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Abstract

Interest for deep learning in radiology has increased tremendously in the past decade due to the high achievable
performance for various computer vision tasks such as detection, segmentation, classification, monitoring, and
prediction. This article provides step-by-step practical guidance for conducting a project that involves deep learning
in radiology, from defining specifications, to deployment and scaling. Specifically, the objectives of this article are to
provide an overview of clinical use cases of deep learning, describe the composition of multi-disciplinary team, and
summarize current approaches to patient, data, model, and hardware selection. Key ideas will be illustrated by
examples from a prototypical project on imaging of colorectal liver metastasis. This article illustrates the workflow
for liver lesion detection, segmentation, classification, monitoring, and prediction of tumor recurrence and patient
survival. Challenges are discussed, including ethical considerations, cohorting, data collection, anonymization, and
availability of expert annotations. The practical guidance may be adapted to any project that requires automated
medical image analysis.
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Key points

� Deep learning provides state-of-the-art performance
for detection, segmentation, classification, and
prediction.

� A multi-disciplinary team with clinical, imaging, and
technical expertise is recommended.

� Data collection and curation constitute the most
time-consuming steps.

� Several open-source deep learning frameworks with
permissive licenses are available.

� Cloud computing leverages third-party hardware,
storage, and technical resources.

Introduction
Deep learning is a subtype of representation learning
which aims to describe complex data representations

using simpler hierarchized structures defined from a set of
specific features. With the advent of powerful parallel
computing hardware based on graphical processing units
(GPUs) and the availability of large datasets, deep learning
has become a state-of-the-art technique in computer vi-
sion [1]. In the context of healthcare, deep learning shows
great promise for analyzing structured (e.g., databases, ta-
bles) and unstructured data (e.g., images, text) [2]. Over
the past decade, medical image analysis has greatly bene-
fited from the application of deep learning (DL) tech-
niques to various imaging modalities and organs [3].
Several tasks traditionally performed by radiologists

such as lesion detection, segmentation, classification,
and monitoring may be automated using deep learning
techniques [4]. In abdominal radiology, deep learning
has been applied to diverse tasks [3], organs [5, 6], and
pathologies [7–9]. Despite the emerging application of
deep learning techniques [1, 10], few articles have de-
scribed the workflow to execute projects in abdominal
radiology which require a broad range of steps, ranging
from selection of patient population, choice of index test
and reference standard, model selection, and assessment
of performance.
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The purpose of this narrative review is to provide a
practical guide for radiologists interested in conducting
a project that involves deep learning in abdominal radi-
ology. We will cover each step in the chronological
order of a project. Specifically, the objectives of this art-
icle are to (1) provide an overview of clinical use cases,
(2) describe the composition of multi-disciplinary team,
(3) and summarize current approaches to patient, data,
model, and hardware selection. We will do so by provid-
ing examples from a prototypical project that involves
imaging of colorectal liver metastasis. We will illustrate
the workflow in the context of liver lesion detection, seg-
mentation, classification, monitoring, and prediction of
tumor recurrence and patient survival. While this article
is intended for abdominal radiologists, the practical
guidance may be adapted to other projects that require
automated medical image analysis.

Overview of project
A checklist of representative steps required for manage-
ment of a deep learning project is provided in Table 1.

Overview of clinical use of deep learning
Figure 1 illustrates some potential clinical uses of deep
learning techniques. Clinical use refers to the range of

applications in healthcare context, such as clinical workflow
optimization, improved computer-aided diagnosis (CAD),
and computer-assisted reporting [11]. Deep learning may
be used for automation of various time-consuming tasks
performed by radiologists such as lesion detection, segmen-
tation, classification, monitoring, and also prediction of
treatment response which is usually not achievable without
software. Of note, the distinction between these tasks is
conceptual because some algorithms can accomplish sev-
eral tasks simultaneously (e.g., detection, segmentation, and
classification [12]). Furthermore, detection and segmenta-
tion are subtypes of classification tasks, since they consist in
categorizing image regions or pixels based on a predefined
criterion (e.g., tissue or lesion type). While neural networks
extract image features through the learning process, the use
of quantitative image-based features (e.g., statistics of the
intensity distribution, textures), referred as “radiomics” in a
machine learning context, has been proposed [13, 14].

Types of tasks

1. Image preprocessing refers to techniques applied
either on raw signals or on reconstructed images.
For example, deep learning methods have been used
for image reconstruction from sparse MRI data [15]

Table 1 Checklist of steps required for management of project involving deep learning

Scope ❏ Define scope of project: detection, segmentation, classification, monitoring, prediction or prognosis.

Team building ❏ Project manager (e.g, physician, data scientist)
❏ Clinical expertise (e.g., surgeon or hepatologist)
❏ Imaging expertise (e.g., radiologist)
❏ Technical expertise (e.g., data scientist)

Ethics ❏ Obtain IRB approval

Cohorting ❏ Selection process (e.g., by target population vs. database)
❏ Definition of eligibility criteria
❏ Identification of data source

Data De-identification
❏ Data anonymization vs. pseudonymization
Collection and curation
❏ Data collection
❏ Data exploration and quality control
❏ Labeling = markup and annotations
❏ Reference standard (synonyms: ground truth or gold standard)
Sampling
❏ Creation of training, validation and test datasets
❏ Alternative: cross-validation

Model ❏ Defining performance metrics
❏ Selection of model (convolutional, recurrent, fully connected) and librairies
❏ Running the experiment followed by hyperparameters fine tuning
❏ Testing: assessing performance on separate test dataset

Hardware ❏ Determine best configuration based on model architecture and memory requirements
❏ Local (CPUs vs. GPUs) vs. cloud computing (GPUs vs. TPUs)

Regulatory ❏ Market research to inform decision to commercialize
❏ Quality management system
❏ Compliance with local regulatory jurisdictions

Clinical adoption ❏ Integration in distribution platform
❏ Clinical validation of performance
❏ Deployment in clinical practice
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or for improving image quality with noise and
artifact reduction [16], super resolution and image
acquisition and reconstruction [17].

2. Detection refers to highlighting a specific subregion
in an image which is likely to contain a localized
tissue heterogeneity (focal lesion or anomaly). For
example, in the presence of liver metastases, the
purpose of lesion detection is to roughly identify
individual lesions with bounding boxes [5, 18].

3. Segmentation refers to delineation or volume
extraction of a lesion or organ based on image
analysis (e.g., pixel intensity, texture, edges) [19].
For example, in patients with liver metastases,
lesion segmentation would outline the contour of
metastases to extract the largest diameter in long

and short axes for subsequent monitoring of
response to chemotherapy [20, 21] or to compute
tumor volumetry to estimate the volume of the
future liver remnant [22].

4. Classification refers to categorization of a specific
group or type to a lesion from one class to others.
Such classification may be binary (e.g., benign or
malignant) or multi-class (various subtypes of le-
sions). For example, in patients with liver metasta-
ses, the purpose of lesion classification is to
differentiate benign lesions (such as focal liver fat,
cysts, and hemangiomas) from malignant lesions
(such as primary or secondary liver cancer) [7].

5. Monitoring refers to longitudinal follow-up of a spe-
cific lesion over time to assess changes in

Fig. 1 Potential clinical uses of deep learning techniques. Tasks such as monitoring of treatment response or prediction of survival, can be
derived from lesion detection, classification, and longitudinal follow-up
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appearance, diameter, or volume. For example, in
patients with liver metastases, the purpose of lesion
monitoring is to assess disease progression, stability,
or regression over time [23]. In order to quantify
the evolution of focal disease, segmentation of focal
lesions and the corresponding organ is required to
assess the percentage of organ affected by lesions
[24].

6. Prediction refers to leveraging specific features to
anticipate the evolution of a pathology. For
example, in patients with liver metastases, this task
may include prediction of response to
chemotherapy, prognosis of recurrence-free disease
in treated patients, or overall survival.

Multi-disciplinary team building
Figure 2 illustrates an example of multi-disciplinary ex-
pertise and collaboration.

Multi-disciplinary team building refers to a process
where people from different fields and levels of expertise
are gathered to share their knowledge and collaborate
on a joint project. Members are chosen based on the
specific needs of the project, such as clinical expertise
(e.g., surgeon or hepatologist), imaging expertise (e.g.,
radiologist), or technical expertise (e.g., data scientist,
computer scientist) [25]. Due to the accruing levels of
specialization and complexity in healthcare, multi-
disciplinary collaborations are expanding. A project
manager is required to supervise, coordinate, and main-
tain communication between team members in order to
ensure synchronous work and project flow.

For example, clinical expertise (e.g., surgeon or liver
oncologists) is required to recruit patients, enrollment in
a biobank, identify eligibility for participation in studies,
assessment of tumor response grade (TRG), and collect
clinical data on type and duration of chemotherapy, de-
tails of surgery, time to recurrence, and survival data
[26]. Imaging expertise (e.g., radiologist and technolo-
gists) is required for selection of appropriate imaging ex-
aminations, sequences or vascular phases, lesion
detection, annotations (e.g., arrows, measurements), seg-
mentation, and classification (e.g., colorectal metastases,
cysts, hemangiomas). Technical expertise (e.g., data sci-
entist, computer scientist) is required for data anonymi-
zation; data cleaning and visualization; creation and
splitting of dataset into training, validation, and test
datasets; selection of model and libraries; develop and
fine-tune the model; validate the performance on a sep-
arate test set; and deploy the model.

Institutional approval
Data collection refers to the process of gathering informa-
tion from one or more sources for predefined variables to
test research hypotheses and assess outcomes [27, 28]. It
is a prerequisite for training of deep learning models.
If a project relies on second use of imaging data, ap-

proval by institutional review boards must comply with
regional regulations such as Health Insurance Portability
and Accountability Act in the USA [29], the General
Data Protection Regulation in Europe [30], and the Eth-
ical Conduct for Research Involving Humans in Canada
[31]. Institutional review boards must enforce the re-
spect of patient autonomy (free, informed and ongoing

Fig. 2 Expertise of team members
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consent) or waive the need for patient consent (dis-
cussed below) and find a balance between risks (e.g.,
preventing large-scale data breach and unintended dis-
closure) and benefits (e.g., improving diagnosis and im-
proving treatment selection) [32].
If a study requires tissue biobanking as the reference

standard, registration in an online repository such as the
Texas Cancer Research Biobank (USA) [33], Manchester
Cancer Research Centre (UK) [34], or Cancer Research
Network (Canada) [35] may be required.
For prospective studies, informed written consent

must usually be obtained prior to enrollment. For retro-
spective studies, the institutional review board must pro-
vide a consent waiver when obtaining explicit consent is
impractical, risks associated with data sharing are min-
imal, and data custodians can be trusted [36].
Data recorded by the biobank include clinical data and

biological data, as examination reports, blood or tissue
samples. All data in the biobank are anonymized with a
key detained only by the biobank manager, and a new
identifier is assigned to each patient [37]. The use of col-
lected data is strictly restrained to scientific purposes.
However, the results obtained may contribute to the

development of commercial products. Patients can with-
draw their consent at any time with destruction of all
personal data in the biobank [38].

Population cohorting
Figure 3 illustrates the concept of case selection based
on clinical criteria (e.g., risk factors or symptoms), im-
aging examinations, or pathology findings.

Cohorting refers to the identification of patients that
share one or more common characteristics, such as patient
characteristics (e.g., age, gender), disease characteristics
(e.g., disease stage, treatment status), index tests (e.g., ultra-
sound, computed tomography or MRI), or reference stand-
ard (e.g., results of diagnostic imaging test or pathology).
Cohorting may be performed by one of the two follow-

ing approaches:

1. a priori definition of eligibility criteria: with this
approach, the inclusion and exclusion criteria may
require the availability of any or all of the following:
clinical, imaging, or pathological tests.

2. a posteriori definition of eligibility criteria: with this
approach, the inclusion and exclusion criteria are
determined by the available data existing in the
repository within a given time interval.

There are trade-offs associated with each patient selec-
tion approach.

– Clinical criteria: Selecting a study cohort on the
basis of clinical legibility criteria provides a large
sample size. However, the reference standard may
not be available for all patients included
(confirmation bias) or may differ between patients
with positive findings who may undergo surgery and
negative findings who may be followed with imaging
(verification bias).

– Imaging findings: Selecting a study cohort on the
basis of imaging studies is convenient because the

Fig. 3 Concept of case selection based on clinical indication (left), imaging (middle), or pathology (right) findings
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index test is available for all included patients. It
provides a reasonable trade-off in terms of sample
size. However, patients with missing (unavailable ex-
aminations from other centers) or inadequate exami-
nations (poor image quality, unenhanced, artifacts)
must be excluded.

– Pathological findings: Selecting a study cohort on the
basis of available tissues specimens and
histopathology interpretation provides a rigorous
ground truth according to the clinical standard of
care. Yet, pathological findings are based on
sampling of the surgical specimen (which may not
be representative of the entire lesion) and are also
subject to interreader variability. Also, requiring
pathological findings for all patients included in a
cohort limits the sample size to those who have
been biopsied or operated.

Depending on the task to be performed (e.g., detec-
tion, segmentation, classification, monitoring, prediction
or prognosis), the preferred strategy for cohorting may
differ. For example, if the aim of a study is to predict the
tumor stage, availability of tissue specimens with appro-
priate treatment response grade scores may be required
for cohorting. Subsequently, retrospective retrieval of
imaging examinations that will be required to serve as
the index test.

Data de-identification
Practices ensuring privacy of patient-related information
are of paramount importance for deep learning projects
because sensitive medical information may be reidenti-
fied. Thus, three concepts must be kept in mind
throughout project planning and execution: de-
identification, anonymization, and pseudonymization.
De-identification refers to the masking of patient-

related information from individual records in order to
minimize the risks of identification and breach of privacy
[39].
Anonymization, a subtype of de-identification, refers

to the irreversible removal of patient-related information
from individual records. It is the preferred approach for
sharing of medical data.

Pseudonymization, a subtype of de-identification, re-
fers to the substitution of patient-related information
with artificial values in a way that the original data can
only be revealed with a secret key [40]. This approach is
often required to link different databases. Also, pseudo-
nymization may be required to reidentify patients in case
of incidental findings in a clinical research setting. Mul-
tiple approaches have been proposed involving variable
degrees of encryption from encryption to anonymization
[40]. The encryption key should be kept secure, under

the responsibility of the principal investigator, and its
utilization should be documented [39, 41].
Together with pixel information, digital imaging and

communications in medicine (DICOM) files contain
additional information that needs to be anonymized in
accordance with protected health information regula-
tions [42]. Each type of information is inscribed within
one of hundreds of specific, standardly tagged data ele-
ments [3]. DICOM headers that can be used to retrieve
a patient’s identity, either directly (e.g., name, ID, ad-
dress) or indirectly (e.g., age, acquisition date, operator)
must be anonymized. Supplement 142 of the DICOM
Standards provides guidelines regarding the file fields re-
quiring anonymization as well as context-specific recom-
mendations. Free DICOM anonymization softwares are
available but should be used with caution, as only a frac-
tion achieves complete data removal, and often, only
after thorough customization [43]. DICOM Library [44]
and the RSNA Clinical Trials Processor provide two free,
proven toolkits for this purpose [45].

Data collection and curation
Data collection refers to aggregation of data, whereas
data curation refers to exploring and cleaning of data.
These steps are performed to standardize and improve
dataset quality for subsequent deep neural networks
training. Data can be clinical data (biobank), images, and
related metadata (DICOM), or annotations (radiology re-
ports). The latter represent human annotations and
machine-generated features [46]. This process is typic-
ally the most time-consuming step in an AI project, but
is critical to any model training. Recently, some general
guidelines have been proposed to achieve and maintain
high-quality standards in datasets building [14, 47].
While efforts were made to develop automatic curating
tools [48], this step still requires human knowledge and
supervision to achieve high-quality datasets.
For example, after the selection of eligible cases from a

cohort based on a biobank, data acquisition would re-
quire collecting all relevant corresponding images from
the local picture and archiving communication system
(PACS). Subsequently, curation may require selection of
the appropriate sequences, vascular phases, and imaging
planes. This step may also require excluding outlier
cases due to imaging artifacts.

Data exploration and quality control
Data exploration step consists in assessing general quali-
tative (e.g., through visualization) or quantitative proper-
ties (e.g., through statistics) of the initial raw dataset, in
order to exhibit specific features, global trends, or
outliers.
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Data labeling
Radiologists typically perform measurements, draw re-
gions of interest, and comment images with annotations.
Markup refers to “graphic symbols placed on an image
to depict an annotation,” whereas annotation refers to
explanatory or descriptive information regarding the
meaning of an image that is generated by a human ob-
server [49].
After selection of appropriate images, data labeling

may require delineating lesions, either through bounding
boxes or segmentation masks accompanied by annota-
tions on the type of lesions and their location. Different
tools can be used for image processing such as MITK
Workbench [50]. Every lesion must be segmented, anno-
tated, and, if possible, properly tracked over time on
various examinations.
Markups can vary depending on the intent of a project.

For example, bounding boxes may be sufficient for a
detection task, whereas pixel-wise contours may be
required for segmentation tasks. Further, the level of
annotation details may also vary depending on the scope
of a project. For example, annotation of lesion type (e.g.,
cyst, hemangioma, metastasis) would be required for
classification tasks and consistent lesion identification
(e.g., patient number, lesion number, lobe, segment)
would be required for monitoring tasks.

Reference standard
The reference standard, also known as “ground truth,”
represents the knowledge that the model is expected to
learn. Such reference standard may vary depending on
the task, consisting in bounding boxes for detection,
pixel-wise contours for segmentation, annotations for

classification, measurement markups for monitoring,
and clinical outcomes for prediction or prognosis.
Depending on the project, the choice of reference stand-

ard may include (1) histopathology, (2) follow-up exami-
nations, (3) alternative imaging modality (e.g., magnetic
resonance imaging [MRI]), or (4) clinical outcomes (e.g.,
time to tumor recurrence, disease-specific survival).
When human observation or expertise is required to

establish the reference standard, additional considerations
may apply such as the need for a single vs. multiple
readers, the reliance on weak (novice or natural language
processing on written reports) vs. strong (expert) labelers,
and the adjudication process for defining the ground
truth.

Types of learning
Figure 4 illustrates the types of learning: supervised,
semi-supervised, and unsupervised learning.
For supervised learning, a reference standard must be

available for all cases. For semi-supervised learning, a
reference standard is available only for a subset of
subjects. Semi-supervised learning that relies on a com-
bination of labeled and unlabeled data generally achieves
better results than supervised learning that relies on the
subset of labeled data only [51]. This learning process
combines unsupervised and supervised techniques. For
unsupervised learning, a reference standard is unavailable.
In this context, unsupervised algorithms are intended to
establish an efficient representation of the initial dataset
(e.g., clustering through dataset statistical properties,
densities, or distances) [52–54]. Such new representation
may constitute an initial step before training supervised
model, allowing improved performances.

Fig. 4 Types of learning. With supervised learning, the number of inputs (CT images in this example) equals numbers of targets (malignancy
status of a lesion here). With semi-supervised, the number of inputs is greater than the number of targets (dataset includes unlabeled samples).
With unsupervised learning, none of the inputs are labeled (e.g., clustering, manifold learning, restricted Boltzmann machines). N.A. indicates not
available information
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Building large medical datasets of high quality is
challenging and costly, due to resources required for
data collection and expert time for annotation. To
address these limitations, some specific training strat-
egies or models architectures have been proposed,
such as weak labeling [55, 56] or few shots learning
[57].
Once the steps described above are completed,

visualization of the dataset based on extraction of
radiomics features [13] and with appropriate labels can
be performed prior to training with deep learning
models (Fig. 5).

Dataset sampling strategies
Data sampling refers to selection of subsets of data for
training purpose. The ability of an algorithm to perform a
specific task on unseen data is called generalization. To
optimize and measure this performance, the entire
available dataset needs to be divided in different sets. The
samples in all sets should share the same data-generating
process, while being independent from each other and
identically distributed.
The most frequent sampling strategy in deep learning is

to divide the dataset in training, validation, and test sets
(Fig. 6). The optimal ratio of samples distributed in each

Fig. 5 Example of data visualization: projection on first two dimensions of linear discriminant analysis (LDA) applied to radiomics features
extracted from various types of lesions [58]
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set varies for each problem. But as a rule of thumb, a split
of 80% training, 10% validation, and 10% test division is
commonly used. This division allows multiple trainings
using the same training set to search for the optimal
hyperparameters to maximize performance on the valid-
ation set. When the best performance is obtained on the
validation set, the algorithm is ultimately used once on the
test set to measure and confirm the final performance.
For smaller datasets, the most commonly used sampling

strategy is the k-fold cross-validation [59]. The dataset is
divided equally in k folds. For each training, the algorithm
is trained on almost all folds but tested on a single holdout
fold of the data. The training is repeated k times using
varying holdout folds. The final performance is the mean
of the k measured performances (Fig. 7).
Deep learning algorithms generally introduce two

significant limitations to systematically use k-fold cross-
validation. First, training deep learning algorithms on large
datasets usually implies an intensive computational bur-
den which prevents in practice a high number of training
iterations with limited resources. Second, training of deep
neural networks depends on many more hyperparameters
than shallower machine learning algorithms.

Deep learning libraries and architectures
Figure 8 illustrates the architecture of various deep
neural networks used in medical imaging.
Deep learning methods encapsulate many levels of

mathematical concepts, mostly based on linear algebra,

calculus, probability, and numerical computation. Concep-
tually, deep learning libraries allow a higher level of
programming interface to define and train deep neural
networks and efficiently use available computational
resources like the GPU or CPU [60].
Several open-source libraries are available with

variable permissive licenses [61]. For research, the most
commonly used libraries in 2019 are Tensorflow [62]
and PyTorch [63]. Keras [64], Fastai, and Lasagne [65]
are high-level neural network application interfaces
running on top of Tensorflow, Pytorch, or Theano,
respectively. Globally, Python is currently the most
frequently used programming language for deep learning
[62–64]. However, libraries such as Tensorflow or Caffe
[66] provide alternatives supporting C++ and Matlab [67].
All of these libraries allow the implementation of the

frequently used neural network architectures designed for
the specific tasks above-mentioned. The deep convolu-
tional neural network (CNN) is the architecture that
enabled most of the recent advances in computer vision
and medical imaging since 2012 [68]. More specifically,
the convolutional layer is the basic building block used in
most of the specialized architectures reporting state-of-
the-art performance for classification, detection, and
segmentation tasks in a wide variety of applications [3,
69]. CNN are more frequently trained on 2D images.
CNN can also be trained on 3D volume of images,
generated by cross-sectional abdominal imaging like
computed tomography (CT) or MRI, but is a larger

Fig. 6 Division of dataset into training, validation, and test datasets. It is recommended to perform splitting at the very beginning of the
workflow, keeping test data unseen to the model until final performance evaluation
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Fig. 7 Data sampling strategies. a The whole dataset is split in two distinct subsets for training and testing purposes. Training dataset is
subdivided to perform cross-validation, (b) k-fold cross-validation. The training dataset is divided in k subsets of equal size. Training is performed
sequentially, considering at each iteration a specific subset as validation set

Fig. 8 Commonly used deep learning architectures. a Fully connected neural networks. b Convolutional neural networks for detection or
classification. c U-net, for segmentation. d Legend illustrating the building blocks in various deep learning architectures
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burden computationally. Neural network architectures
evolve rapidly and the choice of network or model to use
vary depending on the intended tasks. State-of-the-art
results are currently achieved with architectures such
ResNet and DenseNet for application such as classification
and U-nets for segmentation.
Recurrent neural networks are targeted on sequential

data like text or speech [70]. They are frequently used for
natural language processing to extract categorical labels
from radiology reports. In abdominal imaging, multiple
cross-sectional follow-up exams or an ultrasound cinematic
series are examples that can partly be considered as
sequential.
Deep neural networks can be trained with random

initialization of the internal weights or with more evolved
strategies such as Glorot initialization [58]. In transfer
learning, the network weights are initialized from a previous
training on a different dataset. Effectiveness of transfer
learning depends mostly on the similarity and complexity
of the data and trained task between the previous and
current datasets [71].

Performance metrics
When training an algorithm for a research project for
clinical practice, it is critical to clearly understand the
metrics used to evaluate the task performance. Specific
metrics are defined for each computer vision task, which
may differ from a clinical objective.
The classification task is closely related to the common

radiological interpretative task of providing a diagnosis
from images. Consequently, for this task, the machine
learning metrics are very similar to the usual diagnostic
test metrics reported in diagnostic radiology. A confusion
matrix defines true/false positives and true/false negatives
by comparing the algorithm output values with the
ground truth values. Accuracy, sensitivity, specificity,
precision, and recall can then be inferred. F1 score
combines precision and sensitivity. All of these perform-
ance metrics are calculated using a fixed classification
threshold.
The receiver operating characteristic (ROC) curve

illustrates the diagnostic performance at various classifi-
cation thresholds. The area under the ROC curve (AUC)

is frequently used to compare different algorithms on
the same task. To select only a clinically useful range of
operation, partial AUC can also be used [72].
Detection and segmentation tasks frequently use

interchangeable metrics. The purpose is to evaluate
quantitatively the similarity of an automatically gener-
ated bounding box or a segmentation mask to the
associated ground truth defined by an expert radiologist.
Intersection over union (IOU) is defined by the area
delimited by the intersection of two bounding boxes
divided by the union of the same two bounding boxes.
For segmentation, the Dice or Jaccard coefficients are
also a similarity metrics at the pixel level that can
directly be calculated from IOU.
Table 2 summarizes reference standards, performance

metrics, and model selection for various tasks.

Hardware
Hardware selection refers to determining the technical
specifications based on a given deep learning model. Key
parameters to consider when selecting hardware are
dataset volume and model complexity. Deep learning
models can be trained on CPU, GPUs, or on cloud com-
puting platforms, which may leverage deep learning-
oriented devices such as tensor processing units (TPU).
Briefly, CPUs are of interest for sequential calculations
and take advantage of a large available memory but suf-
fer from limited memory bandwidth. In contrast, GPUs
and TPUs are architectures of choice for massive parallel
computing, offering limited memory size but at very
high bandwidth. Larger GPU memory facilitates training
of deeper models with a higher number of trainable
parameters. Commercial GPUs currently offer memory
size between 8 and 32 GB allowing training of most
recent CNN architectures at sufficient image resolution
for medical imaging. Considering the high computa-
tional cost related to model training, especially when
considering large datasets of images with CNNs, GPU
are generally preferred [73]. Multi GPU is a good way to
increase computational performance on local stations,
but such configurations generally imply additional hard-
ware considerations (e.g., power supply and cooling).
Each hardware solution exhibits specific architectures,

Table 2 Examples of reference standards, common performance metrics, and model selection for various tasks

Detection Segmentation Classification Prediction

Features -Bounding boxes
-Masks

-Lesion patch
-Full image at max diameter
-Radiomics features
-Masks

-Lesion patch
-Radiomic features

-Lesion patch
-Time to recurrence
-Survival time
-TRG

Model architectures -CNN -U-Net -Fully connected -CNN

Performance metrics -Intersection over union (IOU)
-Mean average precision (mAP)

-Dice score
-IOU

-Receiver operating characteristic (ROC)
-Accuracy

-ROC curve
-Accuracy
-R2
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memory types, volumes, and associated bandwidths.
Training performances of typical deep learning models
(e.g., fully connected, recurrent, convolutional) can vary
drastically from one platform to another [74].
When training time is a key parameter for large data-

sets, cloud computing solutions can be advantageous.
Cloud computing refers to internet-based services using
a third-party hardware resources leveraging large storage
and technical resources. In this field, Microsoft Azure,
Google Cloud platform, and Amazon AWS are major
stakeholders. Each of these platforms exhibits specific
accessible hardware, services, and fares. Main advantages
of cloud computing platforms are the easy access to high
computational power, almost unlimited storage, cost-
efficiency, and low maintenance.
However, cloud computing solutions suffer from specific

shortcomings such as technical issues (data are fractioned
and stored at multiple locations; thus, one server off can
cause subsequent issues). Additionally, transferring datasets
to remote servers lead inevitably to data security and integ-
rity questions depending on server location, including
possible attacks. It is thus important to first check security
procedures proposed by each solution provider and to
ensure that no sensitive information are transferred on
remote servers. In this context, de-identification and patient
anonymization concepts as presented above are of
paramount importance [75].

Implementation and practical considerations
Implementation refers here to executing a previously
established designed deep learning project. In the
current context, it encompasses building and curing the
dataset [76], choosing a set of neural networks architec-
tures, training the networks and fine tuning hyperpara-
meters using selected metrics.
Deployment refers to the implementation of a locally

developed solution to a larger scale, such as at the institu-
tion level or within a healthcare network. This process
requires clear definition of model specifications, in terms
of performance (e.g., optimizing sensitivity or specificity
based on ROC curves) or software engineering (e.g.,
configurations, versioning, unit-testing, or specific institu-
tional requirements).
It is recommended to regularly monitor model perfor-

mances to detect any potential bias or accuracy loss.
Depending on the evolution of performance metrics and
visual assessment over time, a model may be retrained
using additional data to dynamically update its perform-
ance. Additionally, it is recommended to store weights ob-
tained after training separately from network architecture
at regular checkpoints. This allows easier updates and ver-
sioning, as long as network architecture remains identical.
From a practical perspective, integration of models

into routine procedures can be challenging in terms of

portability, data accessibility, and preprocessing. It is
thus necessary to define if developed solution is intended
to be integrated into an existing infrastructure or used
as a standalone application. During first phase of deploy-
ment, a containerized approach such as that proposed
by Docker [77, 78] or Kubernetes [79] may be adopted
and web-based applications (REST-API) for subsequent
deployment.
To better fulfill these integration challenges, market-

places of AI applications are rapidly emerging offering a
wide variety of tools with a unified user interface for
radiologists and a generic application programming
interface (API) for developers. This commercial layer be-
tween PACS vendors and AI applications can potentially
allow faster clinical deployment, validation, and usability.

Regulatory framework
A commercial software dedicated to medical imaging is
generally recognized by most regulating jurisdictions as a
medical device and more specifically as a software as a
medical device (SaMD) using the proposed International
Medical Device Regulators Forum (IMDRF) terminology
[80]. This international framework categorizes the associ-
ated risk based on the intended medical purpose and the
targeted healthcare situation to better determine the
needed pathway of regulation. Conceptually, an applica-
tion diagnosing a critical condition will need a more rigor-
ous and extensive regulation process than an application
that inform clinical management for a non-serious condi-
tion [81]. Depending on the risk categorization, the soft-
ware must satisfy criteria for a quality management
system (QMS) and for clinical evaluation. Based on these
building blocks, each regulatory jurisdiction implements
its own regulatory pathways. Most jurisdictions also follow
the ISO – IEC 62304:2006 - Software Life Cycle Processes
framework in their implementation [82].
To cover the specific challenges of SaMD trained on

patient data using deep learning algorithms, namely AI/
ML-based SaMD, many jurisdictions are currently review-
ing their regulatory frameworks to reflect the evolutionary
aspect of these applications [83]. Of note, the capacity to
rapidly retrain models on new available data to improve
performance or even to change the intended use is a new
software paradigm that needs regulatory update.

Conclusion
Deep learning shows great promise in radiology, as dem-
onstrated by the diversity of applications [10] and reported
performances in a variety of computer vision tasks [3].
This paper provided an overview of the steps to under-

take a deep learning project in radiology, from task defin-
ition to deployment, and scaling. As medical applications
are numerous and technical solutions are easily accessible,
the most time-consuming part is dataset building (data
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collection and curation of structured or unstructured data),
followed by model fine tuning through hyperparameters
optimization.
On a multi-institutional scale, the large amount of avail-

able shared data constitutes a great opportunity for com-
plex model training. The main limitations are the
availability of expert annotations, the pooling of data across
multiple sites and the need for data curation to achieve a
high-quality dataset. To overcome privacy concerns about
data breach, a potential solution may be to perform local
training of multiple models and to share the weights, a
strategy known as federated or distributed learning.
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