functional and anatomical information or temporal behavior. All 
these elements pose specific challenges to the design of medical image analysis tools. 
Moreover, detection, segmentation and interpretation of anatomical structures, both 
normal and pathological, are inherently very complex. They have varying shapes, inten-
sities and show large inter- and intra-subject variability. AI systems need to be robust to 
perform well under this wide variety of conditions.

In this article, we provide a review of different deep learning methodologies used 
in nuclear medicine and radiology. Section "Deep learning" provides a technical 

Fig. 1 Growth of AI in radiology reflected by the number of publications on PubMed when searching on the 
terms “radiology” with “artificial intelligence,” “machine learning” or “deep learning”
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background on deep learning and the general training procedure, with special attention 
given to a specific type of network used in image related tasks: the convolutional neu-
ral network. In section "Medical image acquisition and reconstruction," we take a look 
at how deep learning can be utilized throughout the image acquisition pipeline, from 
improving detector capabilities to dedicated post-processing procedures. Section "Medi-
cal image analysis" provides an overview of how deep learning can help with image anal-
ysis, including image segmentation and disease detection/diagnosis. Finally, we finish 
with some concluding remarks in section "Conclusions."

Deep learning
This section serves as a short introduction to the domain of deep learning, covering 
some background and terminology which will be relevant for the rest of the article. For a 
more in-depth review, we refer the reader to [3]. Deep learning is a subtype of machine 
learning, a collective term for algorithms that are trained using example data or past 
experiences to perform a specific task without the need to be explicitly programmed. 
Figure  2 shows a schematic overview of different machine learning components illus-
trated with a brain tumor detection example. Based on the type of example data and 
available information, we can define different types of machine and deep learning.

Supervised learning In supervised learning, the most common type of machine learn-
ing, example data consist of known input–output pairs. Labeled data are available, and 

Fig. 2 Schematic overview of different machine learning components and their interaction for a brain tumor 
detection example. A model, defined up to some parameters, receives a brain MRI as input and needs to 
provide as output whether the brain scan shows a tumor or not. Based on example data, i.e., labeled brain 
MRI, a learning algorithm optimizes the model parameters to improve a certain performance measure. When 
training is finished and the model achieves sufficient performance, it can be used to detect tumors in new 
MRI scans
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the model is trained such that its output is as close as possible to the desired label for 
every input. After training, the model can be applied to new unlabeled input data.

Unsupervised learning The second type of machine learning is unsupervised learning, 
where no output labels are available. The aim is to find hidden structure in the input 
data, for example, clustering algorithms that divide the data into groups of similar 
inputs.

Reinforcement learning  The final type of learning is often used in game playing or 
robot control and is called reinforcement learning [4]. Here, an artificial agent learns 
a policy on which actions to take in an environment in order to reach a certain goal or 
maximize a cumulative reward. There is not one sequence of best actions, but an action 
is good if it is part of a good policy that in the end leads to a maximal reward. The agent 
explores the environment and possible actions using trial and error. Based on past good 
action sequences, the agent can learn a good policy.

Artificial neural networks

Deep learning is inspired by the biological functioning of the brain, in which networks of 
simple interconnected processing units called neurons are used to model complex func-
tions [5, 6]. These artificial neurons or perceptrons take an input x = [x1, x2, ..., xN ] , mul-
tiply it with weights w = [w1,w2, ...,wn] and sum these weighted inputs with a possible 
bias b. This result is then passed through an activation function f to produce an output y 
[7]:

Multiple neurons can be connected in layers to form a neural network, where the out-
puts of one layer serve as the inputs to the following layer, producing a mapping from 
input to output, see Fig. 3. The role of activation functions is to introduce nonlineari-
ties in the network, required to model nonlinear relationships between input and out-
put. A common activation function is the rectified linear unit (ReLU) [8], which simply 
sets negative output values to zero. Other popular activation functions are the sigmoid, 
hyperbolic tangent and leaky ReLU [9].

(1)y = f

(
N∑

i=1

wixi + b

)

Fig. 3 Schematic of a fully connected neural network. left : An artificial neuron or perceptron, where the 
output y is calculated as a sum of weighted inputs x = [x1, x2, ..., xn] (with weights w = [w1,w2, ...,wn] ) and 
a bias b, optionally passed through an activation function f. right : The fully connected neural network is 
created by connecting these neurons into many layers, where the outputs of one layer serve as the inputs to 
the following layer. The network depicted here consists of N inputs and M outputs
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Training procedure

The goal of training a neural network is to find weights wi and biases b for each neuron 
so that the network correctly transforms the input data into the desired output. This is 
normally done using gradient descent-based methods. The weights are first randomly 
initialized and then iteratively optimized in three steps: forward propagation, backward 
propagation and a weight update. During forward propagation, input samples, usually 
grouped in batches, are propagated from the input, through the hidden layers to the out-
put layer of the network. A performance metric or loss is calculated between the output 
predictions and the ground truth labels. This loss is then back-propagated from the out-
put layer to the input where, at every layer, the gradient of the loss with respect to the 
weights is computed using the chain rule [10]. The weights are then updated using the 
negative gradient with a certain step size or learning rate. Many gradient descent-based 
methods exist, with a popular and robust optimization algorithm being the adaptive 
moment estimation (Adam) algorithm [11]. It uses a combination of momentum and 
adaptive learning rates for individual parameters, resulting in generally faster conver-
gence speeds than standard stochastic gradient descent.

In addition to the learnable network weights and biases, there is also a large amount 
of hyper-parameters which need to be set prior to network training. These include the 
network architecture and size, choice of activation function, choice of optimization algo-
rithm, batch size, learning rate, etc. Many of these parameters can have a large impact on 
convergence speed and final network performance and need to be fine-tuned. This has 
also led to the development of algorithms to facilitate and automate the optimization of 
hyper-parameters [12].

Convolutional networks

The network shown in Fig. 3 is a fully connected network, where all neurons of one layer 
are connected to all neurons of the following layer. When dealing with structured input 
data, however, such as 2D or 3D images in nuclear medicine, convolutional neural net-
works (CNNs) [13] are commonly used instead. We will further discuss these using a 
specific example from supervised learning: a CNN for brain tumor classification in MRI 
[14]. In this study, T1-weighted contrast enhanced MR image slices showing a brain 
tumor are used as the input for a CNN, predicting a tumor classification (tumor type or 
grade). The network architecture is depicted in Fig. 4, where we can distinguish several 
layers, each serving a specific role.

Convolutional layers We notice three convolutional layers throughout the network. 
These layers consist of several kernels, containing the trainable weights or parameters of 

Fig. 4 Network architecture used in [14] for brain tumor classification in MRI
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the layer, that are convolved with the input. They have the same number of dimensions as 
the input with an equal depth, but are usually much smaller in the other dimensions. The 
kernel size determines their receptive field. Figure 5 illustrates a 2D convolutional opera-
tion with a depth of 1. The kernel size is set to a width and height equal to 3 resulting in a 
receptive field of 3× 3 . The kernel slides over the entire input with a predefined step size 
or stride, and at every position, a dot product is performed between the kernel and the 
current input patch. This way, a feature map is created containing the output responses of 
the kernel at every spatial position. Every convolutional layer consists of several kernels 
and produces an equal amount of feature maps. The motivation behind using convolu-
tional layers is twofold: sparse connectivity and parameter sharing.

Sparse connectivity means that, in contrast to fully connected layers, the output neu-
rons are not connected to all input units. Input images can contain millions of pixels, so 
instead of connecting a neuron with every input pixel, relevant features such as edges 
can be detected using kernels that are much smaller than the input. Although the recep-
tive field of each kernel is small, deeper layers that interact with multiple outputs of ear-
lier layers have an increasingly large receptive field with respect to the input. This allows 
the network to model complex interactions between simple building blocks across the 
input.

Parameter sharing denotes that the same kernel is used multiple times across the 
entire input, while in a fully connected network each weight is only used once. Conse-
quently, a feature only needs to be learned once instead of multiple times for every loca-
tion. Parameter sharing also causes a convolutional layer to be translational equivariant. 
This means that, if the input is translated, the output translates in the same way. This is 
especially useful when features, which detect edges for example, are relevant across the 
entire input. Moreover, because of parameter sharing, the input size does not have to be 
fixed which allows to process inputs with varying sizes.

Sparse connectivity and parameter sharing result in a large reduction in number of 
parameters which improves statistical efficiency and reduces memory requirements and 
amount of computations [3].

Fully connected layers In our example, we see a single fully connected layer after the 
convolutional blocks. One or more of these are normally applied to the end of a CNN in 
specific tasks such as classification or regression problems. They use the features extracted 
by the convolutional layers to determine the final output. Hence, the convolutional layers 

Fig. 5 Illustration of a convolution operation between a 2D input and a kernel with size = 3 and stride = 1
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are generally seen as the feature extractors of the CNN and the fully connected layers as 
the classifier or regressor.

Activation layers  There are two different activations used in Fig. 4. The first is a ReLU 
activation following the convolutional layers, whose role is to introduce nonlinearities 
in the network. The final activation, however, serves a different purpose. It is a softmax 
layer that produces the final output, ensuring that the values remain contained within 
the desired range. Since we are dealing with a multi-classification problem, the softmax 
layer produces output values between 0 and 1 (one output value for each class), repre-
senting the probability of belonging to that particular class. It also ensures that the sum 
of output values equals 1. Different output activation functions may be used depending 
on the problem, e.g., a sigmoid activation in the case of binary classification, no activa-
tion in the case of a regression, or a clipping function in the case of image outputs where 
all pixels should be between 0 and 1.

Pooling layers Pooling or subsampling layers reduce the size of the input by calculating 
summary statistics over a predefined neighborhood. As the number of parameters in the 
next layers depends on the input size, pooling allows to improve the computational effi-
ciency and reduce memory requirements. Our specific example used max-pooling lay-
ers, but different statistics such as average pooling are also possible. The neighborhood 
size is usually set to 2× 2 , effectively reducing the input size by half. Alternatively, the 
pooling operation can also be performed using convolutional layers with a stride larger 
than one.

Normalization layers   The weights of every layer are updated based on the assump-
tion that the other layers do not change. Changes to the early layers will, however, affect 
the deeper layers. To minimize this effect, a normalization can be introduced, ensuring 
that the input of each layer is re-normalized to zero mean and unit variance. Our exam-
ple uses a cross-channel or local response normalization layer (normalization across the 
features in a single training example), but another popular choice is batch normalization 
(normalization across the different samples of a feature in a single training batch) [15]. 
These normalization layers can be used after any convolutional or fully connected layer, 
either right before or after the activation layer.

Dropout layers A dropout layer randomly sets input elements to zero during training, 
but does nothing during testing. This is done as a form of regularization and will be dis-
cussed in more detail in the following section.

Generalization and regularization

The versatility of deep learning lies behind the universal approximation theorem, stat-
ing that feedforward networks with at least one hidden layer, using a nonlinear activa-
tion and a linear output layer, can approximate any continuous function [16, 17]. That 
is, these deep learning models should be able to fit any sufficiently well-behaved training 
data to arbitrary precision by expanding the hidden layer size, thereby allowing the net-
work to model increasingly complex functions. One of the main challenges in machine 
learning is, however, to train a model that not only performs well on training data, but 
also on new, unseen data. This is called generalization. To assess the generalization per-
formance of a model, the available data are typically split into a training, validation and 
test set. The training set is used to optimize the model weights, whereas the validation 
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set is used to evaluate the generalization performance of the model during training. 
Hence, no weights of the model are optimized using validation data but the model 
hyper-parameters are tuned to minimize the validation error. After training the model is 
finally evaluated on the test set to assess the predictive power on unseen samples.

One way to achieve generalization in deep learning is to reduce the model capacity 
by, e.g., limiting the number of neurons or layers in the network. When a model is too 
complex, it can have a tendency to overfit on the training data, resulting in poor test 
performance. Reducing the model capacity too much is, however, also detrimental, as 
the model will underfit and result in poor performance on both training and test sets. In 
practice, it is often beneficial to use deeper models with less neurons per layer to achieve 
better generalization without underfitting.

Instead of changing the variety of functions that the model can represent, we can also 
incorporate a preference toward certain functions to limit the amount of overfitting. 
This is called regularization or “Regularization is any modification we make to a learn-
ing algorithm that is intended to reduce its generalization error but not its training error” 
[3]. We will now discuss a number of regularization techniques applicable to deep neural 
networks.

Data augmentation  The best strategy to reduce overfitting is to train the model on 
more data. Of course, in practice the amount of available training data is limited and it is 
not always possible to collect new additional data, especially in a medical context where 
data annotation is labor-intensive and requires expert knowledge. Data augmentation 
allows to artificially create new data samples based on the existing training set [18]. 
Most data augmentation techniques are based on transformations or alterations that the 
model should be invariant to. For example, the aforementioned brain tumor classifica-
tion example used up–down flipping, left–right mirroring, addition of salt noise and 45◦ 
rotations for data augmentation.

Early stopping When training neural networks, we typically observe a behavior where 
the training error steadily keeps decreasing while the validation error starts to increase 
again after some time. Therefore, instead of training a neural network for a fixed num-
ber of iterations, it can be beneficial to monitor the validation error during training and 
terminate the training process when no further improvement of the validation loss is 
observed for a predefined number of iterations. The optimal network state is then cho-
sen at the point in time where validation error was lowest. This strategy is known as 
early stopping.

Dropout Another regularization technique, effective in a lot of application domains, 
is dropout [19, 20]. Here neurons of the network are randomly dropped during train-
ing with a certain probability. Hence, for every sample in the mini-batch, different units 
are set to zero and a different subnetwork is created. Therefore, dropout can be thought 
of as a way to create and train an ensemble of many subnetworks and thereby improve 
the generalization performance. Another view on why dropout has a regularizing effect 
is that it prevents coadaptation of different neurons. By removing different neurons at 
every iteration, neurons that are included should perform well regardless of which other 
neurons are included in the network. Hence, it forces the neurons to be relevant in many 
contexts. Our example in Fig. 4 used two dropout layers, with dropout probabilities of 
10% and 20%.



Page 9 of 46Decuyper et al. EJNMMI Physics            (2021) 8:81  

Cost function penalty  Different cost functions are used for different prediction 
tasks; for example, the cross-entropy loss is commonly used for multi-classification 
problems. Our brain tumor classification example, however, added an additional pen-
alty term to the cost function, namely the l2 norm of the layer weights wi . This has 
a regularizing effect, as the training procedure now results in overall lower weight 
values, leading to a simpler, and therefore more generalizable, model. The l1 norm is 
another commonly used cost function penalty, promoting sparser solutions.

Transfer learning  Transfer learning refers to techniques where knowledge learned 
from one task is transferred to another task instead of training a network from 
scratch [21]. It is expected that features learned to identify, for example, cats and dogs 
in images can be applied to other image recognition tasks as well. This is especially 
useful in case only a small amount of data is available for the new target task. Through 
the use of a good starting point, i.e., a network pretrained on a different related task 
for which a lot of data are available, high performances can be achieved with only a 
limited amount of data.

Key architectures for medical imaging

To conclude this introductory section to deep learning, we will discuss a selection of 
key CNN architectures prevalent in medical imaging applications, which will often be 
referred to throughout the rest of this paper.

ResNet

The ResNet architecture was proposed for image classification tasks [22]. Earlier works 
indicate that increasing network depth strongly improves the image recognition capac-
ity. It was found, however, that when further adding additional convolutional layers the 
training accuracy saturated and even started to degrade. As this behavior was observed 
on the training accuracy, it was not caused by overfitting. This shows that current opti-
mizers find it hard to train increasingly deep networks. A deeper model that performs 
equally well as its shallower counterpart should exist, as it can be constructed by adding 
layers performing an identity mapping to the shallow network. Based on this idea, skip 
connections or residual blocks were introduced in [22]. The residual block is depicted 
in Fig. 6. Instead of directly learning the underlying mapping G(x), the layers learn the 
residual F(x) = G(x)− x due to the skip connection. Their results show that it is easier 

Fig. 6 Illustration of a residual block
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to optimize the residual function than the original mapping. Hence, skip connections 
allow for better optimization of deeper networks.

U‑Net

In 2015, U-Net was proposed as a biomedical image segmentation architecture [23]. 
The authors employed the architecture in several segmentation challenges such as seg-
menting neuronal structures in electron microscopy stacks or cell segmentation in light 
microscopy images and won with a large margin.

The typical use of CNNs was to classify an entire image into a single class label. In 
many computer vision tasks, however, localization is required where every pixel is 
labeled with the class of the object it belongs to. These so-called semantic segmentation 
tasks were usually tackled using standard classification CNN architectures. Each pixel 
is separately classified by providing a local region (also called patch) around the pixel to 
the classification network. Using a sliding-window approach all pixels of an image are 
classified. This approach has the advantage that additional training data can be gener-
ated as a lot of patches can be extracted from one image. This is especially useful in bio-
medical tasks where the amount of training data is often limited. There are, however, 
two drawbacks to this strategy. First of all, segmentation of an image is inefficient as 
many overlapping patches need to be propagated through the network. Secondly, finding 
the optimal patch size is difficult due to the trade-off between larger patches containing 
more context and smaller patches for better localization.

To combine both context and good localization accuracy, the fully convolutional net-
work was introduced [24]. The idea is to add upsampling layers after the usual contract-
ing classification network to increase the resolution of the output back to the input 
image resolution. No fully connected layers are used to preserve spatial information. To 
increase the output resolution, simple bilinear upsampling can be employed. Another 
approach is to use transposed convolutions, also called up- or deconvolutions, where the 
upsampling parameters are learned. The output size of the transposed convolution layer 
depends on the chosen kernel size and stride. A transposed convolution operation with a 
stride of two and kernel size 2× 2 is illustrated in Fig. 7.

In the U-Net architecture this upsampling path is further extended with convolutional 
layers, allowing to propagate context information to the higher-resolution layers [23]. 
This results in a more or less symmetric U-shaped architecture with a contracting and 

Fig. 7 Transposed convolution operation with a 2× 2 kernel and stride 2
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expansive path (see Fig. 8). This type of architecture is also called an encoder–decoder 
network. To improve localization, skip connections are added between the high-resolu-
tion features of the encoder path and the upsampled feature maps in the decoder path. 
U-Nets efficiently use semantic and spatial information for accurate segmentation and 
are still the state of the art for many segmentation tasks.

GAN

State-of-the-art deep learning solutions for image-to-image translation tasks mostly 
use an image generation network (such as the aforementioned U-net) combined with 
a discriminator network to form generative adversarial networks (GAN) [25]. Gen-
erative adversarial training is a framework where two networks, a generator and a dis-
criminator, are simultaneously trained to compete against each other [26, 27]. This is 
illustrated with a pseudo-CT from MRI generation example in Fig.  9. The generator 

Fig. 8 U-Net architecture

Fig. 9 Generative adversarial network (GAN) framework illustrated with a pseudo-CT from MRI generation 
example
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focuses on image synthesis and tries to fool the discriminator which is trained to identify 
real versus synthesized images. While training, the gradients are back-propagated from 
the discriminator to the generator, so that the parameters of the generator are adapted 
to produce realistic images according to the discriminator. Next to this adversarial loss 
other loss functions such as l1 loss are incorporated as well to retain image details. GANs 
and variants thereof, e.g., cycleGAN [28], are widely used in image reconstruction and 
enhancement.

Medical image acquisition and reconstruction
This section delves into the use of deep learning during the imaging chain, a broad 
topic covering various aspects such as detector performance, image reconstruction and 
advanced post-processing. While the focus remains on deep learning-based algorithms, 
we will also discuss conventional algorithms where relevant, in order to highlight some 
of the key differences in terms of implementation and capabilities.

PET and SPECT detectors

At the heart of the acquisition process lie the detectors, collecting the data which is later 
converted into human-interpretable images. Improvements made early on in the acqui-
sition chain have a propagating effect throughout the entire imaging procedure, from 
reconstruction to analysis, ultimately enhancing diagnostic performance. Unfortunately, 
one is often constrained by inherent physical process limitations or current material 
technologies. Furthermore, there is a trade-off between scanner cost and performance 
that should be taken into account for practical purposes. We take a closer look at PET 
and SPECT gamma detectors to see how these can benefit from deep learning to more 
effectively use data already available to us.

Most PET or SPECT detectors make use of scintillation crystals, which absorb the 
gamma photon by the photoelectric effect and re-emit its energy as visible light. These 
optical photons are then detected by photomultiplier tubes (PMTs) or silicon photomul-
tipliers (SiPMs) coupled to the crystal, converting the optical signals into electrical ones. 
Current clinical scanners make use of pixelated detectors consisting of a crystal block 
subdivided into an array of smaller pixels, each a few millimeters wide, with limited 
optical photon transfer in-between. A light guide between crystal and photomultiplier 
surface may be used to spread out the scintillation light, so that one-to-one coupling 
between pixel and SiPM is not required. Preclinical systems have also seen the develop-
ment of monolithic detectors, in which a single continuous crystal a few tens of mil-
limeters wide is coupled to an array of multiple SiPMs. Since gamma generation in PET 
happens through positron annihilation, the produced gamma photons always have an 
energy of 511 keV. SPECT, however, makes use of gamma-emitting radionuclides, result-
ing in isotope-dependent gamma energies, e.g., 140 keV for the commonly used isotope 
99mTc . The crystal material and thickness can therefore vary greatly, as the detection 
efficiency should be optimized for the respective energy.

Digital detectors, which directly convert the gamma energy into electrical signals, have 
also been developed for use in SPECT but are not under consideration here. In fact, the 
majority of research on deep learning for scintillation detectors has been focused on 
PET specifically, although many results and conclusions are also applicable to SPECT.
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Positioning

Pixelated detectors  In pixelated detectors, the interaction pixel is easily determined by 
centroid weighing methods such as Anger logic. More advanced techniques such as 
dictionary-based algorithms or deep learning offer little advantage as the 2D resolution 
ultimately remains constrained by the pixel size. Improvements can, however, be made 
when it comes to obtaining depth-of-interaction (DOI) information normally not avail-
able in these detectors. This is of little importance for SPECT, since the collimator filters 
for perpendicular incidences so that the 2D position contains all necessary information. 
In PET, however, lack of DOI decoding leads to incorrect line-of-response (LOR) assign-
ment for non-perpendicular coincidences, reducing image reconstruction accuracy. 
A possible solution is the addition of a front- or lateral-sided readout, but the added 
electronics increase costs and create additional dead space between detector blocks. As 
an alternative, a linear method was developed for continuous DOI estimation based on 
scintillation light sharing through a common light guide on the front surface of the crys-
tal [29]. This was later improved upon by replacing the linear method with a neural net-
work estimator [30]. The energies measured by the SiPM array are used as input features 
to predict a continuous DOI position. Both a dense neural network and a CNN were 
tested, showing performance similar to each other but improved by 12 - 26 % compared 
to the linear method. Uniformity was also significantly better throughout the crystal 
array.

Monolithic detectors  Monolithic detectors on the other hand are attractive as these 
are not constrained by pixel size for spatial resolution and offer easier access to DOI 
information. Unfortunately, the aforementioned Anger logic no longer provides optimal 
spatial resolution. It particularly fails at the edges of the crystal due to nonlinear light 
distributions and leads to incorrectly predicted impinging locations for non-perpendicu-
lar incidences. Early works have shown that neural networks could offer superior spatial 
resolution with good uniformity and, by providing training data at different incidence 
angles, could predict the impinging location for non-perpendicular incidences without 
the need to correct for DOI [31–33]. Later works included the DOI as an additional out-
put, allowing for 3D positioning [34–36]. Training data can be obtained by the pencil 
beam method or Monte Carlo simulation. The charge collected by the SiPMs, possibly 
obtained in a row–column summing configuration, is used as the input to a dense neural 
network for predicting a 2D or 3D position. Some later studies replace the dense neural 
network with a CNN [37]. Performance is generally improved compared to other con-
ventional methods, with better uniformity owing to higher spatial accuracy at the crystal 
edges.

Scattering

As a gamma photon passes through a scintillation crystal, it may undergo Compton or 
Rayleigh scattering before photoelectric absorption in another pixel or detector block. 
Rayleigh scattering, an inelastic process without energy transfer, is practically undetect-
able as no optical photons are generated. The elastic Compton interactions on the other 
hand convert a part of the gamma energy, proportional to the scattering angle, to scin-
tillation light and reduce the energy available for subsequent photoelectric absorption. 
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Such Compton scattered events are easily observed for interactions in different crystals 
or pixels, but identification of the first gamma interaction remains complicated, leading 
to image degradation due to incorrectly assigned LORs in PET or erroneous counts in 
SPECT. They are therefore often discarded, resulting in a loss of sensitivity.

In [38], a neural network approach was developed for assigning the LOR in PET for 
triple coincidences, where one 511 keV photoelectric event P coincides with two more 
singles S1 and S2 , whose energy sum also equals 511 keV. In ideal circumstances, it is 
often possible to analytically derive which single lies on the LOR by considering the rela-
tion between scattering angle and energy deposit. The limited energy resolution and 
positioning accuracy, however, degrade these analytical methods considerably, which the 
deep learning approach seeks to solve by inherently taking such limitations into account 
with realistic training data. The interaction coordinates of S1 and S2 are first redefined 
in a plane w.r.t. P, so that a dense neural network with only 6 inputs (2D coordinates of 
S1 and S2 and their measured energies) can be trained to predict which of the two scat-
tered singles lies on the LOR. Ground truth data are provided by means of Monte Carlo 
simulation. This method showed a LOR recovery rate of 75%, yielding a 55% sensitivity 
increase when including these triple coincidences on real data from the LabPET scanner 
[39]. It showed acceptable resolution degradation similar to other sensitivity increasing 
methods with little to no contrast loss.

Monolithic detectors additionally suffer from intra-crystal scatter degradation, but as 
scintillation light is not confined to pixels, it becomes difficult to discern scattered from 
non-scattered events, let alone assign separate positions and energies to subsequent 
interactions within the same crystal.

Timing

In time-of-flight (TOF) PET, interaction timing information is used to more accurately 
determine the positron annihilation position along the LOR. This information can then 
be used during image reconstruction to improve scan quality. The ultimate objective 
is to reach a coincidence time resolution (CTR) of 10 ps full width at half maximum 
(FWHM), which would allow for millimeter level annihilation positioning so that the 
tracer distribution can be obtained directly without the need for tomographic recon-
struction. This is still a distant objective, with current clinical TOF-PET scanners pos-
sessing a CTR of a few hundred picoseconds. Combined with detector advancements, 
deep learning may help to reach this goal sometime in the future.

Timing estimation is traditionally done by recording the moment the SiPM signal 
crosses a predefined threshold. This, however, condenses all of the potentially useful sig-
nal information into a single linear estimator. In [40], it was shown that convolutional 
networks could be used to predict the TOF difference directly from the detector signals 
themselves. The study used the outputs of two opposing detector pixels, digitized using 
100 ps binning and then stacked side-by-side, as a single CNN input for predicting the 
TOF difference between both detectors. Only the short rising edges of the signals were 
used, as most of the important timing information is contained within the first few arriv-
ing scintillation photons. This method showed promising results, improving the CTR 
by 20% compared to leading edge detection and 23% compared to constant fraction 
discrimination.
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Image reconstruction

Most medical imaging modalities do not generate data directly in image space, instead 
requiring reconstruction algorithms to obtain sensible information. While tomogra-
phy (CT, PET and SPECT) produces projections of a 3D volume and MRI generates 
spatial frequency data, both processes can be described in operator form as

where y is the measured data (projections in tomography, k-space data in MRI), A is the 
system operator describing the physics and geometry of the imaging process, x is the 
unknown image data and e is additive noise. The inverse problem of finding x is ill-posed 
and lacks an exact solution, but an analytical closed-form approximation can be found 
by, e.g., the filtered back-projection (FBP) algorithm for tomography or the inverse fast 
Fourier transform (iFFT) for MRI. Such analytical solutions are popular due to their 
computational simplicity, but their failure to model scanner non-idealities and noise sta-
tistics leads to inaccurate image estimations.

It is instead preferred to find a solution for equation 2 by minimizing an objective 
function f providing a measure for the reconstruction accuracy:

The minimum can be found by iterative algorithms such as expectation maximiza-
tion, which recursively update x to better match the measured data y . Image quality is 
improved compared to analytical methods by making explicit use of the forward oper-
ator A in each iteration, in which various physical limitations can be included. Many 
options exist for the cost function, and it can, for example, be chosen based on the noise 
statistics of the imaging modality. The l2 norm is a good choice for MRI as it is domi-
nated by white Gaussian noise, and the negative log-likelihood can be used for PET and 
SPECT to among other things take into account the Poisson statistics of single-photon 
counting and radioactive decay. Due to the ill-posedness of the problem, small pertur-
bances in the measured data y can lead to large changes in the image estimate x , eas-
ily resulting in an overfit on the measured data. A regularization term R is therefore 
included to penalize unlikely solutions x based on a priori assumptions about the image 
properties, such as demanding smooth or low-noise solutions:

The optimization problem becomes a trade-off between the data consistency term f 
(how accurately the image estimate x produces the measured data y ) and the regulariza-
tion term R (the overall noise level), the relative strength of which can be controlled by 
the hyper-parameter � . There are again many options for the regularization function, a 
commonly used example being total variation, promoting piecewise smooth regions.

Iterative methods, while certainly an improvement over analytical ones, are not 
without their own drawbacks. They are computationally expensive and may still 
include modeling errors in the forward operator A, and the regularization term and 
its strength � ultimately involve user-specified assumptions about what are consid-
ered acceptable image properties. Deep learning-based approaches seek to solve these 

(2)y = Ax + e

(3)x̂ = arg min
x

[f (Ax + e, y)]

(4)x̂ = arg min
x

[f (Ax + e, y)+ �R(x)]
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limitations by replacing the uncertain user-defined variables in traditional methods 
with parameters learned from data.

Data‑driven approaches

One option for deep learning image reconstruction is to replace equation 4 with a neural 
network F that takes into account all system properties and noise statistics so that:

The network learns to directly reconstruct the image from projection/k-space data by 
training on known data pairs x and y . Convolutional encoder–decoder networks are typ-
ically used, having proved capable in various other image-to-image translation tasks [27, 
41, 42]. These networks contain a contractive path, extracting (encoding) features from 
the input data, and an expansive path that constructs (decodes) the output from these 
features. They have a similar architecture to the U-Net shown in Fig. 8, but do not make 
use of skip connections given the large structural difference between input and output.

Once training is finished, reconstruction of new images is fast as it only requires a sin-
gle forward pass through the network. These direct reconstruction methods are entirely 
data-driven, meaning the full inverse mapping is learned from training pairs without 
making any underlying assumptions about the imaging process itself. This limits mod-
eling errors and allows the noise characteristics to be learned from data rather than 
being predefined by the regularization term. Learning such a complex relationship does 
require large amounts of training data, which can be difficult to obtain since the true 
image x is generally unknown to us. Simulated data with known x or traditionally recon-
structed images with low noise levels (e.g., high-dose images) for which x̂ ∼ x may be 
used instead.

The prime examples of direct deep learning reconstruction are AUTOMAP (auto-
mated transform by manifold approximation) [43] for MRI and DeepPET [44] for PET. 
AUTOMAP proposes a generalized data-driven method for solving inverse problems. 
It does so by learning a mapping from sensor-domain to image-domain data, where a 
low-dimensional joint manifold of the data in both domains is implicitly learned during 
training. This low-dimensional but highly expressive representation of the data ensures 
robustness to noise and other input perturbations. AUTOMAP is implemented as a 

(5)x̂ = F(y)

Fig. 10 Architecture of AUTOMAP. Note that the original n× n k-space data are complex-valued, so that it is 
reshaped to a vector of size 2n2 . The convolutional layers use m1 and m2 feature maps, respectively
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neural network consisting of three fully connected layers followed by a sparse convo-
lutional autoencoder (see Fig. 10). The fully connected layers learn the between mani-
fold projection from sensor to image domain, whereas the convolutional layers force the 
image to be represented sparsely in convolutional feature space. Since the mapping is 
learned from scratch, non-trivial acquisitions (e.g., non-Cartesian, undersampled or mis-
aligned Fourier data) can be used directly as the input without additional preprocessing 
in Fourier space. The authors showed that the mapping could be learned not only from 
real MRI data, but also from natural or even pure noise images for which the scanner 
response was simulated. As the training dataset becomes more specific (from pure noise 
images to real MRI data), more relevant features for MRI reconstruction are extracted, 
leading to a lower-dimensional manifold approximation and better robustness to noise. 
While the methodology in the paper was shown for MRI, the authors of AUTOMAP 
emphasize that it is applicable to generalized reconstruction problems, and also show an 
evaluation on PET data. DeepPET on the other hand uses a more conventional convolu-
tional encoder–decoder architecture. It reconstructs PET images from 2D sinograms by 
training on simulated PET data obtained from the humanoid XCAT (extended cardiac-
torso) digital phantom [45]. The network was later also used as the generator in a Was-
serstein GAN for improved reconstruction quality [46].

One common drawback of these algorithms is that fully 3D reconstruction is not pos-
sible with current GPU memory sizes, therefore remaining limited to 2D slice by slice 
reconstruction.

Model‑driven approaches

Besides the large data requirements, the aforementioned approaches lack in interpret-
ability given their black box nature and concerns remain about the generalization capa-
bility for out-of-domain cases. Such limitations have lead to an increasing interest in 
physics-aware deep learning, where the neural network incorporates existing domain 
knowledge prior to training. As a concrete example, it was shown that the FBP algorithm 
for CT could be translated into a neural network by mapping each mathematical opera-
tion to a network layer [47]. For parallel beam geometry, the FBP algorithm can be writ-
ten as:

with AT the back-projection operator and C the convolution of the projection data with 
a ramp filter. When transforming this into a neural network with input y and output x̂ , 
the first layer implements the operator C , which is readily achieved by a convolutional 
layer with a single one-dimensional filter of size equal to the projection size. The fol-
lowing layer implements the operator AT as a fully connected layer, but its weights are 
kept fixed due to memory constraints. Lastly, a ReLU activation function imposes the 
non-negativity constraint on the image data. This approach can be extended to fan beam 
and cone beam geometries by implementing additional element-wise weighting layers 
before the convolutional layer and by translating the back-projection operator AT to the 
appropriate geometry. The network weights are initialized to the values known from the 
analytical approach, so that prior to any training, a forward pass through the network is 
identical to the FBP algorithm. By training on known data pairs x and y , the weights are 

(6)x̂ = ATCy
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then updated to include processes previously not accounted for in FBP. Similar to trans-
fer learning, only a small amount of training data can already provide reconstruction 
improvements due to the solid starting point offered by the weight initialization. Moreo-
ver, such a network offers easy interpretation given the one-to-one mapping between 
analytical operations and network layers, and is less likely to give incorrect results for 
edge cases due to the constraints imposed by the network architecture and fixed back-
projection weights. The primary downside is that the network architecture and its num-
ber of learnable parameters may be too limiting to correctly model all imperfections and 
noise characteristics.

Similar to how it is done for FBP, iterative approaches can also be translated into a neural 
network through a process commonly referred to as algorithm unrolling or unfolding. This 
methodology was first proposed to improve the computational efficiency of sparse cod-
ing algorithms [48], but can be extended to the iterative methods used in medical imaging. 
The core idea of algorithm unrolling is to fix the number of iterations, map each update 
xn → xn+1 to a block of network layers Fn and stack these together to form an end-to-end 
mapping y → x̂ . Network parameters can then be optimized using data pairs y and x . The 
mathematical formulation and therefore network architecture of the iteration blocks Fn 
depend on the imaging modality and iterative framework, but will contain terms relating 
to the data consistency f and the regularization R. Parameters we are fairly confident in can 
be kept fixed (those relating to the data consistency) while others we are less knowledgeable 
about should be learned (the regularization parameters). In contrast with the original itera-
tive algorithm, each block Fn and its corresponding step size can be different and optimized 
with their own unique weights.

Let us discuss a specific example in more detail to obtain more insight about the unroll-
ing process: ADMM-CSNet [49], an unrolled version of the alternating direction method 
of multipliers (ADMM) algorithm for use in compressed sensing MRI. In this case, we can 
choose the l2 norm as the objective function f and rewrite equation 4 as

where the regularization term, consisting of L regularization functions, imposes an addi-
tional sparsity constraint on the reconstructed image x . That is, there must exist trans-
formation matrices Dl , e.g., a discrete wavelet transform, so that Dlx becomes sparse. 
The regularization function R can, for example, be chosen as the l1 norm to promote 
sparsity, with the regularization parameters �l determining the weight of the regulariza-
tion. This equation can be solved by the ADMM algorithm by breaking the problem into 
smaller subpieces. Concretely, we split the data consistency and regularization updates 
by introducing an auxiliary variable z:

resulting in the following subproblems to be alternately optimized:

(7)x̂ = arg min
x

1

2
�Ax − y�22 +

L∑

l=1

�lR(Dlx)

(8)x̂ = arg min
x

1

2
�Ax − y�22 +

L∑

l=1

�lR(Dlz) s.t. z = x
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with ρ a penalty parameter, η an update rate and β a scaled Lagrangian multiplier. 
ADMM-CSNet unrolls these iterative updates, see Fig. 11. Each iteration block Fn con-
sists of three operations: the reconstruction layer Xn , the auxiliary variable update Zn 
and the multiplier update layer Mn corresponding to the solution of each of the above 
equations. In this network, previously fixed parameters and functions are now either 
learnable (e.g., the penalty parameter ρ ) or entirely replaced by a more generic operation 
(e.g., the transformation matrices Dl are replaced by a convolutional layer). These can 
be trained in an end-to-end fashion, where the parameters are not constrained to be the 
same in different iteration blocks. Data consistency is still ensured by making use of the 
known system matrix A.

It should be noted that there is a fair amount of flexibility when it comes to how the 
regularization steps are implemented in the neural network, and this was only a specific 
example. Certain studies opt to keep the original regularization update and simply make 
its parameters learnable [50], whereas others replace the entire regularization update 
with a more generic denoising CNN [51]. The latter can be seen as a middle ground 
between data-driven and model-driven approaches, combining aspects of both. Several 
studies from CT [52, 53], MRI [50, 51, 54–59] and PET [60, 61] have shown that unrolled 
algorithms can improve both computation speed and reconstruction quality compared 
to traditional iterative methods, while offering a robust and interpretable reconstruction 
procedure. We refrain from going into additional implementation details during this 
review since the large diversity between algorithms makes it difficult to give a general 
yet concise overview, especially when taking multiple imaging modalities into account. 
Instead we refer to some other review studies more dedicated to the subject [62–64].

Image restoration

One of the primary image degrading factors in medical imaging is noise arising from 
physical process randomness and scanner limitations, with possible artifacts produced 
by non-uniformity or incompleteness in the measurement data further reducing image 

(9)

arg min
x

1

2
�Ax − y�22 +

ρ

2
�β + x − z�22,

arg min
z

L∑

l=1

�lR(Dlz)+
ρ

2
�β + x − z�22,

β ← β + η(x − z)

Fig. 11 Data flow graph for ADMM-CSNet, an unrolled version of the ADMM algorithm used in compressed 
sensing MRI. The iterative updates F(θ) are unrolled in a neural network with fixed number of iterations. Each 
update block Fn can have its own unique parameters θn , which are learned in an end-to-end fashion
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quality. While the deep learning reconstruction methods discussed in section "Image 
reconstruction" learn to correct for these effects through training data, no such cor-
rections are included in analytical approaches. Even iterative algorithms that include 
noise suppression via the regularization term may still exhibit artifacts or result in poor 
images when presented with limited measurement data. In these cases, deep learning 
can be used as a post-processing tool for restoring noisy or corrupted images. Common 
examples would be low-dose and limited angle tomography scans or undersampled MRI 
scans from which the matching high-dose and full angle acquisition or fully sampled 
scan is to be restored.

Supervised methods

Supervised image restoration requires known training pairs of low-quality images x̂L 
(containing artifacts or high noise levels) and high-quality images x̂H (artifact-free or 
low noise levels). A neural network F is then trained to map the low-quality image to its 
corresponding high-quality version.

The procedure shares many similarities with the data-driven reconstruction methods 
in section "Data-driven approaches," but rather than the measurement data, the already 
reconstructed images are used as the input. This facilitates training as the network no 
longer has to learn the entire imaging process, and leads to reduced data needs for good 
network performance. Simulations or experiments can provide the training targets x̂H , 
from which the corresponding inputs x̂L are easily obtained by removing a subset of 
measurement data or by introducing artificial noise prior to reconstruction. A variety of 
network architectures can be used for F, of which a few examples will be discussed.

One of the simplest architectures conceivable for this task are the 3-layer deep CNNs 
used for limited angle CT artifact removal [65] or for low-dose CT denoising [66]. The 
limited angle CT network uses a full image obtained by FBP as input and removes the 
directional artifacts arising from the removed angles. The low-dose CT denoising net-
work instead opts to work on patches of the image. One advantage of using patches is 
that many can be extracted from a single image, leading to a much larger training data-
set. Additionally, if the patches are small enough, 3D convolutional networks become 
viable due to the reduced memory requirements, although this particular network opted 
for 2D convolutions. A disadvantage of using patches is the loss of long-range spatial 
information, which could play an important role depending on the specific noise gen-
eration procedure. Streak artifacts produced by limited angle tomography propagate 
throughout the whole image, whereas the noise present in low-dose scans remains more 
local. In both networks, all three layers are implemented as a convolution, with the first 
two using a ReLU activation for nonlinearity. Each layer corresponds to a specific math-
ematical operation: the first performs feature extraction, the second applies a nonlin-
ear mapping suppressing those features corresponding to artifacts or noise, and the final 
layer recombines them into a new image. These networks have the advantage of being 
interpretable, but may be too constraining compared to more general, deeper networks.

The encoder–decoder design used for direct image reconstruction can again be used for 
image restoration, although in this case skip connections are usually added between the 

(10)x̂H = F(x̂L)
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layers, resulting in the well-known U-Net [23] architecture seen in Fig. 8. The skip connec-
tions are essentially a copy–paste–concatenate operation where the output of early layers in 
the network is added to the later layers. They allow high-level features to be reused later on 
by bypassing other layers, thereby improving training convergence and performance. While 
the U-Net architecture was originally used and continues to be used for image segmenta-
tion tasks, it is nowadays also one of the more prominent network architectures in image 
restoration. An additional modification that is often added to the U-Net for image resto-
ration is a residual connection between input and output. Given the structural similarity 
between x̂L and x̂H , the network essentially needs to learn the identity mapping as a part of 
the image restoration procedure. Therefore, a residual connection is often employed (which 
simply adds the input to the output) so that the network only has to learn the residual noise 
x̂noise = x̂L − x̂H rather than directly generating x̂H . This methodology was first proposed 
as a general image denoising method [67] and quickly found its way to medical imaging. 
Now the network only needs to find the perturbations with reference to the identity trans-
form, a generally easier task. Such a small change can lead to large improvements in con-
vergence and training data needs. These U-Net-based networks have been used to great 
success in sparse view CT [68], low-dose CT [69], converting low-count to high-count PET 
images [70, 71], SPECT [72], MRI denoising [73] or restoring undersampled MRI scans [74, 
75].

Another possible network architecture is based on ResNet [22], where rather than 
employing an encoder–decoder style network with symmetrical skip connections, many 
residual blocks, where the output of each block is summed with its input, are appended one 
after another. A variant of ResNet has, for example, been used for denoising PET images in 
[76].

The aforementioned networks can also be adapted for other types of inputs and outputs. 
Some studies on limited angle tomography, for example, choose to perform image restora-
tion in sinogram space ( ̂yL → ŷH ) prior to image reconstruction [77, 78], although both 
options are compared for partial-ring PET in [79], showing better results using image space 
data. Alternatively, dual imaging modalities such as PET/MRI may use the MRI scan as an 
additional input to provide anatomical information, helping with the denoising of the PET 
scan [80]. The relative weight that should be given to both inputs is automatically derived 
during the training procedure, without any need for manual tuning. It is also possible to use 
multiple sequential image slices as input, where each slice is a different channel, in order to 
incorporate some spatial information along the third dimension without resorting to 3D 
CNNs.

Unsupervised methods

Most unsupervised image restoration methods are derived from the deep image prior pro-
posed in [81], which can be used for common tasks such as denoising, superresolution and 
inpainting. The authors showed that a randomly initialized CNN can itself serve as a prior 
for image restoration by treating the low-quality images as training labels. In this frame-
work, a convolutional network F is trained to produce the noisy scan data x̂L from a ran-
dom input vector or image z:

(11)x̂L = F(z)
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As the number of training iterations increase, the output approaches the noisy image 
x̂L . It is, however, observed that the optimization procedure leads us through a path for 
which, prior to reaching final convergence, the network outputs a restored version of 
x̂L so that F(z) ∼ x̂H . The authors suggested that this phenomenon likely emerges due 
to convolutional operations imposing self-similarity on the generated images, making it 
easier for the networks to learn meaningful signals rather than noise. In other words, 
it is possible to stop training at a point where the network has more or less learned the 
signal but has yet to learn the noise present in x̂L . The U-Net like architectures are a par-
ticularly good choice for F, since the skip connections allow to impose this self-similarity 
at various feature scales. We emphasize that this method requires a separate network F 
to be trained for each distinct image. In practice, the random input z is usually replaced 
with a prior image containing additional information, such as the CT or MRI image for 
hybrid PET/CT or PET/MRI denoising [82]. A similar approach is taken in dynamic PET 
imaging, where the time-aggregated scan can be used as the input for denoising separate 
dynamic slices [83]. The training procedure is shown in Fig. 12.

Besides its use as a post-processing tool, the deep image prior can also be incorpo-
rated into the iterative image reconstruction procedure as a replacement to tradi-
tional regularization schemes [84, 85]. During each update step, the network is trained 
to generate the current image estimate xn from a prior image z , thereby performing a 
denoising step between each update. This methodology is different from the unrolled 

Fig. 12 Illustration of the deep image prior training procedure for dynamic PET denoising. A static image 
is used as the input z to a network f, initialized with random weights θ . The network parameters are then 
iteratively optimized to produce the dynamic image x. After a certain number of iterations, denoised versions 
of the dynamic PET images are obtained as output. Image from [83]
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algorithms discussed in section "Model-driven approaches" as it still makes use of tradi-
tional iterative optimization steps rather than providing a single network used for end-
to-end reconstruction. But compared to image restoration as a post-processing step, 
such an integrated approach has the advantage of ensuring data consistency on the final 
denoised image.

Not requiring any training data naturally offers a significant benefit, as it essentially 
solves one of the main difficulties in constructing good machine learning models. A 
downside of the deep image prior is, however, its need to be separately trained for each 
image, making the process rather slow in comparison to supervised approaches, which 
can use a single pretrained network for all images. Performance is also unlikely to match 
that of supervised algorithms trained for a specific noise level, but the flexibility of unsu-
pervised algorithms nonetheless makes them an attractive option.

Image registration

Image registration refers to the process of aligning two images so that anatomical fea-
tures would spatially coincide. This is required when analyzing pairs of images that were 
taken at different times or taken by different imaging modalities. Traditionally, it is per-
formed either manually by physicians or automatically by iterative approaches. Manual 
image registration is, however, time-consuming and conventional iterative methods 
remain limited in certain cases. This has led to the development of deep learning-based 
image registration algorithms, a broad subject deserving of its own review, see, for exam-
ple, [86] and [87]. We will shortly discuss some of the most common methods.

Deep similarity metric

Traditional iterative approaches require a similarity metric for optimization, such as 
the sum of squared differences (SSD), cross-correlation (CC) or mutual information 
(MI). These metrics work well for unimodal image registration where images have the 
same intensity distributions, but perform poorly for multimodal registration or in the 
presence of noise and artifacts. Deep similarity-based registration aims to replace the 
conventional metrics with a deep learned metric better capable of handling these dis-
crepancies between intensity distributions. It is accomplished by training a CNN clas-
sifier or regressor to predict a measure for how well the two images are aligned. The 
network output is then used as a similarity metric for optimization within traditional 
iterative approaches.

In [88], a 3D convolutional network uses cubic patches of T1- and T2-weighted MRI 
scans to predict a scalar score, estimating the dissimilarity between both patches. A 
dataset of aligned image pairs is available, from which non-aligned training examples 
are easily generated through random transformations. While the network is trained as 
a classifier, with training pairs belonging to either the aligned (label=-1) or the non-
aligned class (label=1), the scalar output value between -1 and 1 is used as the deep 
similarity metric. Similarly, in [89] a binary classifier is trained to learn the alignment 
between CT and MRI patches, again using the continuous output value as the similarity 
score. In contrast to these classifier methods, in [90] a regressor is trained to estimate 
the target registration error between MRI and transrectal ultrasound images.
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One common issue with these deep learned similarity metrics is that the similarity 
score with respect to transformation may not be sufficiently smooth and/or convex, 
hindering the convergence of traditional iterative approaches. This may be solved by 
improving the metric itself, with the study in [88] observing more convex similarity 
scores by training their classifier using the hinge loss rather than the cross-entropy 
loss. Alternatively, the optimization strategies themselves can be improved, as done in 
[90] where the authors propose the use of a differential evolution initialized Newton-
based method for more robust optimization.

Reinforcement learning

As previously mentioned, reinforcement learning is an area of machine learning in 
which an artificial agent is trained to take subsequent actions in an environment so 
as to optimize the cumulative gains of some user-defined reward. For image registra-
tion, a CNN represents the agent, taking the pair of images (the environment state) 
as input and predicting the action that should be taken next in order to bring them 
closer to alignment. Possible actions for rigid transformations would be small discrete 
translations or rotations along specific axes. After an action, the images are accord-
ingly updated and the next action can be predicted based on the new environment 
state, repeating the process until alignment is achieved. The network is trained by 
allowing the agent to semi-randomly explore the action space, rewarding it for actions 
that lead to alignment by optimizing a reward function. Most works [91–93] focus on 
rigid transformation since it can be represented by a low-dimensional action space, 
although methods [94] have been developed to translate the high-dimensional action 
space of non-rigid transformations to a lower-dimensional one for use in reinforce-
ment learning.

Direct supervised transformation

Direct transformation methods aim to align two images using just a single transfor-
mation predicted by a neural network. Training data consist not of the aligned images 
themselves, but rather the transformation used to align them in the first place. In the 
case of rigid transformations, the network output consists of a limited set of parame-
ters, e.g., 6 variables corresponding to translation and rotation in 3 dimensions. Some 
examples include [95] for the co-registration of X-ray attenuation maps with X-ray 
images and [96, 97] for the registration of T1- and T2-weighted brain MRI. All of 
these methods used synthesized ground truth labels; that is, training data were gen-
erated by applying random transformations to already aligned images. In the case of 
non-rigid transformations, a deformation vector field must be predicted. This makes 
the generation of realistic transformations more difficult, which is why many stud-
ies opt to use real alignments performed with, e.g., traditional approaches as training 
data. Examples include [98, 99] for brain MRI registration and [100] for cardiac MRI 
registration. These direct approaches are considerably faster than the aforementioned 
iterative methods, but remain complicated due to the lack of quality ground truth 
data and the high-dimensional output space of non-rigid transformations.
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Direct unsupervised transformation

Unsupervised approaches for direct registration aim to bypass the problem of obtaining 
ground truth transformations by using a similarity-based loss function instead. While 
such a similarity metric is easily calculated, the difficulty lies in back-propagating the 
gradients during the training procedure. This became possible with the development 
of the spatial transformer network [101], a differentiable module allowing for spatial 
manipulation of data that can easily be inserted into existing network architectures. As 
such, the spatial transformer network can use the transformation predicted by the net-
work to warp the moving image, which is then compared to the fixed image to calculate 
the similarity loss. Several studies [102–104] show promising results, but mostly remain 
limited to unimodal image registration given the difficulty in handcrafting good similar-
ity metrics for the multimodal case.

Another option for unsupervised transformation is to use a deep-learned feature-
based loss function. In [105], a convolutional auto-encoder is trained to generate a 
feature vector from input images. This is simply an encoder–decoder network that is 
trained to reconstruct the input as output, resulting in the encoder portion of the net-
work transforming the input to a latent feature space. A moving image can then be 
deformed via a spatial transformer network, after which both the target and deformed 
moving image are passed through the encoder. The error between the two latent feature 
spaces then acts as the loss function and can be back-propagated to adjust the deforma-
tion performed by the spatial transformer network.

Image translation

In certain instances, it may be beneficial or required to transform scans from one imag-
ing modality to another. Most common is the generation of pseudo-CT images from 
MRI, finding its use in a few applications. The first is in MRI-guided radiation therapy 
[106], offering superior soft tissue contrast compared to CT-guided therapy without 
additional ionizing radiation. CT equivalent images are, however, still required for digi-
tally reconstructed radiography (DRR)-based patient positioning and dose calculations 
and therefore need to be derived from the MRI image. A second application is for atten-
uation and scatter correction in hybrid PET/MRI or SPECT/MRI systems [107]. These 
corrections require an accurate map of the attenuation and scatter coefficients, which 
depend on electron density and are normally estimated from the CT image in PET/CT 
or SPECT/CT. The MRI image, however, does not scale with electron density and should 
therefore first be translated into a pseudo-CT image for use as an attenuation map. 
Lastly, pseudo-CT images generated from MRI may be used simply as a replacement to 
diagnostic CT, reducing the risks of ionizing radiation.

Although more conventional techniques such as segmentation-based or atlas-based 
approaches exist, each with their own merits and limitations [108, 109], deep learning 
approaches have been emerging as an alternative for fast and accurate pseudo-CT gen-
eration. Encoder–decoders are again the choice of network architecture for such image-
to-image translation tasks, with the possibility of including skip connections given the 
structural similarities between CT and MR images. In [110], a modified U-Net archi-
tecture transforms MRI slices into CT slices, using MRI and CT image pairs of 18 brain 
tumor patients as training and testing data. The method produced an average mean 
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absolute error (MAE) of 85 Hounsfield units (HU) compared to the original CT images, 
outperforming the average MAE of 95 HU from an atlas-based approach involving 
deformable atlas registration and patch-based atlas fusion. A similar approach was later 
developed for use in PET attenuation correction [111]. Pseudo-CT images were gener-
ated from MRI with a deep convolutional encoder–decoder network to identify air, bone 
and soft tissue, using a three-class tissue mask rather than continuous Hounsfield units 
as targets. The reference masks were obtained from co-registered CT scans by means of 
pixel intensity-based thresholding. The generated pseudo-CT image was then used for 
attenuation correction, providing good PET reconstructions, with average errors (com-
pared to the CT-based attenuation corrected PET image) of less than 1% in most brain 
regions, outperforming two other common approaches, namely Dixon-based segmenta-
tion and anatomic CT-based template registration. A recent study [112] also evaluated 
pseudo-CT for the detection of structural lesions relating to sacroiliitis, observing better 
diagnostic performance compared to the original T1-weighted MRI scans.

While the structural information from MRI scans can be used to generate pseudo-
CT images for attenuation correction in PET/MRI or SPECT/MRI, no such data are 
available in standalone PET or SPECT. A separate transmission scan can still be used 
to generate the attenuation map, although these are often undesirable due to increased 
scan times and radiation dose. Recent works [113–115] have demonstrated the ability of 
residual encoder–decoder networks to generate attenuation and scatter corrected PET 
images directly from the non-corrected images, foregoing the need of attenuation maps.

Image registration may also benefit from inter-modality image translations. As men-
tioned, multimodal registration is often complicated due to the difficulty in defining 
good similarity metrics, a problem which could be overcome by converting the images 
to the same modality as a preprocessing step prior to registration.

Oftentimes, researchers are dealing with large amounts of unpaired training data. 
While separate datasets of MRI or CT scans are readily available, paired datasets are 
much scarcer, requiring the same patient to have undergone both scans. The images 
must be co-registered as well, which by itself is a complicated and/or time-intensive 
task. To nonetheless make use of this unpaired data for training, cycle-consistent adver-
sarial networks or CycleGANs [28] have been proposed. A CycleGAN is a specific type 
of GAN that aims to perform image translation when dealing with unpaired data, as is 
done in [116] for MRI-based PET attenuation correction. The network consists of two 
generators, GCT for the generation of CT images from MR and GMR for the inverse, and 
two discriminators, DCT and DMR which discriminate between real and fake CT and MR 
images, respectively, see Fig. 13. The set of MR images is passed through GCT to gener-
ate pseudo-CT images ĈT  , for which DCT calculates a discriminative or adversarial loss. 
It is then passed through GMR to reconstruct the original MR image from the generated 
CT image, on which a cycle consistency loss is defined, measuring the mean squared 
error (MSE) between the original image MR and reconstructed image M̂R . A similar 
procedure is applied to the set of CT images, from which pseudo-MR images are gener-
ated. The final loss is a combination of the discriminative and cycle consistency losses, 
ensuring not only that the generator can produce realistic pseudo-CT images, but also 
ensuring that these generated images correctly match the original one. Just like in a con-
ventional GAN, the generators and discriminators are updated alternately. The use of a 
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cycle consistency loss negates the need for matching data pairs, which can drastically 
increase the size of available training datasets. A similar approach using a CycleGAN 
was used in [117] to generate attenuation corrected PET images directly from non-atten-
uation corrected images.

Medical image analysis
A lot of AI algorithms applied in medical imaging are to improve the efficiency and 
accuracy of medical image analysis and even to extract information that is not (yet) per-
ceived by human experts. Different applications can be identified being segmentation, 
treatment monitoring, prognosis, computer-aided detection (CADe), computer-aided 
diagnosis (CADx), etc. Given that a vast number of medical image analysis applications 
of AI have been reported, it is infeasible to cover all literature in this work. We therefore 
selected several important works across different commonly found anatomical appli-
cation areas. This illustrates the potential and current progress of AI in medical image 
analysis. For more exhaustive literature surveys, we refer the reader to [118–122].

Approaches

There are two main approaches to medical image analysis, being the more traditional 
radiomics pipeline and, more recently, the end-to-end deep learning algorithms. Radi-
omics is mostly used in limited data settings, which was primarily the case in the early 
days of medical image analysis with AI. In recent years, the availability of larger medi-
cal imaging datasets has increasingly resulted in a transition toward deep learning 
approaches. These datasets may, however, lack in generalizibilty, since data are obtained 
from different scanners with different resolutions and settings, posing an obstacle for 
use in clinical settings. This seems to be more a problem for MRI (with a wide variety 
of sequences) and PET/SPECT than for CT, although standardization efforts are being 
made for PET via the EARL accreditation program.

Fig. 13 Schematic overview of a CycleGAN used for synthetic CT generation from MR
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Radiomics

Radiomics refers to the extraction and analysis of large amounts of quantitative imag-
ing features [123]. The aim is to convert medial images into quantitative mineable data 
and to make current radiological practice, which is often more qualitative, quantitative 
and standardized. In other words, many quantitative features are extracted from the 2D 
or 3D medical images, which can then be analyzed by machine learning algorithms to 
find correlations with certain disease characteristics, such as prognosis and disease type. 
When the relation between image features and genomic patterns are investigated, one 
often refers to radiogenomics [124]. The typical radiomics workflow consist of a segmen-
tation, feature extraction and analysis step as illustrated in Fig. 14.

To extract radiomics features, the structures of interest need to be segmented. This is 
often done manually by an experienced radiologist or with (semi)-automatic segmen-
tation algorithms. From these delineated structures, many features can be extracted 
describing its shape, volume, texture, intensities, etc. The last step is then to analyze the 
extracted features. This often starts by removing redundant and irrelevant features to 
select a minimal subset of highly predictive features with respect to the considered task. 
One can use specific feature selection algorithms or find the features that result in the 
best performance of the subsequent machine learning model. For final prediction, usu-
ally more traditional machine learning algorithms are used like random forests and sup-
port vector machines.

There are several challenges to the radiomics approach regarding imaging, segmenta-
tion, feature extraction and efficiency [125]. First of all, there is a large variety in scan-
ners and imaging protocols between different institutions resulting in strongly differing 
image characteristics such as resolution, contrast, noise, slice thickness and intensity val-
ues. These differences have a strong impact on the extracted radiomics features reducing 
robustness and generalizability of the trained models across different centers. Therefore, 
standardized imaging protocols are preferred and data from different sources should be 
normalized both in space and intensity.

Secondly, since features such as shape are based on the segmentation masks, accu-
rate and reproducible delineation is of crucial importance. Manual segmentation suffers 
from inter-reader variability and is labor-intensive, making it unfeasible for large data-
bases. (Semi)-automatic segmentation algorithms are therefore increasingly developed. 
Training and evaluation of these algorithms are often done using manual delineations 

Fig. 14 Illustration of the radiomics workflow
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making the assessment of their true accuracy difficult. For this reason, consistency and 
reproducibility might be more important properties for radiomics analysis. To this end, 
manual interference should be minimized.

Thirdly, a vast amount of features can be defined and extracted. Consequently many 
of the extracted features can be redundant or irrelevant for the task at hand. Too many 
features can result in overfitting and proper feature selection is therefore very important. 
At the same time, the features are hand-engineered and defining the optimal features 
for a certain task is not straightforward. This way, important information in the medical 
images might be missed.

Finally, the entire pipeline of (manual) segmentation, feature extraction and analysis 
can be time-intensive, which is often not desired in clinical applications.

Deep learning

To address the above challenges associated with radiomics, there is a transition toward 
the use of end-to-end deep learning approaches [126]. They directly receive the med-
ical images as input and provide at the output the desired outcome prediction. Often 
the workflow is still split into a segmentation and classification part to allow the predic-
tion algorithm to focus on the relevant regions of interest. However, no manual feature 
extraction is necessary as the deep learning networks automatically learn the most opti-
mal features. In both the segmentation and classification stages, deep networks can pave 
the way for state-of-the-art, unbiased, fast and automatic medical image analysis.

The challenge with deep learning on the other hand is the requirement of even more 
data to train the complex (3D) networks. Large datasets are not always available and 
strongly application dependent. Moreover, deep learning often lacks interpretability. In 
radiomics, the features used by the model to make a certain prediction can be identified 
and interpreted, whereas deep learning is seen as a black box. Hence, although there is 
an increasing use of deep learning approaches to achieve state-of-the-art performances, 
radiomics is still often employed when limited data are available and insight in the deci-
sion process is necessary.

Segmentation

As discussed in the previous section, segmentation of structures of interest is an impor-
tant task in medical image analysis. It is not only an important preprocessing step to 
improve further classification and diagnosis, it is also relevant for therapy planning and 
assessing therapy response. Automatic segmentation has many advantages compared to 
labor-intensive manual segmentation suffering from inter-reader bias and low reproduc-
ibility, and is therefore widely investigated [127–129].

Where the early segmentation systems used region-growing, clustering and traditional 
machine learning approaches based on handcrafted features, deep learning approaches 
now dominate the state of the art in medical image segmentation. The most well-known 
CNN architecture for medical image segmentation is the U-Net originally proposed for 
segmenting neuronal structures in electron microscopy stacks and cell segmentation 
in light microscopy images [23]. U-Nets and its modifications are the state-of-the-art 
architectures in many segmentation tasks.
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A 3D variant of the U-Net architecture, called V-Net, was proposed in [130] with 
residual blocks in the encoding and decoding paths for prostate segmentation in MRI. 
They used a novel cost function to train the model based on the Dice score, a measure 
of overlap between two sets X and Y:

This allows a more balanced evaluation of segmentation performance in case the struc-
ture of interest is much smaller compared to the entire image. Since then, Dice loss is 
one of the most used cost functions for segmentation tasks. They trained and evaluated 
their model on the PROMISE12 [131] dataset of the MICCAI Prostate MR Image Seg-
mentation challenge organized in 2012 and reached an average Dice score of 87%.

A self-configuring deep learning method for medical image segmentation, called 
nnU-Net was proposed in [132]. It automatically adapts preprocessing steps, network 
architecture (2D, 3D or cascaded U-Net), training and post-processing depending on 
the task and dataset properties. nnU-Net achieves state-of-the-art results in many 
biomedical segmentation challenges and won first place in the Medical Segmenta-
tion Decathlon [133] organized in 2018 [134]. The aim was to evaluate the generaliz-
ability of a segmentation algorithm across many different tasks instead of designing 
specialized solutions for one specific task. The challenge includes segmentation of 10 
structures: liver, colon, pancreas and lung tumors in CT, brain tumors and prostate 
in multimodal MRI, hippocampus and cardiac in mono-modal MRI and hepatic ves-
sels and spleen in CT. Several segmentation examples from the Medical Segmentation 
Decathlon are included in Fig. 15.

(12)Dice score =
2|X ∩ Y |

|X | + |Y |

Fig. 15 Segmentation examples from the Medical Segmentation Decathlon [134]. a Hepatic vessel (blue) 
and tumor (green) in CT. b Lung tumor (green) in CT. c Pancreas (blue) and tumor (green) in CT. d Left 
ventrical (green) in MRI. e Spleen (green) in CT. f Prostate peripheral (blue) and transitional (green) zones in 
MRI
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Detection and diagnosis

Computer-aided detection consists of localizing organs or abnormalities such as lesions. 
It can be seen as a preprocessing step followed by further diagnosis of the found region 
of interest (ROI). Note that some of the discussed studies may overlap with the subject 
of segmentation covered in the previous section.

Chest pathology

One of the most widely studied topics is lung nodule detection in low-dose CT scans, 
which is an important step in identifying early stage lung cancer [135]. Early detection 
reduces lung cancer mortality and screening programs are increasingly implemented. 
As interpretation of lung CT scans to find small lung nodules is tedious, error-prone 
and time-consuming this puts a lot of pressure on radiologists. Different algorithms for 
automatic lung nodule detection were compared in the LUNA16 (Lung Nodule Analy-
sis 2016) challenge [136]. This challenge made use of the publicly available LIDC-IDRI 
(Lung Image Database Consortium and Image Database Resource Initiative) dataset 
containing 888 chest CT scans with lung nodule annotations performed by four radiolo-
gists [137, 138]. Most of the proposed methods consist of two stages: a candidate detec-
tion stage and a false positive reduction stage. The candidate detection stage typically 
makes use of a 2D (slice-level) or 3D U-Net architecture and often has a high sensitivity 
at the cost of many false positives. Therefore, the false positive reduction stage addition-
ally classifies the found ROIs as a true nodule or not using standard classification CNN 
architectures. Through the combination of different solutions, a sensitivity of over 95% 
was achieved at less than 1 false positive per scan.

To analyze screening CT scans for lung cancer, the found nodules with nodule detec-
tion algorithms need to be classified according to malignancy [135]. Many different 
types of algorithms have been proposed for benign–malignant pulmonary nodule clas-
sification, including more traditional radiomics approaches as well as 2D or 3D convolu-
tional neural networks. Diagnosis of lung cancer based on low-dose CT was the topic of 
the 2017 kaggle Data Science Bowl [139]. The top ten submissions all used deep learning 
algorithms often with a similar approach as for lung nodule detection. Figure 16 shows 
an illustration of a typical lung cancer screening pipeline with 3D CNNs. The winning 
algorithm consisted of two modules: a 3D region proposal (nodule detection) network 
and a second module evaluating the cancer probabilities for the five detected nodules 

Fig. 16 Illustration of a typical lung cancer screening pipeline consisting of a lung nodule detection and a 
malignancy classification stage
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with highest detection confidence [140]. Both modules made use of a modified U-Net 
architecture. A few years later, Google researchers published an end-to-end lung can-
cer screening algorithm using [141]. They employ a 3D inflated inception architecture 
[142] which builds upon the inception network for 2D image classification pretrained 
on natural images from the ImageNet dataset [143], but inflates the filters into 3D. Their 
model achieves a state-of-the-art performance on the NLST (National Lung Screening 
Trial) dataset [144], containing 6716 cases and using an independent clinical validation 
set of 1139 cases. They obtained an AUC (area under the receiver operating character-
istic curve, an aggregate measure evaluating model performance across the entire range 
of classification thresholds) of 94%, which was on par with or even outperforming six 
radiologists. Other applications of AI in chest pathology include diagnosis of pulmonary 
embolism, tuberculosis, airway diseases, interstitial lung disease and others [145].

Recently, medical imaging such as X-ray and CT have played an important role in 
diagnosis and management of COVID-19. Many artificial intelligence tools have been 
developed and contributed to improve the safety, efficiency and accuracy of the imaging 
workflow to fight COVID-19 [146–152]. An AI system to detect COVID-19 pneumonia 
in chest X-rays was proposed in [146]. After preprocessing consisting of image normali-
zation and lung segmentation using the U-Net, a CNN was used for patch- and image-
level classification. The network was pretrained to detect tuberculosis and subsequently 
fine-tuned to detect pneumonia in general and COVID-19 pneumonia. Evaluation on 
a test dataset of 454 chest radiographs from an independent Dutch hospital shows an 
AUC score of 81%, which was comparable to the performance of six chest radiolo-
gists. In [153], the authors aimed to introduce a standardized reporting system for CT 
of COVID-19. They assess the suspicion of COVID-19 infection using the CO-RADS 
score, a scale from 1 (very low) to 5 (very high). An AI tool to automatically asses CO-
RADS score and extent of infection was proposed in [150]. The system consisted of three 
successively applied deep learning algorithms performing lobe segmentation, lesion 
segmentation and CO-RADS scoring, respectively. Pulmonary lobe segmentation was 
performed using a two-stage U-Net [154]. For segmentation of ground glass opacities 
and consolidation in the lungs, a 3D U-Net built with the nnU-Net framework [132] was 
used. It was trained on 108 scans with corresponding manual delineations. By comput-
ing the percentage of affected parenchymal tissue, the severity score could be assessed. 
To determine the CO-RADS score, again the 3D inflated inception architecture [142] 
was employed.

Breast cancer

Another well-researched use case of AI in radiology is breast cancer screening [155, 
156]. Randomized trials show reduced mortality from breast cancer after mass screening 
with mammography, leading to a widespread implementation of screening programs. 
This results in an increased workload for radiologists but also a lot of data. Mammogra-
phy reading, i.e., finding masses and/or calcifications and identifying them as benign or 
malignant, is complex and suffers from large inter- and intra-observer variations, leading 
to missed lesions, but also to many false positives. False positive testing leads to addi-
tional healthcare costs and emotional stress for patients and family. To reduce the error 
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rate, blinded double-reading by two independent readers was introduced in many Euro-
pean countries, increasing the workload even further.

A large publicly available dataset for computer-aided breast cancer screening is the 
CBIS-DDSM dataset (Curated Breast Imaging Subset of the Digital Database for Screen-
ing Mammography) on The Cancer Imaging Archive (TCIA) [157–159]. It contains 
mammography data from 1566 participants with corresponding ROI segmentations 
and verified pathology information. In 2017, the digital mammography DREAM chal-
lenge was organized, aiming to develop algorithms that can improve early breast cancer 
detection [160]. Similarly to lung nodule analysis, most state-of-the-art CAD systems 
for breast cancer screening rely on deep learning algorithms and consist of a candidate 
detection stage and a classification stage.

In [161], the authors compared a state-of-the-art CAD system relying on manually 
designed radiomics features with a convolutional neural network (see Fig. 17). Both sys-
tems were trained on a large dataset of 45000 mammograms and used the same can-
didate detection approach. To obtain lesion candidates, a random forest classifier was 
trained on pixel-based first- and second-order Gaussian kernel features. An AUC score 
of 91% and 93% was achieved with the radiomics approach and with the CNN, respec-
tively. Through combination of the CNN with the manual features, the performance 
could be improved to an AUC of 94%. Comparison with certified radiologists showed no 
significant difference in performance.

The first UK company receiving a CE mark for deep learning in radiology is Kheiron 
Medical Technologies [162]. Their mammography screening system called Mia (mam-
mography intelligent assessment) is allowed to be used as a second reader in breast 
cancer screening. The deep learning algorithm was trained on more than one million 
screening mammography images.

Cardiovascular diseases

Various imaging techniques play an important role in the diagnosis and management 
of cardiovascular diseases (CVDs) including echocardiography, CT, MRI and nuclear 
medicine [163]. Artificial intelligence techniques are applied to many cardiac diagnos-
tic applications including myocardial infarction, cardiomyopathies, coronary artery dis-
eases, valvular heart diseases, etc. [164, 165]. An important step in the detection and 

Fig. 17 Breast cancer mammography screening using a convolutional neural network. Image adapted from 
[161] with permission from Elsevier
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diagnosis of CVD is motion tracking and segmentation of the main chambers [166–175]. 
This allows quantification of cardiac morphology (e.g., ventricle volumes) and cardiac 
function (e.g., ejection fraction and wall thickening). Therefore, continuing progress is 
made for cardiac segmentation enabled by several ongoing challenges such as LVQuan 
(Left Ventricle Full Quantification Challenge [176]) and MnMs (Multi-Centre, Multi-
Vendor & Multi-Disease Cardiac Image Segmentation Challenge [177]).

In [173], an automatic method was proposed to classify cardiac pathologies such as 
dilated cardiomyopathy, hypertrophic cardiomyopathy, myocardial infarction and right 
ventricle abnormality based on cine MRI, see Fig. 18. Given two MR images from a 2D+t 
cine MRI sequence, apparent flow is estimated using a U-Net type network. Through 
combination with segmentation, time series of the radius and thickness of myocar-
dial segments are extracted describing cardiac motion. These features are then used to 
diagnose cardiac pathologies with binary logistic regression classifiers. The model was 
trained and evaluated on the ACDC (Automatic Cardiac Diagnosis Challenge) dataset 
[178] and achieved an accuracy of 94%.

The use of machine learning for per-vessel prediction of early coronary revasculariza-
tion after fast myocardial perfusion SPECT imaging is studied in [179]. A total of 1980 
patients were included from 9 centers in the REFINE SPECT registry. A LogitBoost 
classifier used 18 clinical, 9 stress test and 28 imaging features to predict early coronary 
revascularization. Compared to standard quantitative analysis (total perfusion deficit), 
an improvement is achieved with the ML classifier (AUC of 79% versus 71%). The ML 
algorithm also outperforms expert interpretation by nuclear cardiologists.

In [180] the potential of deep learning is investigated for prediction of obstructive 
coronary artery diseases from SPECT myocardial perfusion imaging. The study popu-
lation comprised of 1638 patients from different institutions. Compared to standard 

Fig. 18 Cardiac pathology classification on cine MRI with motion characterization. Image from [173] with 
permission from Elsevier
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quantitative analysis, the CNN performed better with a per vessel AUC score of 76% 
versus 73%.

Abdominal diseases

Facilitated by large public datasets like the Medical Segmentation Decathlon [134] and 
DeepLesion [181] data sets, accelerating progress has been made in automated segmen-
tation, detection and diagnosis of abdominal anatomies and diseases [182, 183].

A universal lesion detector in abdominal CT was developed in [181]. The authors col-
lected a large-scale dataset composed of CT scans from 4,427 patients containing 32,120 
lesions from various anatomical sites including lung, liver, lymph nodes, kidney, bone 
and so on. Their proposed lesion detector based on a VGG-16 backbone [184] achieves 
a sensitivity of 81% with five false positives per image. AppendixNet, an 18-layer 3D 
ResNet for detection of appendicitis on CT examinations, has been proposed in [185]. 
They showed that pretraining the network on a large collection of YouTube videos called 
Kinetics improved the performance from an AUC of 72% to 81%. The potential of deep 
learning for noninvasive and automatic kidney function estimation based on ultrasound 
has been demonstrated in [186].

Neurological diseases

Application of AI to neuroimaging has seen a lot of interest [187]. Possible tasks include 
brain age prediction [188, 189], cortical and cerebellum parcellation [190, 191], Alzhei-
mer’s disease classification [192, 193], schizophrenia classification [194, 195], intracra-
nial hemorrhage detection [196, 197], aneurysm detection [198–200] and others.

Cerebral aneurysms can cause subarachnoid hemorrhages and early detection is criti-
cal for management guidance. Usually CT angiography is used for cerebral aneurysm 
examination associated with high sensitivity. However, because of the small size of cer-
ebral aneurysms, some may be overlooked during the initial assessment. In [200], a deep 
learning system was proposed for aneurysm detection with CT angiography. The detec-
tor based on an encoder–decoder architecture with convolutional block attention mod-
ules (see Fig. 19) was developed on a large dataset of 1,068 CT angiograms and evaluated 
on an external test set of 400 CT angiograms. They achieved a sensitivity of 97.5% and 
conclude that the overall detection performance of radiologists increased with the help 
of the algorithm.

Fig. 19 Aneurysm detection network proposed in [200]. Reproduced with permission from The Radiological 
Society of North America. Image from Yang J, Xie M, Hu C, et al. Deep Learning for Detecting Cerebral 
Aneurysms with CT Angiography. Radiology 2021;298:155–163
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A deep learning model to predict Alzheimer disease using 18F-FDG PET of the brain 
was developed in [201]. An InceptionV3 architecture was trained on data from the ADNI 
(Alzheimer’s Disease Neuroimaging Initiative) dataset [202]. The algorithm achieved an 
AUC of 98% with a 100% sensitivity and 82% specificity at average of 75.8 months prior 
to the final diagnosis.

The recent approval by the FDA (Food and Drug Administration) of Aducanumab, a 
drug designed to lower the amyloid plaque burden in the brain should renew the interest 
of the medical community for amyloid plaque PET imaging. In this regard, DL devel-
oped for quantifying amyloid burden with increased accuracy may prove of great value. 
Further, as several radiotracers are available for that purpose, the approach proposed by 
Kang et  al for translating the results obtained with [ 11C]PIB and [ 18F]Florbetapir into 
one another, appears highly attractive [203, 204].

Whole‑body imaging

Deep learning algorithms are also applied to analyze whole-body PET/CT scans [205]. In 
[206], different CNNs were evaluated to detect, localize and classify 18F-FDG-avid foci in 
whole-body 18F-FDG PET/CT images of patients with lung cancer and lymphoma. The 
CNNs were trained and evaluated on a dataset of 629 patients (302 with lung cancer and 
327 with lymphoma). On the test set, the CNN was able to classify 18F-FDG-positive foci 
as suspicious or not suspicious of cancer with an AUC of 99% for lung cancer and 98% 
for lymphoma. The overall localization accuracy was 96.4% for the body part, 86.9% for 
the specific region (i.e., organ) and 81.4% for the subregion.

A follow up study evaluated the usefulness and performance of the above CNN in 
research and clinical routine [207]. Automatically segmented total metabolic tumor vol-
umes of diffuse large B cell lymphoma lesions were predictive for clinical endpoints such 
as disease-free survival and overall survival. Yet the Dice coefficients between manual 
and automatic segmentations was only 0.65 in a research cohort and 0.48 in a routine 
cohort.

Conclusions
We have seen that deep learning can be used in many aspects of the imaging and radiol-
ogy pipeline, often outperforming traditional methodologies in terms of speed, accuracy 
or both. It is a quickly adapting field that has greatly been gaining traction over the past 
5 years, and will likely keep doing so for the foreseeable future, with new approaches 
constantly being tested and developed. As both hardware and technical expertise keep 
improving, we can expect these networks to solve increasingly complex tasks to enable 
better diagnostic performance over shorter time frames.

There remain, however, several challenges to the adoption of AI in medical imaging. 
Although the amount of imaging data is rising fast, the number of curated datasets 
is still limited. Data are scattered across clinical centers with highly varying imag-
ing protocols, recorded modalities, patient groups, included patient information, 
annotations, etc. Data curation and annotation of medical images is time-consuming, 
requires expert knowledge and is subject to inter- and intra-observer variability. It 
is difficult to gather enough data for rare pathologies and the distributions between 
different classes are often highly unbalanced. Although initiatives hosting publicly 
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accessible medical image datasets such as The Cancer Imaging Archive [159] exist, 
the availability of medical imaging data to train AI algorithms is still limited, certainly 
when compared with natural image datasets like ImageNet [143] containing mil-
lions of images. Additionally, as these AI tools can have a direct influence on diag-
nosis and treatment planning, more research is necessary toward explainable AI in 
order to understand and trust these algorithms. While steps have certainly been taken 
in this direction (see, e.g., section "Model-driven approaches"), many deep learning 
algorithms are still seen as a black box and it is difficult to understand how and why 
the algorithm makes certain predictions and under what circumstances it might fail. 
Combined with lack of standardization of medical imaging scanners required for 
good generalizibility across different centers, this leads to hesitant adoption of these 
algorithms in routine clinical procedures.

Nonetheless, through a combination of larger, standardized datasets, a bet-
ter understanding of deep learning, by both experts and the general public, and the 
development of explainable AI, we believe that deep learning will become increas-
ingly common in clinical routine during the next few decades.
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