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Bacterial biofilms are involved in many chronic and difficult-to-

treat infections. Phage therapy against infectious biofilms is

becoming a promising strategy, as suggested by the increasing

number of publications demonstrating the efficacy of phages

against in vitro formed biofilms. However, the translation

between in vitro results to in vivo phage therapy outcome is not

straightforward due to the complexity of phage-biofilm

interactions in clinical contexts. Here, we provide a critical

overview of the in vitro studies of phages for biofilm control of

clinical pathogens, followed by the major outcomes and

lessons learned from the recently reported case studies

(between 2018 and 2021) of phage therapy against biofilm-

related infections.
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Introduction
Biofilms can be defined as complex structures of microbial

cells attached to biotic or abiotic surfaces and embedded in

a self-producing matrix of extracellular polymeric sub-

stances (EPSs) [1�]. The biofilm mode of growth of bacteria

contrasts with the free-living planktonic growth mode, and

results from differential gene expression and metabolism,

which leads to the partial protection of bacteria from

adverse environmental conditions. Consequently, bacteria

growing in biofilms can tolerate up to 1000 times higher

concentrations of antibiotics than planktonic cells [2],
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making the biofilm eradication a huge challenge, namely

in clinical settings where biofilms are responsible for high

rates of chronic and recurrent bacterial infections [3].

Biofilm-related infections include device-related infec-

tions, when biofilms are developed in medical devices such

as catheters, implants, or contact lenses, and tissue-related

infections such as chronic lung infections, chronic wounds,

osteomyelitis, endocarditis, among others [3]. There are

multiple factors linked to the high tolerance of biofilms to

antibiotics or other antimicrobial compounds namely, the

difficult penetration of antimicrobials through the biofilm

matrix, the high genetic diversity of biofilm cells (hyper-

mutability), the presence of persister cells and the poly-

microbial nature of most of the biofilms found in clinical

contexts [3]. The need for new and effective treatments

against biofilm-related infections has triggered the interest

in (bacterio)phages as antibacterial agents [4]. Conse-

quently, an increasing number of case studies about the

safety and efficacy of phage therapy in patients with biofilm

infections have been published over the last years and will

be discussed here.

In vitro studies of phages for biofilm control of
clinical pathogens
The in vitro evaluation of phage efficacy against biofilm-

related infections has been mostly performed on mono-

species biofilms formed on polystyrene microtiter plates

using single phage preparations, phage cocktails, or

phages combined with antibiotics. Typically, a simple

set up is prepared, using a specific reference or clinically

relevant strain to form biofilm and study phage efficacy.

However, the in vivo complexity of biofilms in human

infections is not well mimicked in these assays, since

clinical biofilms harbor a complex and heterogeneous

community with multiple bacterial species and some-

times even fungi [3]. Currently, in vitro methods based

on biofilm formation in microtiter plates still represent

the most used approach to evaluate phage efficacy against

biofilm-associated infections because of being non-time,

non-cost, and non-labor-intensive [5]. The polystyrene

microtiter plates allow the adhesion of bacterial cultures

to the surface of the wells for a certain period of time and

then, the phage efficacy can be assessed by cell viability,

biomass quantification, metabolic activity, or microscopic

visualization [5]. Nevertheless, to better simulate biofilms

in real infection conditions or clinical settings, other types

of materials/devices have been used instead of the micro-

titer plates including, stainless steel coupons [6], catheter
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sections [7,8], collagen [9�] or human cells monolayers

[10]. In vitro models are not entirely capable of reprodu-

cing real infection conditions and the translation of in vitro
results into clinical outcomes is not straightforward.

Nonetheless, all possible knowledge acquired from the

in vitro studies can be a major advantage to investigate the

variables that rule biofilm control by phages and to

understand the potential of phage therapy. In brief, in
vitro biofilm-forming methods are useful to assess the

biofilm-killing efficacy of phages alone or combined with

co-adjuvants; to test phage formulations in vitro (to under-

stand its release, dose, and stability) before doing in vivo
tests; to predict the emergence of phage-resistant variants

and its implication in the therapeutic context; and to

study phage-antibiotics synergy. For instance, the evalu-

ation of a bacterial population after biofilm challenge with

phages has demonstrated that the bacterial survivors

usually have reduced fitness compared with ancient bac-

teria before phage treatment. In order to survive phage

predation, bacterial biofilms undergo fitness costs that

might lead to modifications on phage receptors [11�,12],
defective growth, and reduced virulence both in vitro and

in vivo [11�,13]. Additionally, due to the selective pressure

exerted during phage treatment, these bacterial variants

can acquire mutations that lead to re-sensitization to

antibiotics [14,15] and the immune system [16]. The fact

that bacterial resistance against either phages or antibio-

tics usually represents a fitness cost, makes the combined

therapy an interesting approach; therefore, it has been

extensively demonstrated, in vitro, that some combina-

tions of antibiotics with phages are synergic and can lead

to a better biofilm control [17–20], with exception of

antibiotics that directly impair the phage life cycle pro-

gression, such as protein syntheses inhibitors [21,22]. The

administration strategy (simultaneously versus sequen-

tial) can highly influence the phage-antibiotic synergy,

being usually the sequential treatments better than

simultaneous to obtain higher biofilm reductions

[19,23]. However, extrapolations of the outcomes for

phage-antibiotic combinations should be carefully

addressed because there are many factors that may influ-

ence the phage-antibiotic synergy such as, the antibiotic

class, the in vivo biological environment (for example, the

presence of human serum), phage species as well as phage

and antibiotic concentrations [24�]. Moreover, it is impor-

tant to take also into consideration the fact that both

antibiotics and phages can have a positive influence on

biofilm formation. For instance, low levels of phage

predation can lead to the accumulation of extracellular

DNA leading to thicker biofilms [25] and antibiotics can

function as communication molecules to modulate micro-

bial communities [26].

An important aspect is that the in vitro assays do not

always mimic the biofilm-host conditions, where the

complexity of existing polymicrobial communities, as

above mentioned (including viable but non-culturable
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cells-VBNC), in vivo stressors/inhibitory compounds, bac-

teria under different metabolic states, and host immune

system, may have a high influence in the outcome of

phage efficacy. Therefore, improved in vitro methods

should be developed to better assess phage formulations,

such as biofilm formation systems that allow to mimic

long-term infections using dynamic conditions or surfaces

that simulate human tissue/device surfaces like, for exam-

ple, the implementation of 3D printed organs or tissues

[27].

Outcomes and lessons learned from the
recently reported case studies
An increasing number of clinical case studies about the

use of phages to treat a wide range of infectious diseases

have been reported over the last years. In this section, we

discuss the most recent phage therapy clinical cases

(2018–2021) associated with biofilm infections. A detailed

analysis of the cases reported herein is presented in

supplementary material (Table S1).

Phage formulation and stability

The pipeline to develop a phage therapy formulation for a

biofilm infection usually starts with the isolation of the

bacterial pathogen causing infection followed by the

screening for phage(s)with lytic activity against the isolated

strain, which is typically done in phage banks or large phage

collections from phage therapy centers or pharmaceutical

companies (Figure 1). This screening allows the identifi-

cation of the best phage candidates for therapy and usually

results in the formulation of a phage cocktail — multiple

phages in a single preparation. In some cases, this initial

screening step to develop a personalized phage formulation

for the target bacteria can be skipped and phage cocktails

already developed or commercially available can be used

instead. However, these pre-developed phage cocktails

will possibly result in a less effective treatment compara-

tively with the personalized phage formulations that are

specifically designed for the bacterial pathogen causing the

disease. According to our search, the leading bacterial

pathogen of the reported cases was Pseudomonas aeruginosa
(40%) followed by Staphylococcus aureus (24%) and, regard-

ing phage formulation, cocktails were used in 68% of the

clinical cases, while only 31% have used single phage

preparations (Figure S1). In fact, the use of phage cocktails

targeting different bacterial receptors is an interesting

approach to delay and reduce the emergence of bacterio-

phage-insensitive mutants (BIMs) during phage treatment,

which was already proved both in vitro and in vivo
[12,28,29]. Another strategy that can be considered to delay

the emergence of BIMs is the phage training. In a coevolu-

tionary in vitro experiment, Borin et al. observed that

trained phages were able to suppress Escherichia coli more

strongly and delay the evolution of resistance than

untrained phages [30��]. In addition, although it was not

observed in the reported clinical cases, it might be inter-

esting to perform a phage adaptation to the biofilm
www.sciencedirect.com
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Figure 1

1. Bacterial isolation

5. Clinical outcome 4. Phage administration

2. Phage screening 3. Phage preparatio n
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Phage therapy pipeline for the treatment of biofilm-related infections. Created with Biorender.com.
phenotype before phage treatment in order to improve the

outcome of the therapy. This strategy might be useful

because biofilms have particular characteristics that can

impair phage predation and the success of the treatment

[1�]. However, in a clinical context, the race against time

might not allow to implement such phage adaptation/

training strategies that require several days to perform

and therefore, a possible alternative could be an initial

phage screening in biofilms instead of the commonly used

spot test or screening in suspended cultures. This would

enable the selection of phages with better anti-biofilm

properties against the target strain, which may highly

contribute to the therapy improvement. In a case study

reported by Chan et al., the authors assessed, in vitro, the

potential synergy of a single phage with antibiotics before

its in vivo application, which contributed to a better design

of the therapeutic approach to treat a chronic P. aeruginosa
infection of an aortic graft that resulted in infection resolu-

tion [31].
www.sciencedirect.com 
An important aspect that should be taken into account

during phage formulation is the possible incorporation of

phages in hydrogels or other matrices for an efficient

delivery. Such strategies might be useful for topical

applications in chronic wounds or as a coating for

implanted materials [32]. For instance, in a case reported

by Ferry et al., the incorporation of phages in the com-

mercially available DAC1 (Defensive Antibacterial

Coating) hydrogel revealed to be a promising approach

to treat biofilms in patients with knee megaprosthesis

infection [33��]. Nonetheless, it is important to highlight

that the stability of the phage formulations should be

ensured as some products may affect phages’ activity and

reduce its concentration [34].

Treatment protocols

The phage therapy protocol adopted to treat biofilm-

related infections should be adjusted according to the

type of infection. For instance, the preferential routes of
Current Opinion in Virology 2022, 53:101209
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phage administration for chronic lung infections are the

intravenous, the inhalation or the combination of both

routes during treatment [35,36] (Table S1). Concerning

chronic wounds, the treatment is usually done by topical

application [37�], while osteomyelitis usually require the

combination of local injection and debridement surgery

[38] (Table S1). The mechanical debridement can indeed

be a useful strategy against biofilm-related infections

since by disrupting the biofilm architecture, phages will

have an easier access to the cells that are usually protected

by the matrix, which was also shown in vitro by Melo et al.
for Staphylococcus epidermidis species [39]. In addition to

debridement, other combined treatments can be used to

improve the efficacy of the phage therapy, including the

co-administration with antibiotics that was used in the

majority of the clinical cases that were analyzed here

(Figure S1). However, as already mentioned, it is impor-

tant to highlight that phages may not always have a

synergistic effect with antibiotics as some of them can

potentially interfere with phage replication and so, the

combined treatment should be carefully studied prior to

in vivo application [4,19].

Concerning the phage dose required for a biofilm treat-

ment, according to our literature review of clinical cases, it

ranges between 106 to 1010 PFU/mL and the phage

preparation is usually administered multiple times during

the treatment period, depending on the infection type

(Table S1). A single phage dose was only applied in

approximately 14% of the clinical cases (Figure S1).

Clinical outcomes and safety

During and after a biofilm infection treatment with phage

therapy, a close follow-up of the patient to identify

possible adverse reactions, to understand the evolution

of the clinical condition, and to identify possible recur-

rence of bacterial infection, should be made (Figure 1).

According to our literature review, the clinical outcome is

typically evaluated by the analysis of bacterial cultures

combined with monitoring of specific symptoms that can

vary according to the type of infection. For instance, in

patients with chronic lung infection, variants such as

levels of forced expiratory volume, need for oxygen

support, levels of cough and sputum production, and

recurrence of exacerbations, are of high importance to

understand the efficacy of phage therapy in this biofilm-

related condition [40,41]. On the other hand, for patients

with chronic wounds or prosthetic joint infections, obser-

vation of tissue healing, release of secretions, and levels of

pain, are important indicators of the clinical condition

after phage therapy [42–44]. The evaluation of the devel-

opment of bacterial resistance to phages and the assess-

ment of changes in the antibiotic resistance profile are

limited to a small part of the reviewed clinical cases

[40,45–49], and it is usually only performed at the end

of phage treatment. However, the screening of these

parameters during the treatment period would also be
Current Opinion in Virology 2022, 53:101209 
important to enable the adaptation of the treatment

according to the collected microbiological data, thus

increasing the chances of a positive clinical outcome.

Also, given the high complexity of biofilm systems, these

studies could be complemented by metagenomic or tran-

scriptomic analysis of the samples collected during phage

therapy, in order to better understand the population

dynamics during the phage treatment process.

From the 78 cases of patients treated with phage therapy

that were identified through our literature analysis, a

positive outcome was reported for 96 % of them, meaning

that only 3 patients (4 %) showed no clinical improvement

after phage treatment (Figure S1). Complete resolution of

the bacterial infection, demonstrated by bacterial eradi-

cation and/or complete clearance of clinical symptoms,

was documented for 52 patients (67 %) (Figure S1). The

cases in which the infection was not completely resolved

but the clinical condition improved and/or the bacterial

loads reduced, were classified as clinical improvement

and are the case of 23 patients (30 %) (Figure S1).

Based on our literature review, a total of 9 different

clinical conditions associated with biofilm infections have

been reported and, the most common among the patients

were lung infections and chronic wounds (Figure S1).

Because of the high tolerance of biofilms to antibiotics,

the treatment of such infections is very challenging and

typically fails, resulting in the usual need for limb ampu-

tation in patients with chronic wounds [50], and high

levels of morbidity and mortality in patients with chronic

lung infections [51]. From the cases identified in our

search, phage therapy was able to contribute to complete

infection resolution of all the 21 patients with chronic

wounds, and a positive outcome was observed for 24 out

of the 25 patients with lung infections, from which

6 achieved complete infection resolution (Table S1).

Although further studies are needed, especially clinical

trials involving large number of patients, these results

suggest the potential of phage therapy to manage com-

plex biofilm-related infections.

Besides the clinical outcome, it is also important to

understand if phage therapy is a safe strategy to treat

patients with biofilm-related infections. In our search,

information about phage safety was provided for

69 patients. Overall, the phage preparations used can

be considered safe, since the occurrence of adverse events

that seemed to be associated with phage therapy was only

reported for two patients (2.6 %) (Figure S1). For

instance, a patient with osteomyelitis of the femur caused

by Enterococcus faecalis and resolved by the local applica-

tion of a commercial preparation of phages, developed

local redness and experienced pain during the treatment

[52]. Although these symptoms have not been directly

linked to phage therapy, the presence of endotoxins in

the phage cocktail could not be excluded as a contributing
www.sciencedirect.com
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factor for this adverse reaction [52]. In a different case

study, a patient with a prosthetic joint infection caused by

methicillin-resistant S. aureus and eradicated by the local

and intravenous application of a single phage, developed

a transaminitis after the third intravenous phage dose and

consequently, the treatment was stopped [53]. In this

case, the authors affirmed that this adverse event seemed

to be caused by phage therapy, although it was reversible

and non-life-threatening.

Although phages are generally considered as safe, due to

their low inherent toxicity and high specificity for their

target bacteria, limiting collateral damage to normal

microflora [54], the step of phage production and purifi-

cation is crucial to ensure a safe outcome for the patients.

An important aspect that needs to be considered and

reduced to the minimum possible in phage preparations is

the level of contamination with endotoxins of gram-neg-

ative bacteria and protein toxins produced by other path-

ogenic bacteria. These molecules have high levels of

toxicity and can cause a large variety of reactions in

humans, which makes essential the use of appropriate

methods for their removal, to ensure the safety of phage

therapy in humans [55].

Conclusions and final remarks
Phage therapy to combat difficult-to-treat biofilm infec-

tions is gaining an increasing popularity due to growing

number of successful clinical cases. The chronic nature of

biofilm-related infections is ideal for a personalized phage

therapy modality, providing a treatment time buffer that

allows the proper development and preparation of per-

sonalized therapeutic phage cocktails. However, biofilms

are challenging for therapeutic phages, mainly due to the

protection conferred by the biofilm matrix and resistance

mechanisms. Therefore, in vitro data and clinical reports

suggest that the association of phages with other chemi-

cal/mechanical treatments may be beneficial to increase

the efficacy of phage therapy against biofilm infections.

It is important to perceive that the knowledge on phage-

biofilm interactions has been mainly generated by in vitro
studies that most of the time fail to mimic in vivo con-

ditions. On the other hand, in vivo studies and clinical

trials on biofilm-related infections are limited. Therefore,

the clinical cases summarized herein are of great impor-

tance to understand the safety and efficacy of personal-

ized treatments of biofilm-associated diseases. Nonethe-

less, these studies do not provide a thorough evaluation of

the healing process, particularly what concerns the analy-

sis of the bacterial and phage populations during phage

treatment. This data would be particularly useful to

unveil the real impact of phages in clinical biofilms and

to understand the pharmacokinetics of local administra-

tion of phages. Moreover, there is a lack of standard

methods for assessing phage efficacy both in vitro and

in vivo, as the treatment protocols vary greatly according
www.sciencedirect.com 
to the clinical studies, even among the ones dealing with

similar pathologies. Therefore, there is a need to stan-

dardize the methods used to characterize the efficacy of

phages against biofilms in order to formulate reproducible

protocols for a rigorous assessment of phage therapy

against infectious biofilms.
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