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Opinion
The success of phage therapy is dependent on the devel-
opment of strategies able to overcome the limitations of
bacteriophages as therapeutic agents, the creation of an
adequate regulatory framework, the implementation of
safety protocols, and acceptance by the general public.
Many approaches have been proposed to circumvent
phages’ intrinsic limitations but none have proved to
be completely satisfactory. In this review we present
the major hurdles of phage therapy and the solutions
proposed to circumvent them. A thorough discussion
of the advantages and drawbacks of these solutions is
provided and special attention is given to the genetic
modification of phages as an achievable strategy to shape
bacteriophages to exhibit desirable biological properties.

Phage therapy
Bacteriophages (phages) were independently discovered
at the beginning of the 20th century by Frederick Twort
(1915) and Félix D’Hérelle (1917). Since then, these bac-
teria-infecting viruses of high specificity have significant-
ly contributed to the evolution of many fields of science, in
particular the areas of molecular biology and bacterial
genetics [1,2]. They have also been pursued as antimicro-
bial agents, but lack of knowledge of phage biology and the
advent of antibiotics in the 1940s resulted in the disregard
of this application. However, the alarming rise of multi-
drug-resistant bacteria and the consequent need for anti-
biotic alternatives has renewed interest in this application
in the West. Despite the numerous successful therapeutic
outcomes reported in Eastern European countries, phage
therapy remains disregarded in the West. This is mainly
due to the lack of a specific regulatory framework that
meets the requirements of a flexible and patient-tailored
model of phage therapy [3] and the demand for large-
scale in vivo trials that provide efficacy and safety evalua-
tion of a standardized phage product [4]. Due to these
hurdles and the difficulty to obtain intellectual property
rights for therapeutic phage products [5], large pharma-
ceutical companies remain reluctant to invest in phage
therapy. In April 2014, the European Parliament pro-
posed a motion for the resolution of antibiotic resistance
asking member states of the Council of Europe to prioritize
the development of phage therapy as a complement to
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antibiotic therapy [6]. This was an important sign of good
will, but the impact is unknown and will probably take
some time to have an effect.

The current limitations of phages, whether in terms of
biological properties or patentability, may be circumvented
by synthetic biology approaches. In this review we discuss
the possibility of applying genetic manipulation of bacteri-
ophage genomes to shape these viruses to exhibit desirable
biological properties for therapeutic applications. As a
patentable product, we believe this strategy would be
appealing to the pharmaceutical industry and would at-
tract potential investors to the field.

Bacteriophage properties, advantages, and limitations
Phages have many advantageous properties over antibio-
tics as antimicrobial agents; however, some of those prop-
erties can also be limiting in certain applications, as
detailed below.

The main characteristic of phages is their high specifici-
ty of infection, typically recognizing a limited range of
bacterial strains. This reduces the damage caused to the
normal microbial community of the host but it also requires
identification of the specific target pathogen and the
selection of an effective phage [7,8], which may delay the
treatment. Also, as the propagation of phages depends
on their host, they replicate only at the site of infection,
are self-limiting and self-dosing, and do not persist when
their specific bacterial pathogen becomes absent.

Another advantage of phages is their general lower
propensity to induce resistance and the absence of cross-
resistance to antibiotics [9,10]. This makes phages an
effective solution against multidrug-resistant bacteria
and biofilms [11]. However, the development of phage-
resistant bacteria may occur and some resistance mecha-
nisms have already been identified. These include blocking
of phage adsorption due to loss or mutation of the bacterial
receptor [7,12] as well as horizontal acquisition of a re-
striction-modification system or development of adaptive
immunity by interfering clustered regularly interspaced
short palindromic repeats (CRISPR) sequences, both
resulting in degradation of the injected phage DNA [12,13].

Another concern is that phages may carry antibiotic-
resistance genes or other bacterial virulence factors, which
can be transferred to the bacteria through generalized
transduction [14,15]. As this is more common in phages
able to infect bacteria lysogenically, only obligatory-lytic,
non-transducing phages are used as therapeutics and even
these should be propagated on hosts lacking virulence
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genes [16]. However, lytic phages can also be problematic,
as the rapid lysis of a large number of bacteria in vivo may
lead to the release of endotoxins and superantigens that
may induce an inflammatory response, potentially causing
serious side effects [7,17].

There is a conceivable concern about phage immunoge-
nicity and consequent in vivo efficacy. Phages are perceived
by the immune system as invaders and can be rapidly
removed from systemic circulation, making it hard to
sustain an effective phage concentration [17]. A recent
study by Łusiak-Szelachowska et al. demonstrated induc-
tion of antiphage antibodies after phage therapy, with the
activity being dependent on the route of administration
and phage type [18]. Nevertheless, the authors considered
that the detection of antiphage activity during and after
phage therapy does not exclude a favorable result of the
treatment [18].

Finally, from a development point of view, phages have
the advantages of rapid isolation, lower development
costs than antibiotics, and versatility of formulation
and application [11,16]. However, although strictly lytic
phages are easily obtained for major bacterial pathogens
(e.g., Escherichia coli, Salmonella, Campylobacter, Pseu-
domonas aeruginosa, Staphylococcus aureus), their isola-
tion for certain bacterial species has proven to be difficult
(e.g., Mycobacterium tuberculosis, Clostridium difficile)
[17,19,20].

The few hundred phages currently described in public
datasets represent a ‘drop in the ocean’ of the estimated
1031 virions present in nature. Such diversity confers them
potential as one of the most promising therapeutic strate-
gies identified to date. It is therefore expected that, with
the identification of more phages, the application of phage
therapy will become successful.

Strategies to overcome phage limitations
Many strategies are being pursued to overcome the limita-
tions of phages as therapeutic agents. Among them, phage
cocktails were the first to be considered. Using a cocktail of
phage types of different but complementary features, the
limited host range of a single phage may be circumvented,
also allowing the use of presumptive (before pathogen
identification) phage therapy [16,17,21]. However, this
may result in a greater impact on non-targeted bacteria
and higher costs [16]. Another advantage of phage cocktails
is that having different types of phage infecting the same
species and strains reduces the probability of emergence of
phage-resistant bacteria [21,22]. Nevertheless, resistance
to phage cocktails may eventually emerge, as was demon-
strated by Tanji et al. [23].

A more recent strategy explores the antimicrobial syn-
ergy between phages and antibiotics [24,25]. Studies have
shown that sublethal concentrations of certain antibiotics
(typically cell division inhibitors) increase the biosynthetic
capacity of bacteria, which the phage explores to increase
its own production. This hastens cell lysis and ultimately
allows the phages to spread more quickly [24,25].

Another approach uses phage gene products instead of
the whole virion; for example, endolysins, which are con-
sidered a promising alternative in several applications
[26–28]. Their use eliminates the risk of phages imparting
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toxic properties to bacteria [29] and reduces the risk of
development of resistance [27,28,30]. However, like
phages, endolysins that target Gram-positive pathogens
are highly specific, whereas endolysins for Gram-negative
bacteria, in their native state, are nonspecific, with the
related advantages and disadvantages, and have an inher-
ent limited application due to the impermeable outer
membrane of Gram-negative bacteria. Moreover, endoly-
sins for Gram-positive bacteria have been shown to
stimulate a fast immune response resulting in a short
half-life [31].

Also relevant is the use of drug-delivery technologies,
such as polymer-based coatings, to enhance the systemic
delivery of phages and reduce their inactivation and clear-
ance by the immune system [32]. This enhancement was
observed after the chemical modification of phages by
conjugation of monomethoxy polyethylene glycol (mPEG)
to its proteins. However, it also resulted in the loss of phage
infectivity, proportionally to the degree of modification
[32].

The strategies presented have indeed shown positive
outcomes. However, they aim to circumvent specific phage
limitations instead of eliminating or correcting their detri-
mental properties. To specifically address this point, we
propose the genetic manipulation of phage genomes as a
way to shape bacteriophages into safe and efficient biocon-
trol agents.

The dawn of a new era: bacteriophage genomic
engineering
A range of genetic tools that have been used to study
phage biology and function and to shape phages’ biological
properties toward the improvement of their antimicrobial
effect.

Until recently, efficient targeted modification of phage
genomes has been hindered by a lack of broadly applicable
techniques that can be used for both temperate and viru-
lent phages. Fortunately, a new in vivo technology was
developed to introduce genetic changes in bacterial gen-
omes – recombineering – which has been adapted for the
efficient manipulation of temperate and lytic phages in
bacteriophage recombineering of electroporated DNA
(BRED). This technique was developed by Marinelli
et al. for Mycobacterium phages [33] but is adaptable to
other phages. For example, it has been applied by others
for the modification of E. coli phages [34,35]. BRED uses
bacterial overexpression of plasmid-encoded recombina-
tion genes to enhance the frequency of homologous recom-
bination between phage DNA and the targeted DNA
substrate [34,35]. The recombination systems used for
BRED are typically those encoded by phage lambda and
Rac prophage. The lambda Red system comprises three
proteins: Exo, Beta, and Gam. Exo degrades one strand of
double-stranded DNA, generating a single-stranded sub-
strate that is annealed to the chromosomal target by the
DNA-pairing enzyme Beta. Gam prevents the degradation
of the double-stranded DNA by inhibiting the E. coli
RecBCD and SbcD enzymes [36,37]. The Rac prophage
system comprises RecE and RecT, which are functionally
equivalent to lambda Exo and Beta, respectively
[38,39]. Similar recombination systems exist for other
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Figure 1. Schematic representation of current and future targets or possibilities for the genetic engineering of phages, using Caudovirales as an example.
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phages and bacteria [40,41], such as the products of genes
60 and 61, recently identified in the mycobacteriophage
Che9c [42].

The recombination system can be integrated into the
bacterial chromosome by modified temperate bacterio-
phages or can be added to the cells on plasmids. There
are several plasmids currently available that contain the
recombineering functions, generally under control of the
arabinose promoter pBAD, alone or carrying a tempera-
ture-sensitive origin of replication to be cured from the
cells after recombination [43].

It is important to note, however, that the existing
recombineering systems and plasmids have been opti-
mized for Gram-negative bacteria and may not give opti-
mal results in Gram-positive organisms. Ideally, searches
should be done in Gram-positive organisms and their
phages for new recombineering systems to achieve higher
efficiency of recombination [40].

Although it seems that electroporation has become the
gold standard for phage genomic engineering, chemically
based transformation techniques have also been evaluat-
ed. However, of the various protocols tested none has
exceeded the efficiency of electroporation. Nevertheless,
the use of an agent to condense DNA (e.g., polycations such
as spermidine) can be helpful in the recombineering event
using chemical methods since, by causing aggregation,
these agents can help the linear DNA enter the pores
formed in the host, which are smaller in chemical methods
than in electroporation [44,45].
In a short time span, the genetic manipulation of phages
has already been used in various manners to improve
phage properties, and the possibilities seem endless.
Figure 1 schematically represents these possibilities, using
Caudovirales phages as an example since these account for
about 96% of the known phages [46].

Of all features, the phage host range is one of the most
obvious targets for manipulation. Scholl et al. extended the
host range of a T7 phage by designing it for the expression
of an endosialidase [47]. This enzyme degrades the K1
capsule present in some E. coli strains, thereby allowing
the modified T7 to surpass this barrier, enhancing phage
adsorption to efficiently infect K1 E. coli. Other studies
focused on the modification or addition of phage compo-
nents responsible for host binding. For example, Yoichi and
colleagues were able to change the host specificity of phage
T2 by substituting genes encoding putative host binding
proteins (37 and 38) by genes with similar functions from
phage PP01 (encoded on a plasmid) using homologous
recombination [48]. As a result, the lytic spectrum of phage
T2 was changed into that of PP01. A platform for the
development of expanded host range phages would repre-
sent a faster, more economical, and more practical solution
than the isolation and characterization of new phages for
each bacterial strain.

Genetic manipulation of phages has been used to reduce
cytotoxicity and immunogenicity. Several studies have
developed lysis-deficient and non-replicative phages in
an attempt to avoid toxin release (e.g., Gram-negative
187
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endotoxins) caused by massive bacterial lysis in vivo and
consequently minimize inflammatory responses. So far
these studies have involved primarily the elimination of
export protein genes, the insertion of restriction endonu-
clease genes, and the introduction of modified holin genes
[49,50]. In addition, attempts have been made to extend
phage survival after administration. For example, Merril
et al. used a serial-passage technique to generate long-
circulating phage mutants, which were found to have a
mutation in the major capsid protein [51]. Later, Vitiello
et al. used genetic-manipulation techniques to introduce
this single specific mutation, obtaining phages with great-
er capacity to remain in the circulatory system [52].

The genetic modification of temperate phages to become
permanently lytic has also been explored [53]. Transducing
phages are more commonly found in bacteria, and are easier
to isolate, than strictly lytic phages. Thus, this type of
manipulation could be a feasible solution for the difficult
isolation of the obligatory-lytic phages of some pathogens.
The loss of lysogeny is accomplished by a mutation in the vir
gene, which prevents the repressor protein from binding to
the operator, allowing transcription and translation of
phage DNA with subsequent lysis of the bacterial host [53].

Phages have shown promise for the treatment of bacte-
rial states difficult to address by traditional antimicrobials,
such as biofilms. However, due to the presence of a matrix
of extracellular polysaccharides, some biofilms do not re-
spond to phage therapy. This has led to work focusing on
improving the activity of phages against biofilms, such as
that reported by Lu and Collins, who engineered phage T7
to disrupt bacterial biofilms by expressing a biofilm-
degrading enzyme, dispersin B, during infection [54]. This
enzyme simultaneously attacks the glycocalyx of the bac-
terial cells of the biofilm and the matrix, resulting in a
100 000-fold higher efficiency of the modified T7 phage
compared with the wild type T7 [54].

Genetic modification can also be used to enhance phage
efficacy when combined with antibiotics. Lu and Collins
engineered lysogenic phages to overexpress proteins that
enhance antibiotic killing of wild type and antibiotic-resis-
tant bacteria by targeting specific nonessential gene net-
works [55]. These engineered phages also exerted minimal
evolutionary pressures, therefore reducing resistance de-
velopment [55].

Recombinant techniques have been employed to in-
crease the bacterial killing capacity of phages by associa-
tion with antibacterial factors. An example is the lethal
agent delivery system (LADS), which uses a phage-based
in vivo packaging system to create a recombinant phage
capable of delivering and naturally expressing the anti-
bacterial genes [56,57]. Basically, a transfer plasmid con-
taining those genes is maintained in a phage P1 lysogen
that is unable to package its own DNA. Following delivery
to the target bacterial cell, the plasmid recirculates and
expresses the lethal agents resulting in cell death. Cell
death occurs due to the activity of the toxic agent and not as
a consequence of phage-induced lysis because the lytic
machinery is absent in the phage constructs. In a similar
approach, Fairhead [58] replaced the lysis genes of phages
by a gene encoding a small acid-soluble spore protein
(SASP), which binds irreversibly to the bacterial DNA
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stopping all cellular activity. However, it should be noted
that when applying these approaches the beneficial effect
of natural phage multiplication at the infection site is lost.

The phage genome has also been modified to express
toxins while retaining lytic activity and completing the life
cycle (http://www.rowland.harvard.edu/organization/
past_research/bacteriophage/bacteriophage.html). In this
approach, cell death may occur as a consequence of toxin
activity and/or phage-induced lysis.

In addition, further techniques and approaches to modify
phage genomes are being explored. Lu et al. proposed the
insertion of the whole phage genome inside a yeast artificial
chromosome (YAC) vector by homologous recombination to
create a recombinant YAC that is then propagated in the
vector host, which is not the phage host [59]. Yeast recom-
bineering can then be applied for the modification of the
phage genome inside the vector. The YAC containing the
mutant phage can then be inserted into bacteria, followed by
replication of the engineered phage. A similar approach can
be explored using a bacterial artificial chromosome (BAC)
instead of a YAC, which, with the well-developed cloning
strategy, will allow the control of the lytic cycle of a phage
within the bacterial host, enabling the manipulation of any
phage in a nonpathogenic or even nonspecific host. Subse-
quent recovery can be achieved by the release of the phage
genome in a linear form by Cre–Lox recombination (recovery
by ‘lysis from within’). Compared with recombineering
(Figure 2), the YAC/BAC strategy has the advantage of
not requiring a repetition of the whole process for any
new modification within a particular phage. We foresee that
this method, when optimized, could become the future of any
phage engineering.

More recently, a few studies have shown that the
CRISPR–Cas system may be used as an efficient and adapt-
able tool for the manipulation of lytic phage genomes.
CRISPR–Cas is an adaptive immune system that protects
microbial cells from DNA invasion. It comprises an array of
repeated sequences called ‘repeats’ and flanking sequences
called ‘spacers’. Transcribed spacers guide specific proteins
to the target DNA, called ‘protospacer’ by virtue of sequence
homology, and cleave it. The break caused can be repaired by
homologous recombination if a mutated template is provid-
ed in trans, resulting in precise genome editing [60]. Using
this approach, the E. coli CRISPR–Cas type I-E system was
used to isolate deletions of specific genes in a T7 genome
[60]. Moreover, the Streptococcus thermophilus CRISPR–
Cas type II-A system was used to engineer specific point
mutations and small and large deletions as well as complete
gene replacement in the lytic phage 2972 [61]. The main
advantage of this system is its superior efficiency, which
results in high percentages of mutant phages and conse-
quently simplifies selection and recovery [60,61].

This approach requires a bacteriophage-insensitive
strain that has acquired a spacer targeting the phage gene
of interest. This can be easily obtained through the engi-
neering of a strain with a low-copy plasmid containing the
repeat–spacer–repeat sequence desired. The selection of a
spacer is based on in silico analysis to target the mutation
of interest [61].

As discussed here, the techniques for phage genome
manipulation are quickly expanding and improving. It is
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now becoming feasible to modify, in a relatively simple
manner, the genome of both temperate and lytic phages,
creating great expectations for the improvement of phage
properties for therapeutic applications.

Ethical and regulatory issues of modified and
unmodified bacteriophages
The use of recombinant phages in therapy raises ethical
and social questions due to the usually strong opposition of
the public toward genetic manipulation. However, phages
in their native form already face many regulatory hurdles
as they are difficult to classify, being considered neither a
chemical nor a living entity [8]. The regulatory agencies are
struggling to find the best approach to regulate phage
products because the current strategy of using traditional
antibiotic regulatory protocols may render phage therapy
prohibitively expensive and less effective [62].

During regulation of phage products, their inherent
biological risks to human health and the environment need
to be addressed (more on this subject can be found in [63]).
189



Box 1. Outstanding questions

� What is hindering the broad use of phage therapy as an alternative

or complementary strategy to control infectious diseases?

� Is public acceptance going to be a major problem for phage

therapy? What measures can be taken to change the public’s view?

� Which could be the best approach for efficacy and safety evaluation

of a phage product, either natural or genetically modified?

� What needs to be done to attract the interest of large pharma-

ceutical companies?

� Can we exclude the possibility of mutation during the production

of natural phage cocktails due to the high mutation rate? Is this so

different from targeted genetic modification of phages?

Opinion Trends in Microbiology April 2015, Vol. 23, No. 4
Introduced modifications can attenuate or even eliminate
some of the risks; for example, by deleting virulence genes,
reducing the capability of phages for gene transfer, or
controlling the host range. The elimination of such risks
would make regulation easier. Moreover, recent work by
Hammerling et al. suggests the possibility of controlling
genetically modified phages in a ‘semantic’ manner; that is,
through the modification of the codon code of the host
(engineering of the host to have non-natural amino acids)
[64]. By doing so, it is possible to ‘addict’ the organisms to
the unique codon code of the engineered host, which may be
a means to control their capacity for replication (this
means that the phage would replicate only inside the
engineered host, losing the ability to kill other hosts)
and thereby achieving ‘biocontainment’ [64].

Ultimately, the main problem for the acceptance of
modified phages may be the negative opinion of the public
toward genetic modification. Moreover, the idea of using
viruses as therapeutic agents per se may already be not
well received. In this context, perhaps knowing that the
virus is genetically manipulated to become safe will make
phage therapy more attractive and acceptable to the pub-
lic. Furthermore, and quoting Henein, ‘with patients dying
because of infections not treatable with conventional anti-
biotics, is it even ethical not to pursue phage therapy?’
[65]. This therapeutic option may be the future of antimi-
crobial therapy or at least an important addition to current
strategies. Thus, it is essential to explore all of the alter-
natives available to overcome the limitations presently
faced by phage therapy, which includes the genetic engi-
neering of phage genomes.

Concluding remarks
Phage therapy as a realistic alternative to antibiotics
depends on our capacity to overcome the hurdles faced
by this therapeutic option (Box 1). The narrow host range
and the possibility of cytotoxicity and immunogenicity are
indicated by regulatory entities and investors as major
drawbacks of phage therapy. Furthermore, patenting and
regulatory issues hinder the interest of pharmaceutical
companies in investing in these products. Many strategies
have been proposed to overcome phage biological limita-
tions, one of which is the genetic manipulation of phages.
In the past, modification of phage genomes, particularly
of those that are strictly lytic, has faced some challenges,
but the recently developed recombineering techniques
(BRED) as well as other recently reported approaches
anticipate the easier manipulation of both virulent and
190
temperate phages. These techniques can be used to shape
bacteriophages’ biological properties to increase their ef-
ficacy and safety. Furthermore, genetically modified
phages solve the problem of patenting and increase the
interest of large pharmaceutical companies in these pro-
ducts. We are not advocating that this therapeutic alter-
native should be solely based on this option (we also
support the use of cocktails of natural phages), but due
to the difficulties faced by phage therapy we believe that
we are at the dawn of a new era, where genetically modi-
fied phages can open new perspectives toward the success
of phage therapy.
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