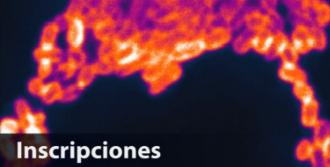
Curso Binacional 2023 Uruguay - Chile


Microscopía para el Estudio de Biofilms Bacterianos

Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) Instituto de Neurociencia Biomédica (BNI), ICBM, F-Med, U-Chile

> 2 - 6 de octubre - Teórico 9 - 13 de octubre - Práctico Uy. 0 de octubre - 3 de noviembre - Práctico Cl.

Docentes

Paola Scavone (uy) Steffen Härtel (cl) Pablo Zunino (uy) Jorge Jara (cl) Eduardo de Mello (uy) Erlen Cruz (uy) Víctor Castañeda (cl) Claudia Etchebehere (uy) Nicole Canales (cl) Nicolás Navarro (uy) Karina Palma (cl) Luciana Robino (uy) Dante Castagnini (cl) Maria José González (uy) Juan Eduardo Rodriguez (cl) Martín Cádiz (cl)

Hasta el 29.09.2023 Envío de CV (1 página) y carta de motivación a: pscavone@gmail.com (Bedelías de Facultad de Ciencias - UY)

Temáticas

Modelos para el Estudio de Biofilms Relevancia y Características Genéticas Nanotecnología Aplicada a Biofilms Etapas de Formación de Biofilms Expresión Génica y Quorum Sensing Microscopía Aplicada a la Microbiología Light-sheet Microscopy Expansion Microscopy

Modalidad

Sesiones Teóricas (online) - Sesiones Prácticas (presenciales) Horas Lectivas: 30 - Horas Prácticas: 26

Organizadores

Paola Scavone (uy) - Steffen Härtel (cl)

Calendario

Cronograma online

https://docs.google.com/spreadsheets/d/1OZE_3f9K0jmX12pM-kW4GxH0LIsY6qaKZ8AdLve01lo/edit?usp=sharing

Actividades asincrónicas

Estudiantes participantes

Página web

https://scian.cl/scientific-image-analysis/microscopia-para-el-estudio-de-biofilms-bacterianos-3/

Bases de la formación de biofilms microbianos, etapas, matriz, expresión génica y quorum sensing

Paola Scavone, PhD Laboratorio de Biofilms Microbianos Depto. de Microbiología, IIBCE <u>pscavone@gmail.com</u>

Ministerio de Educación y Cultura

LABORATORIO DE BIOFILMS MICROBIANOS

Bacterias organismos unicelulares

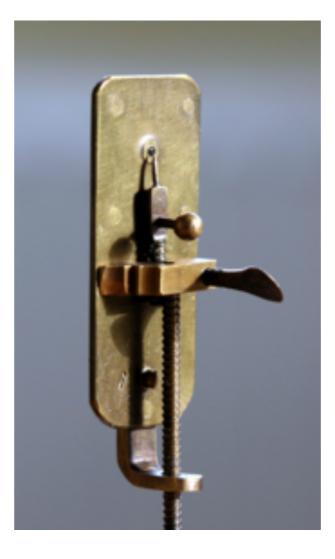
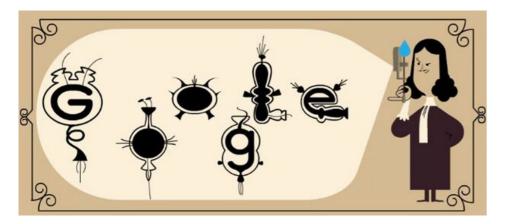
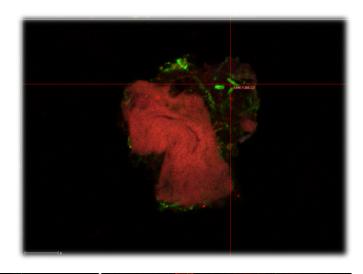



PLATE XXIV $f_{ij}: \mathbf{A} \longrightarrow \mathbf{D}$ $f_{ij}: \mathbf{B} \stackrel{c}{\leftarrow}$ $f_{ij}: \mathbf{E} \stackrel{c}{\cdot}$ $f_{ij}: \mathbf{E} \stackrel{c}{\cdot}$

Antonie van Leeuwenhoek (1632-1723) Padre de la Microbiología

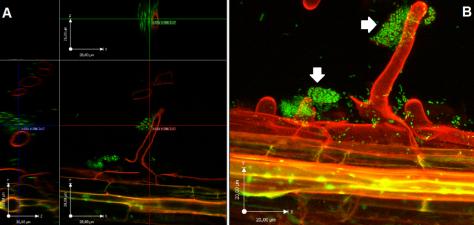
"The number of these animalcules in the scurf of a man's teeth are so many that I believe they exceed the number of men in a kingdom" (Antonie van Leewenhoek a la London Royal Society, 1684)

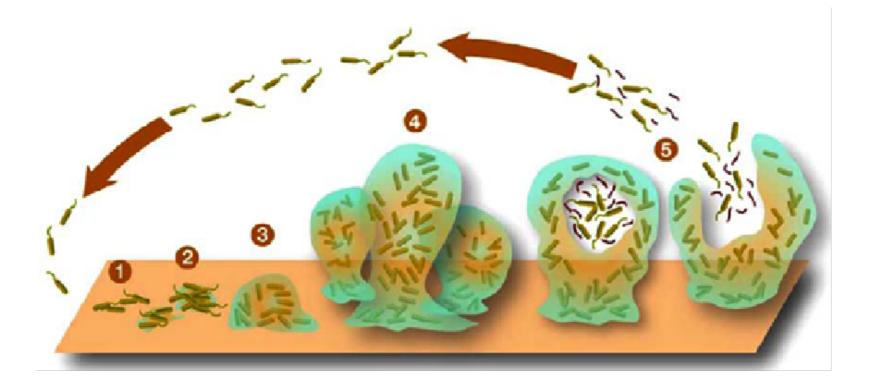
Biofilms en la naturaleza



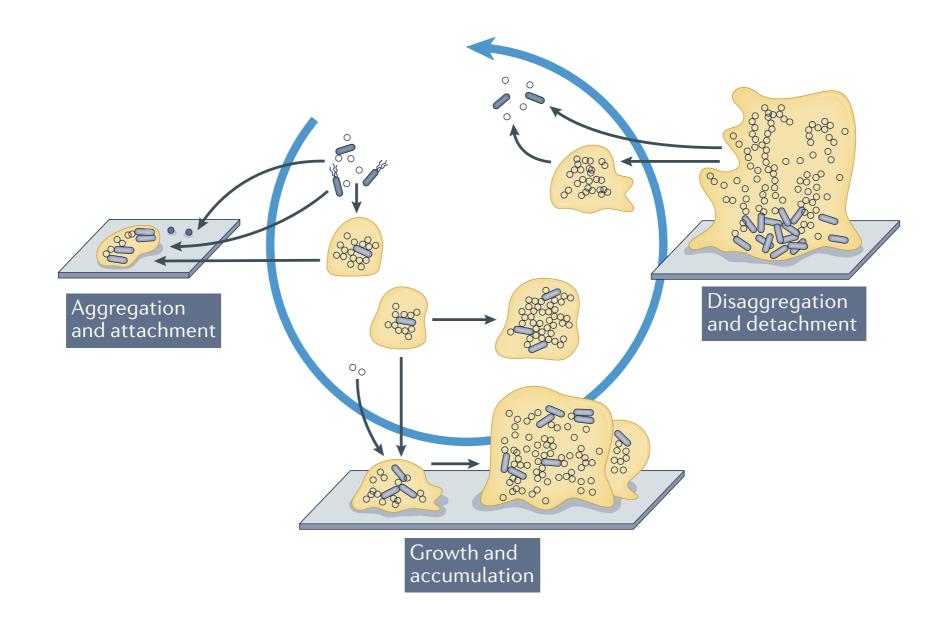
Biofilm en la tumba Abbatija tad-Dejr. Imagen: G. Zammit.

Es la forma de vida predominante de los microorganismos en cualquier sistema biológico hidratado (Trautner & Darouiche, 2004).

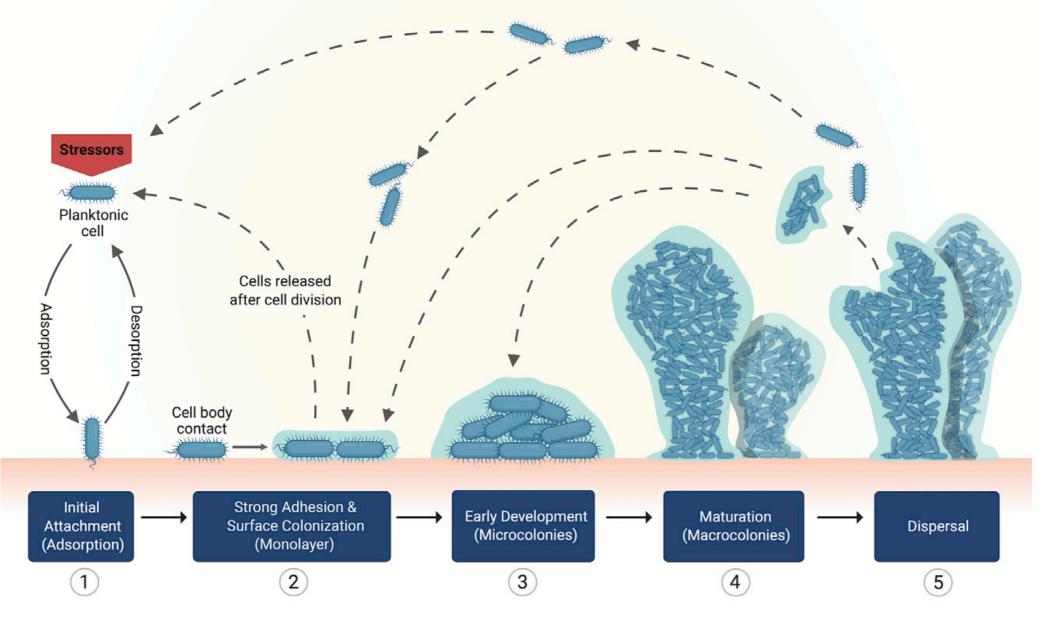

- Comunidad cooperativa
- Distribución universal
- Pueden colonizar cualquier superficie
 - Minerales (cañerías, cemento...)
 - Raíces
 - Incluso adentro de células
- Relevantes en los procesos biogeoquímicos
- Presentes en ambientes extremos



Biofilms definición


Comunidad bacteriana que se encuentra **irreversiblemente** asociada a una superficie, rodeada de una **matriz** polisacarídica de producción propia. Los microorganismos en el biofilm difieren de sus contrapartes planctónicas en la **expresión génica**, estado **metabólico** y **fisiológico**.

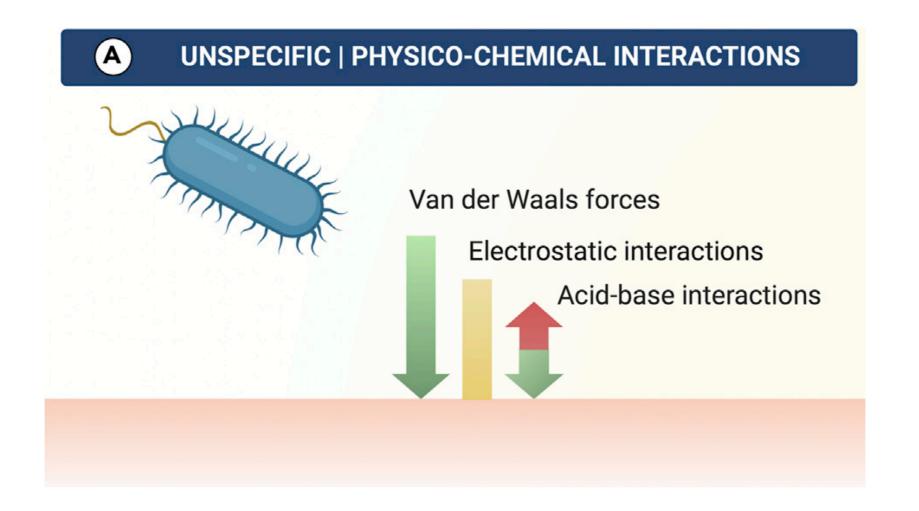
Costerton, 1999


Una vez maduro, el biofilm genera un patrón alterado en cuanto al **crecimiento bacteriano**, **cooperación fisiológica** y **eficiencia metabólica**, el cual provee de una coordinación funcional comunitaria el cual imitaría un **tejido primitivo eucariótico**.

Biofilms nuevos conceptos

Modelo conceptual expandido de la formación del biofilm

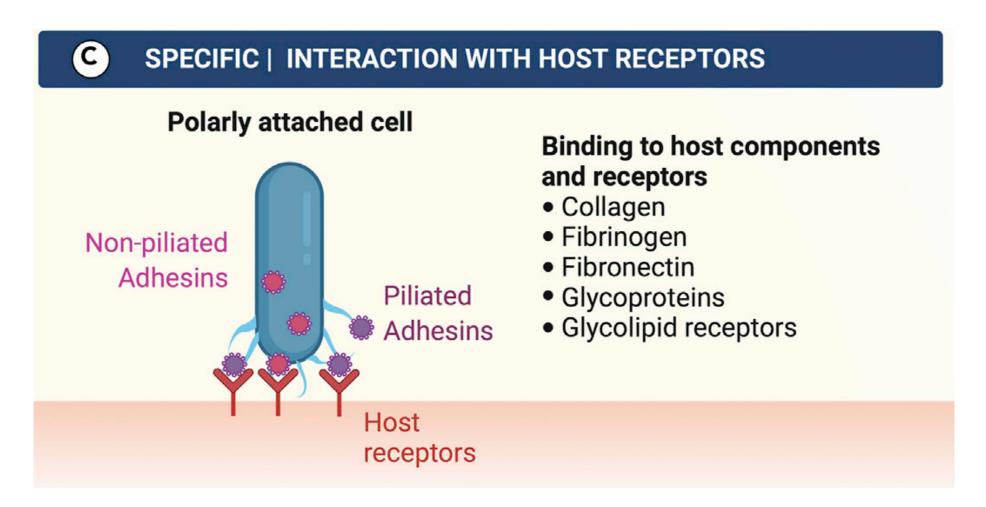
Biofilms etapas


Guzmán-Soto et al, 2021

- 1. Adhesión reversible
- 2. Adhesión irreversible
- 3. Formación de microcolonias y producción de matriz
- 4. Maduración
- 5. Dispersión

La adhesión e interacción con las superficies para formar un biofilm es **crucial** para la sobrevivencia en un medio ambiente complejo.

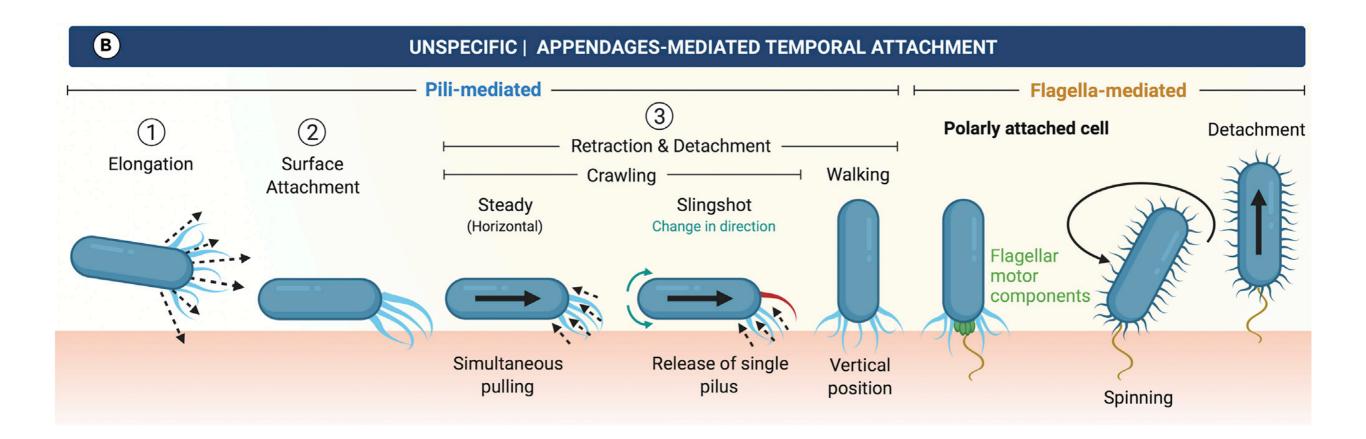
Interacciones específicas y no específicas entre las bacterias y las superficios


A superficies **abióticas** interacciones no específicas

La adhesión e interacción con las superficies para formar un biofilm es **crucial** para la sobrevivencia en un medio ambiente complejo.

Interacciones específicas y no específicas entre las bacterias y las superficies

A superficies **abióticas** interacciones no específicas A superficies **bióticas** interacciones del tipo receptor-ligando


e

e

Carga negativa de la superficie bacteriana fuerzas electrostáticas repulsivas medio líquido fuerzas hidrodinámicas repulsivas cerca de la superficie

fimbrias/flagelos para adherirse/moverse

Una vez en la superficie, incrementa la adhesión mediante adhesinas específicas y no específicas lo que da origen a la **adhesión irreversible**

Está influenciada por: factores **ambientales** (pH, salinidad, etc) propiedades **fisicoquímicas** de la superficie (rugosidad, hidrofobicidad, cargas, etc) presencia de **film condicionante** (conditioning film) capa de compuestos orgánicos e inorganicos absorbido a la superficie

Para una adhesión permanente las bacterias emplean adhesinas no específicas

fimbriales no fimbriales adhesinas polisacarídicas discretas

Adhesinas fimbriales/pili

grupo ubiquo de adhesinas Gram positivos como negativos involucradas en **adhesión** a superficies bióticas/abióticas **transferencia** de ADN formación de **biofilms**, relevantes en primeras etapas median la interacción intercelular a través de agregación y formación de microcolonias papel en la estructura secundaria del biofilm a través de la movilidad twitching

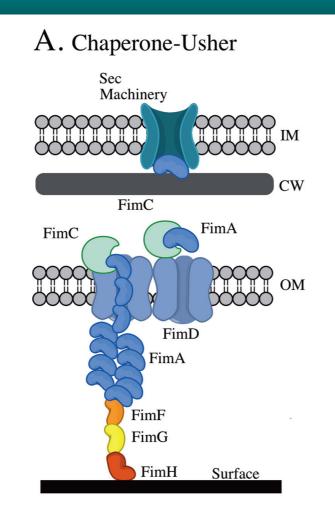
4 subgrupos definidos por el tipo de secreción y ensamblaje

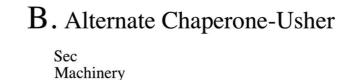
CUP (chaperon-usher pili) fimbrias tipo IV CUP alternativo

fimbrias ensambladas por nucleación-precipitación extracelular (curli)

2. Adhesión irreversible

TABLE 1 Examples of fimbrial adhesins involved in biofilm formation

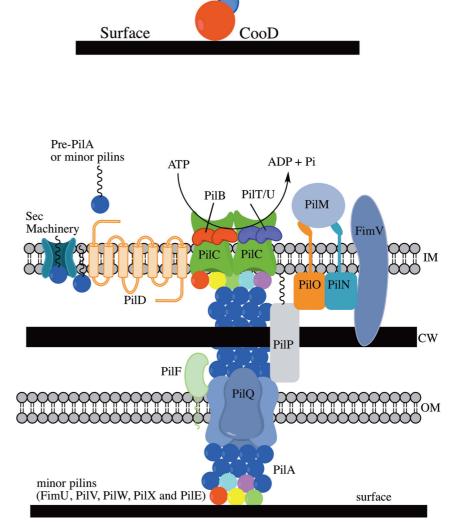

Pili type	Major pilus proteins	Minor proteins and assembly proteins	Bacteria	Reference
Chaperone/ usher	EcpA or MatA (ECP pili)	EcpC, EcpD, EcpE	E. coli	196
	FimA (type I)	FimC, FimD, FimF, FimG, FimH	E. coli, Klebsiella pneumoniae, X. fastidiosa, Enterobacter amylovora, Serratia marcescans	21, 197–200
	CsuA/B (type I) MrkA (type 3)	CsuC, CsuD, CsuE MrkB, MrkC, MrkD	Acinetobacter baummanii K. pneumoniae, E. coli (UPEC), Citrobacter koseri	201 202, 203
Type IV pili				
Type IVa	PilA, PilE	PilE, PilD, PilV, PilW, PilX PilD, PilH, Pill, PilJ, PilK, PilX , PilV, ComP, PilD	P. aeruginosa Neiserria spp.	14, 45, 46 204, 205
	MshA (MSHA)	MshB, C, D, E, F, G, I, J, K, L, M, N, O, P, and MshQ	Vibrio parahemolyticus and Vibrio cholerae	49, 206
	PilA (ChiRP)	PilB,PilC,PilD	V. parahemolyticus	49, 207
Type IVb	BfpA (bundle forming)	BfpP, BfpI, BfpJ, BfpK,	E. coli (EPEC)	208
	TcpA (Tcp)	TcpB, C, D, E, F, TcpJ	V. cholerae	50
Tad	Flp	TadA, TadB/C, TadD, TadE, TadF, TadG, TadV, RcpA, RcpB, TadZ,	Aggregatibacter actinomycetemcomitans	58, 64
	PilA	CpaA, CpaB, CpaC, CpaD, CpaE, CpaF	C. crescentus	11, 66
	Flp	TadA, TadB, TadC, TadD, TadF, TadG, FppA, RcpA, RcpC, TadZ	P. aeruginosa	56, 209
	CtpA (common pili)	CtpA, CtpB, CtpC, CtpD, CtpE, CtpF, CtpG, CtpH, CtpI	Agrobacterium tumefaciens	252
Alternative CU	CooA (CS1) CbIA (cable pilus)	CooB, CooC, CooD CbIB, CbIC, CbID	E. coli (ETEC) Burkholderia cepacia complex	26, 28 36
Nucleation/ precipitation	CsgA(Curli)	CsgB, CsgG, CsgE, CsgF, CsgD	E. coli, Enterobacter cloacae, Citrobacter spp.	72, 77
	AgfA (Tafi)	AgfB, AgfC, AgfD, AgfE, AgfF	Salmonella enteritidis	210, 211
	FapC	FapA, FapB, FapD, FapE, FapF	Pseudomonas spp.	212

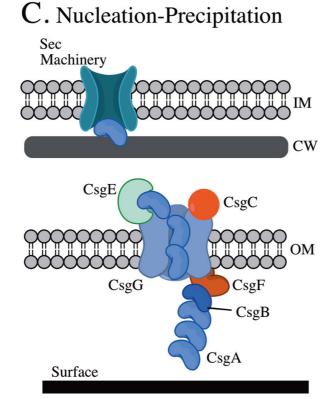

2. Adhesión irreversible

IM

CV

OM





CooB

CooC

CooA

Adhesinas no fimbriales

T1SS T5SS

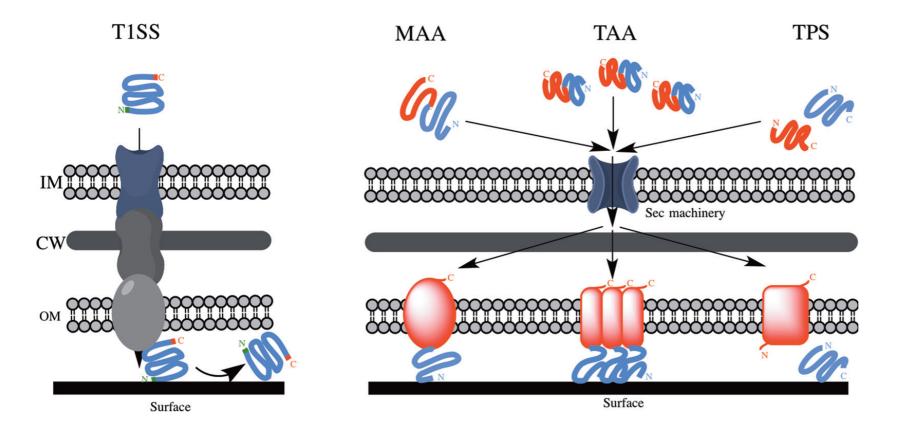


FIGURE 3 Schematic overview of the various secretion systems of nonfimbrial adhesins. The type 1 secretion system (T1SS) and three classes of type 5 secretion system (T5SS) (monomeric autotransporter adhesins [MAA], trimeric autotransporter adhesins [TAA], and two-partner secretion [TPS] systems) are represented. In T1SS, the adhesin is exported directly from the cytoplasm to the extracellular milieu via a pore comprised of three proteins. In T5SS, the adhesin is translocated from the cytoplasm to the periplasm by the Sec machinery and auto-assembled in the outer membrane. See text for more details. Abbreviations: IM, inner membrane; CW, cell wall; OM, outer membrane. doi:10.1128/microbiolspec.MB-0018-2015.f3

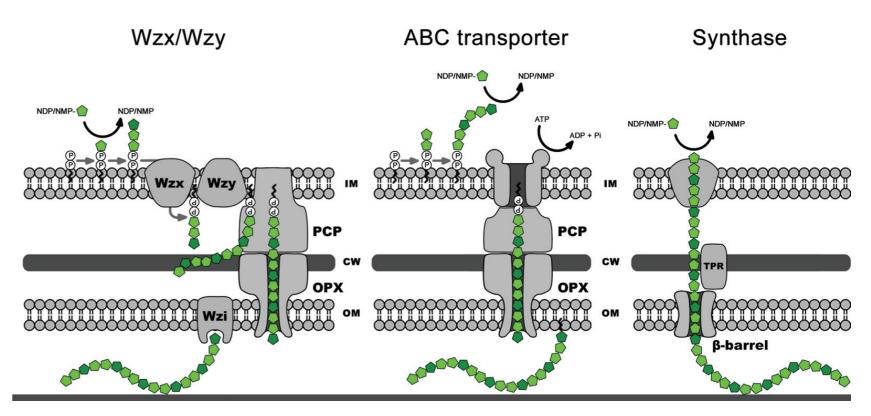
TABLE 3 Selected examples of nonfimbrial adhesins experimentally shown to be involved in biofilm formation by Gram-negative bacteria

Protein	Organism	Size (aa)	Reference
Biofilm associated pro	teins (Bap) – T1SS		
LapA .	Pseudomonas putida	8,682	84
BapA / AdhA	B. cenocepacia	2,924	213
LapA	Pseudomonas fluorescens	4,920	85
BapA	S. enterica	3,825	214
/eeJ	E. coli	2,358	102
Bap	Acinetobacter baumannii	8,621	215
_apF	P. putida	6,310	89
BfpA	Shewanella oneidensis	2,768	216
MRP	Pectobacterium atrosepticum	4,558	217
BfpA	Shewanella putrefaciens	4,220	218
Cat-1	Psychrobacter articus	6,715	219
Monomeric autotrans	oorter adhesins – T5SS		
Ag43	E. coli	1,039	104
Cah	E. coli	2,850	220
AIDA	E. coli	1,237	107
TibA	E. coli	989	221
YfaL/EhaC	E. coli	1,250	102
YpjA/EhaD	E. coli	1,526	102
YcgV	E. coli	955	102
Нар	H. influenzae	1,392	127
EhaA	E. coli	1,328	222
EhaB	E. coli	980	223
UpaH	E. coli	2,845	224
UpaC	E. coli	996	225
Upal	E. coli	1,254	226
MisL	S. enterica	955	227
Trimeric autotransport	er adhesins – T5SS		
YadA	Yersinia pseudotuberculosis	434	119
UspA1	, Moraxella catarrhalis	955	228
Hap/MID	M. catarrhalis	2,090	228
UpaG	E. coli	1,779	120
SadA	S. enterica	1,461	121
AtaA			229
haG E. coli		3,630 1,589	230
BbfA	Burkolderia pseudomallei	1,527	122
Hemagglutin-like adhe	esins – T5SS		
HxfB	X. fastidiosa	3,376	231
HxfA	X. fastidiosa	3,458	231
HMW1	H. influenzae	1,536	127
HMW2	H. influenzae	1,477	127
XadA	X. fastidiosa	763	125
YapH			124
FhaB	X. fuscans		124
XacFhaB	Xanthomonas axonopodis	4,490 4,753	232
CdrA	P. aeruginosa	2,154	129
FHA	B. pertussis	3,590	129
BcpA	Burkholderia thailandensis	3,147	233

Adhesinas polisacarídicas

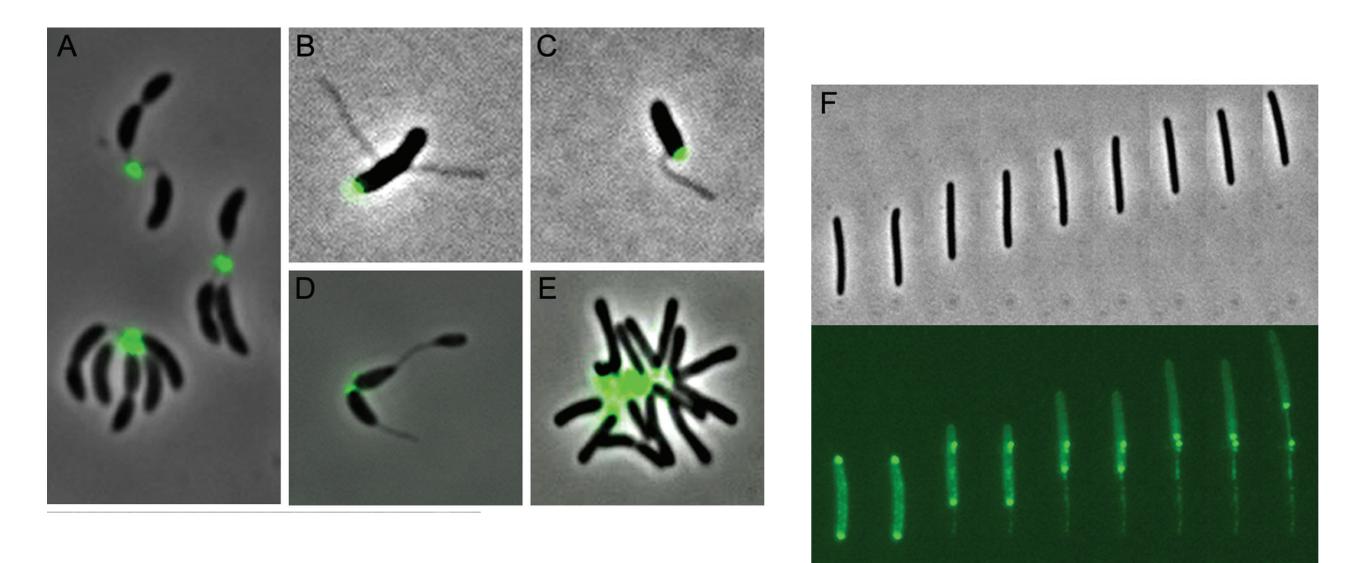
asociadas fuertemente con la superficie bacteriana formando la cápsula (polisacáridos capsulares)

levemente asociadas o secretadas (polisacáridos extracelulares EPS)


diferencias son experimentalmente definidas y tienen limitada relevancia fisiológica

desde un punto de vista adhesivo:

polisacáridos protectores forman barrera protectora polisacáridos agregativos (EPS) propiedades adhesivas/cohesivas


2. Adhesión irreversible

Polisacáridos agregativos (EPS)

2. Adhesión irreversible

Polisacáridos agregativos (EPS)

FIGURE 6 Selected examples of discrete polysaccharides. AF488-conjugated wheat germ agglutinin lectin labelling of the holdfast in (A) *C. crescentus*, (B) *A. biprosthecum* (courtesy of Chao Jiang), (C) *Asticcacaulis excentricus* (courtesy of Chao Jiang), and (D) *Hyphomicrobium vulgare* (courtesy of Ellen Quardokus). (E) AF488-conjugated wheat germ agglutinin lectin labelling of the UPP in *A. tumefaciens*. (F) FITC-conjugated ConA lectin labelling of the slime in *M. xanthus*. doi:10.1128/microbiolspec.MB-0018-2015.f6

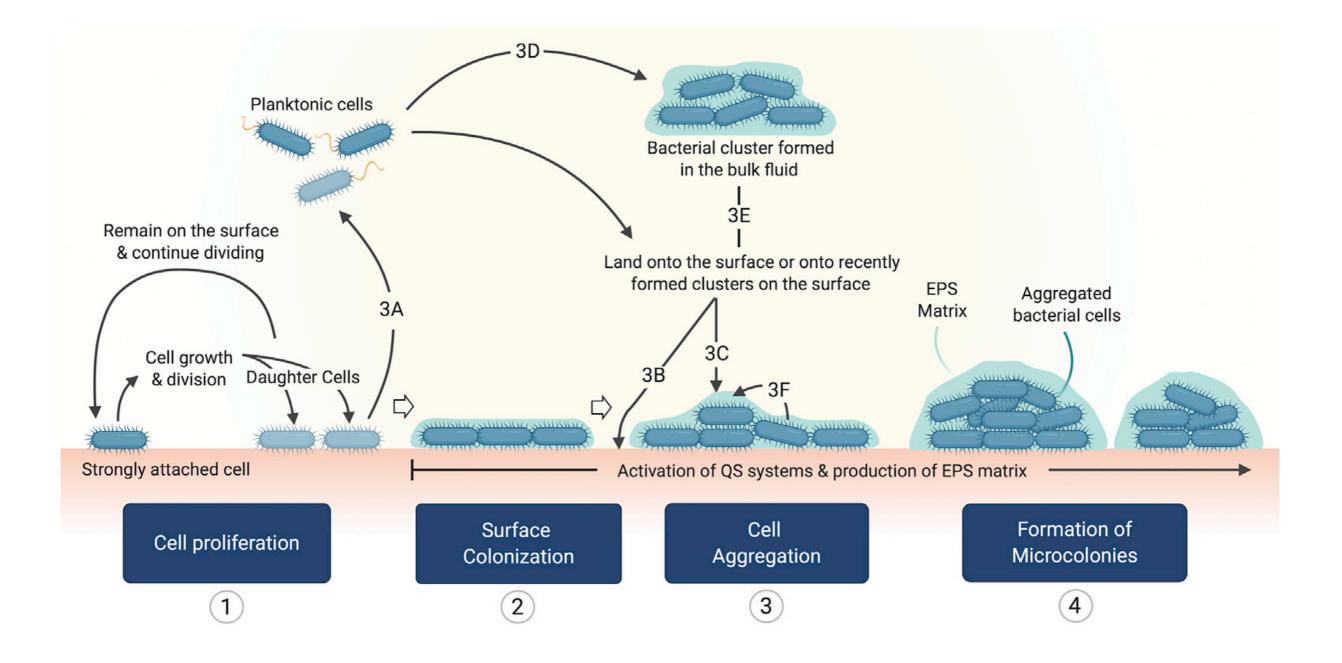

Polisacáridos agregativos (EPS)

TABLE 4 Selected examples of aggregative polysaccharides experimentally shown to be involved in
biofilm formation by Gram-negative bacteria

Polysaccharide	Organism	Composition/structure	Reference
Alginate	P. aeruginosa	β-1,4-linked mannuronic acids and guluronic acids	234
Cellulose	Gluconacetobacter xylinus, A. tumefaciens, Rhizobium leguminosarum bv. Trifolii, Sarcina ventriculli, Salmonella spp., E. coli, K. pneumoniae	β-1,4-linked D-glucose	235–239
Holdfast	Caulobacter spp., Asticcacaulis biprosthecum, Hyphomonas adherens, Hyphomonas rosenbergii, Hyphomicrobium zavarzinii, Maricaulis maris, Oceanicaulis alexandrii	Suspected to contain β-1,4-linked N-acetyl-D-glucosamine, but the exact composition and structure remain unknown	160, 163, 166, 240–243
PGA	E. coli, Yersinia pestis, Bordetella spp., Actinobacillus spp., P. fluorescens	β-1,6-linked N-acetyl-D-glucosamine	244, 245
Psl	P. aeruginosa	Repeating pentasaccharide of 3 mannose, 1 rhamnose, and 1 glucose	246–248
Pel	P. aeruginosa, P. fluorescens	Unknown, but reported to be a glucose-rich polysaccharide polymer	246, 249, 250
Slime	M. xanthus	Suspected to contain a-d-mannose or a-d-glucose residues, but the exact composition and structure remain unknown	192
UPP	A. tumefaciens	Suspected to contain N-acetyl-D- glucosamine residues, but the exact composition and structure remain unknown	68, 179

3. Microcolonias y matriz

Microcolonias

Microcolonias

Estructura **básica** del biofilm varía dependiendo de la especie bacteriana en idénticas condiciones *Pseudomonas putida* y *P. knackmussii*

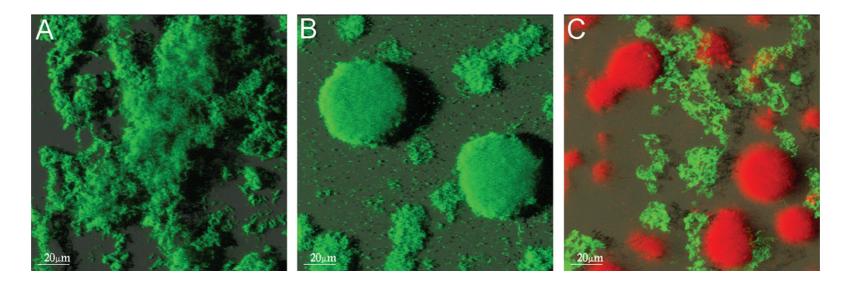


FIGURE 1 Confocal laser scanning microscopy (CLSM) images showing spatial structures in flow-chambergrown 5-day-old biofilms formed by (A) Gfp-tagged (green fluorescent) *P. putida*, (B) Gfp-tagged *P. knackmussii*, and (C) a mixture of Gfp-tagged *P. putida* and DsRed-tagged (red fluorescent) *P. knackmussii*. Bars, 20 µm. Adapted from reference 43 with permission from the American Society for Microbiology. doi:10.1128/microbiolspec.MB-0001-2014.f1

Diferencias en los componentes de la matrix podrían dar origen a las diferencias en las estructuras de las microcolonias

Microcolonias

varía dependiendo de las condiciones ambientales

P. aeruginosa mushroom-shaped microcolonies en condiciones de **flujo** con medio con **glucosa**

P. aeruginosa flat biofilms en condiciones de **flujo** con medio con **citrato**

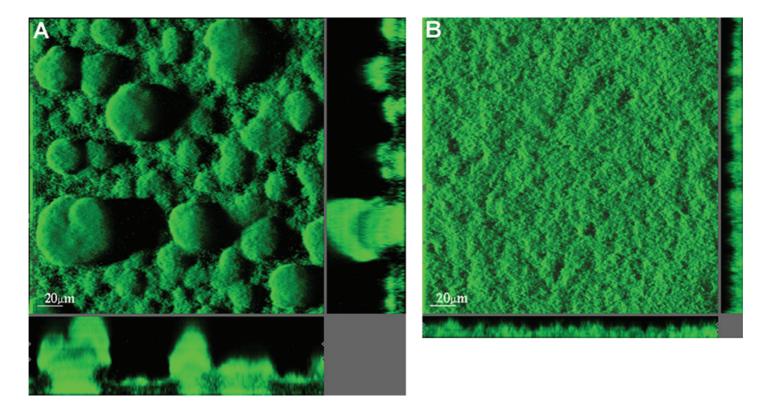


FIGURE 2 CLSM micrographs acquired in 5-day-old *P. aeruginosa* PAO1 biofilms grown on (A) glucose minimal medium and (B) citrate minimal medium. The central pictures show-top down fluorescence projections, and the flanking pictures show vertical sections. Bars, 20 µm. Adapted from reference 47 with permission from Wiley-Blackwell publishing. doi:10.1128/microbiolspec.MB-0001-2014.f2

Matriz

contribuye a la estructura y estabilidad

componentes exactos difiere entre microorganismos y condiciones de cultivo básicamente

50-90% exopolisacáridos

proteínas (adhesinas, componentes de fimbrias y flagelos, proteínas extracelulares secretadas y proteinas de vesículas de membrana externa OMV)

ácidos nucleicos (ADNe)

97% agua

matriz proteoma

gran cantidad de proteínas periplásmicas, citoplásmicas, de membrana externa e interna

Matriz exopolisacáridos

varían en composición y por lo tanto en propiedades fisicoquímicas tamaño

en asociación con lectinas, proteínas, lípidos, ADNe

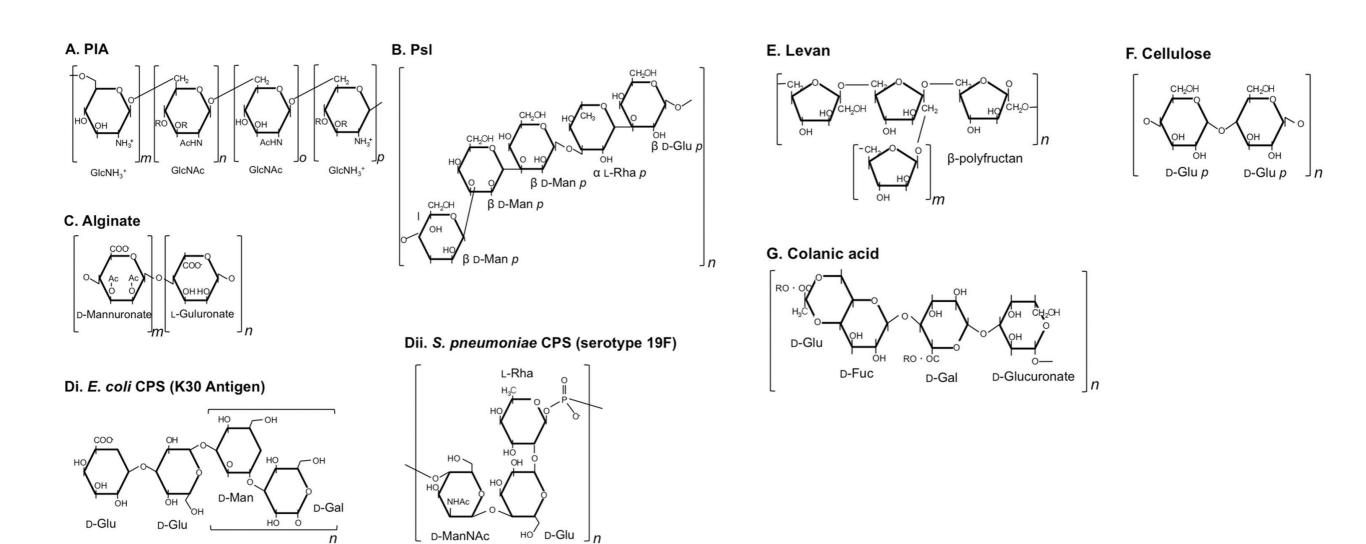
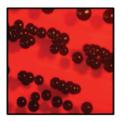

			Functions		
	Localization	Charge	Aggregative	Protective	Architectural
Pel	Secreted	NA	Х	Х	Х
Psl	Secreted/cell associated	Neutral	Х	Х	Х
PIA	Secreted	Polycationic	Х		Х
Cellulose	Secreted	Neutral	Х	Х	
Alginate	Cell associated	Polyanionic		Х	Х
CPS	Covalently attached	Polyanionic		Х	
Levan	Cell associated	Neutral	Х	Х	
Colanic acid	Cell associated	Polyanionic			Х
VPS	Secreted	NA	Х	Х	Х
Bacillus EPS	Secreted	Neutral			Х

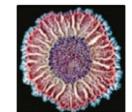
 TABLE 1 Summary of the cellular location, chemical composition, and functions of bacterial polysaccharides


 important for biofilm formation

3. Microcolonias y matriz

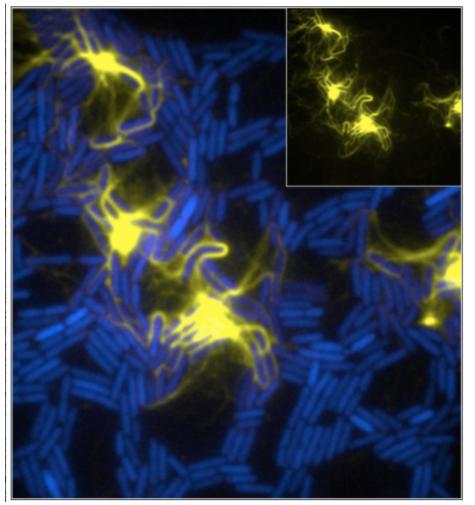
Matriz exopolisacáridos

A. S. aureus PIA



E. *E. coli* Colanic acid

G. B. subtilis EPS



H. *E. coli* Cellulose

Matriz ADN extracelular

quorum sensing involucrado tratamiento con DNAsa previene la formación de microcolonias en algunos casos proviene de **lisis** de algunas bacterias es regulada en el tiempo y espacio interactúa con EPS para producir aglomerados definidos

Extracellular DNA is visualized within an P. aeruginosa biofilm. A biofilm of P. aeruginosa expressing cyan fluorescent protein (blue) that has been cultured at the interface of a glass coverslip and solidified nutrient medium supplemented with a fluorescent dye that stains extracellular DNA (yellow). Turnbull et al. report that extracellular DNA facilitates large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa. The findings provide insights into how the intricate patterns of trails emerge during this complex multicellular behavior. Image courtesy of Erin S. Gloag, Lynne Turnbull, and Cynthia Whitchurch.

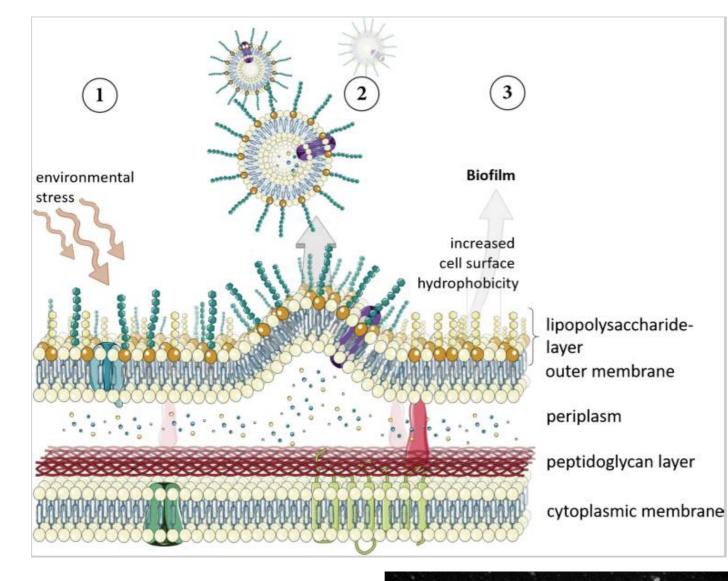
Karine A. Gibbs, et al. J Bacteriol. 2015 Jul;197(13):2084-2091.

pequeñas estructuras esféricas producidas por Gram -

10-300 nm

contenido citoplasmático y periplasmico (proteasas, fosfolipasas, toxinas, OMPS, LPS, etc)

involucradas formación de biofilms, patogénesis, quorum sensing, adquisición de nutrientes, transferencia horizontal de genes y resistencia a antibióticos


relación con el biofilm... contribuyen a la comunicación, nucleación, adquisición de nutrientes y defensa pero no es clara aún

Species	Strain	Factor	Effect	Reference
Helicobacter pylori	TK1402	22-kDa protein	Plays an important role in biofilm formation.	Yonezawa et al. (2011)
Francisella	-	OMV	Involved in biofilm formation and forming part of biofilm matrix.	van Hoek (2013)
Pseudomonas aeruginosa	PAO1	CPA	Its absence causes structural defects which limit the development of mature biofilms.	Murphy et al. (2014)
Vibrio cholerae	El Tor strain C6706	OMV-associated protein DegP	Required for the secretion of biofilm matrix components and the activity strongly influences biofilm formation.	Altindis, Fu and Mekalanos (2014)
Pseudomonas putida	DOT-T1E	OMV	Lead to an increased hydrophobicity of cells surface which enhanced their ability to form biofilms	Baumgarten et al. (2012)

 Table 1. The relationship between biofilm and vesicle in some bacteria.

Outer Membrane Vesicles (OMV)

3. Microcolonias y matriz

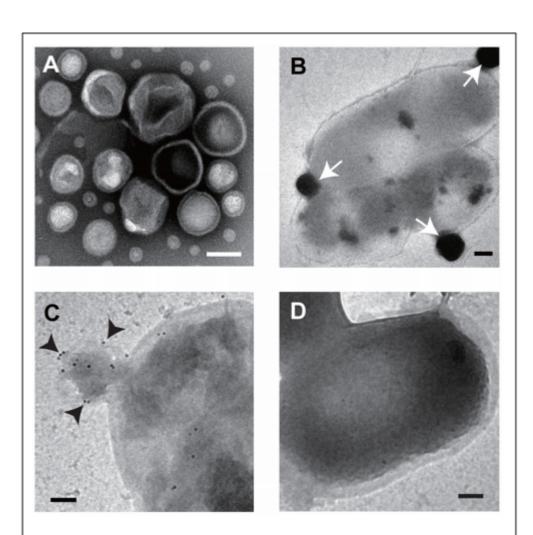
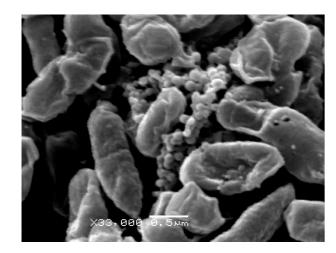



FIGURE 3 | TEM imaging. (A) Image of purified MVs derived from *B. agrestis* CUETM77-167. (B) Association of FM4-64-labeled MVs with cells. The white arrows indicate MVs, which have a high density due to FM4-64 labeling.
(C) Association of FITC-labeled MVs with cells. Cell-associated MVs were detected by small gold particles (black arrows) through the FITC antibody.
(D) Cells with no addition of MVs were reacted with FITC antibody. All bars indicate 100 nm.

Outer Membrane Vesicles (OMV)

Existen diferencias en composición de OMV de planctónicas vs OMV Biofilms

Papel en protección del ADNe de la degradación

Mantenimiento de la integridad de la **matrix**

Gran debate como ADN entra en las OMV así como su rol

Microcolonias y Macrocolonias

Biofilm recubierto de matriz (proteínas, polisacáridos, ácidos nucleicos y otros) Barrera **protectora** contra bacteriófagos, amebas, respuesta inmune y antibióticos

c-di-GMP y comunicación bacteriana (QS)

Transición de micro a macrocolonias es poco entendida

Mecanismo

simplemente el continuo crecimiento en el tiempo inducción de la formación de macrocolonias en un momento determinado combinación de determinantes genéticos + factores fisiológicos

Son diferentes en distribución de algunas moléculas claves

Formación y mantenimiento de los canales entre macrocolonias, necesarios para transporte de nutrientes, metabolitos y desechos

Quorum Sensing

Quorum sensing (QS): proceso por el cual las bacterias **sintetizan**, **reconocen** y **responden** a moléculas señalizadoras extracelulares conocidas como **autoinductoras** (AIs) que median la comunicación intercelular.

Utilizan las concentraciones de AI en el medio para **monitorear** cambios en el **número** de bacterias y coordinar la **expresión** de genes específicos de QS.

Genes involucrados en el comportamiento bacteriano, producción de ATB, producción de biofilm, bioluminiscencia, competencia genética, especulación y virulencia.

Principios del QS:

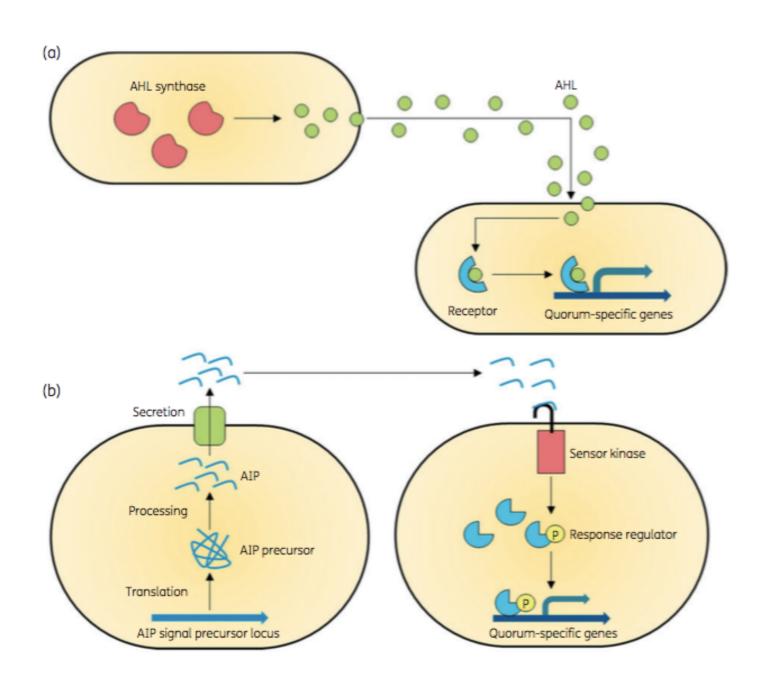
- 1. Síntesis de Als
- 2. **Detección** de Als por receptores
- 3. Activación de genes específicos de QS

Algunas bacterias no producen Al pero tienen receptores

Quorum Sensing

Gram -

acyl-homoserine lactonas (**AHL**) como Al Homoserine lactonas N-acetiladas que varían en tamaño y modificaciones sintetizadas por **AHL sintasas** (Luxl), difunden o son transportadas **Receptores** (LuxR) en ausencia de AHL son degradados.


AHL-LuxR, dimeriza y se une al ADN y **transcribe** genes especificos de QS

Gram +

oligopéptidos secretados como **AIP** Oligopéptidos aciclicos (lactonas cíclicas) precursoras dentro de la célula maduran a AIP que luego son secretadas

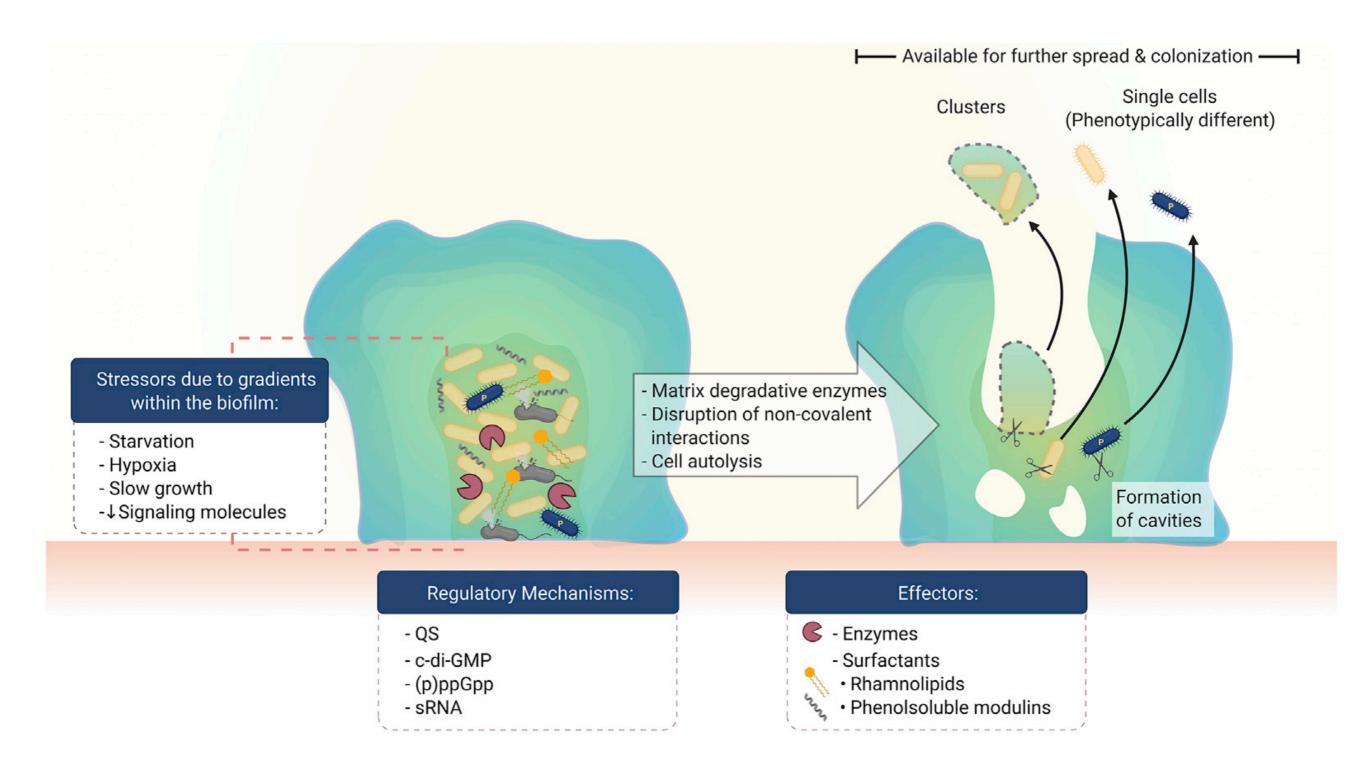
Receptores histidin-quinasa de 2 componentes, actividad quinasa resulta en **autofosforilación**.

quinasa transfiere el fostato a un **regulador** de respuesta **intracelular** que activado se une al ADN para iniciar **transcripción** de genes QS.

Existen AI comunes a G- y G+ como **AI-2** que median QA interespecies.

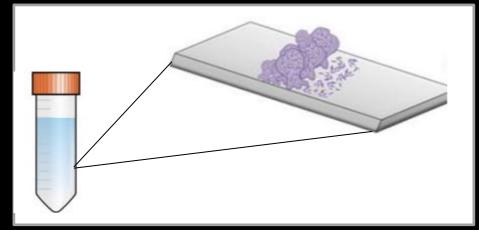
QS y biofilms **mutantes** de *P. aeruginosa* en QS forman biofilms chatos y no diferenciados **Inhibición** de QS afecta el biofilm asociado con generación de **ADNe** y **matriz** controla la producción de **ramnolípidos, lectinas y sideróforos** asociado con la **dispersión** liberación **coordinada** de bacterias de dispersión diferenciadas móviles quemotácticas

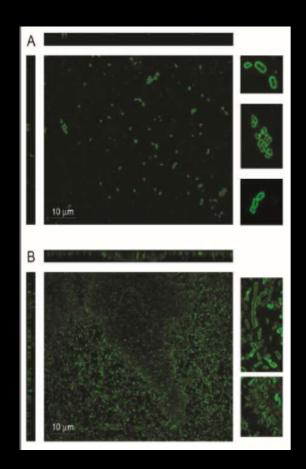
van a colonizar nuevas superficies y comenzar el ciclo

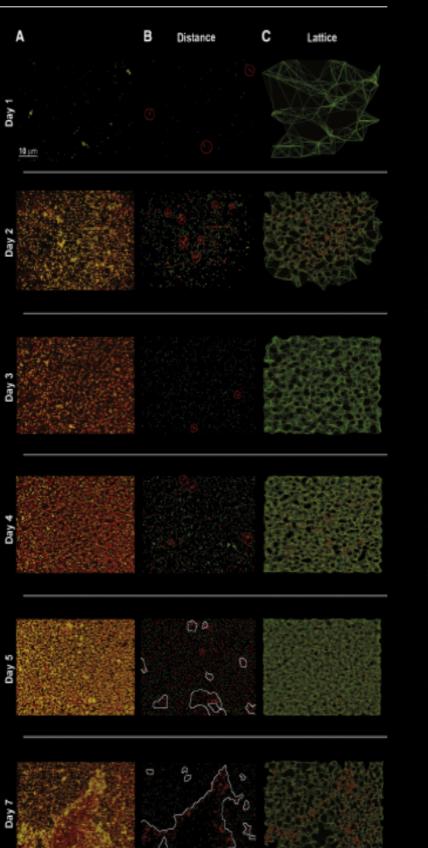

puede correlacionar con programa de muerte de sub-poblaciones de bacterias

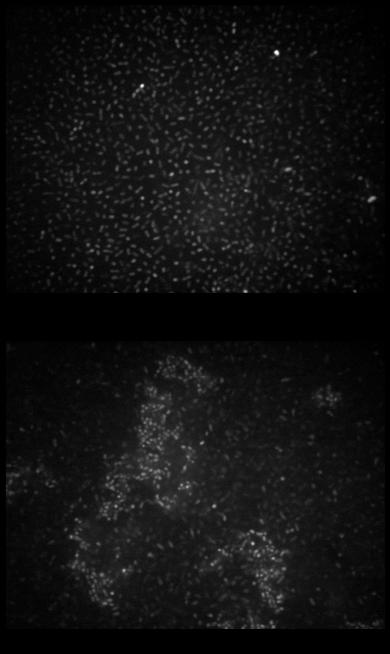
asociado con gradientes específicos de nutrientes y O2

down regulation de genes del fenotipo biofilm como exopolisacáridos y fimbrias y **up regulation** de flagelos y factores quemotaxis

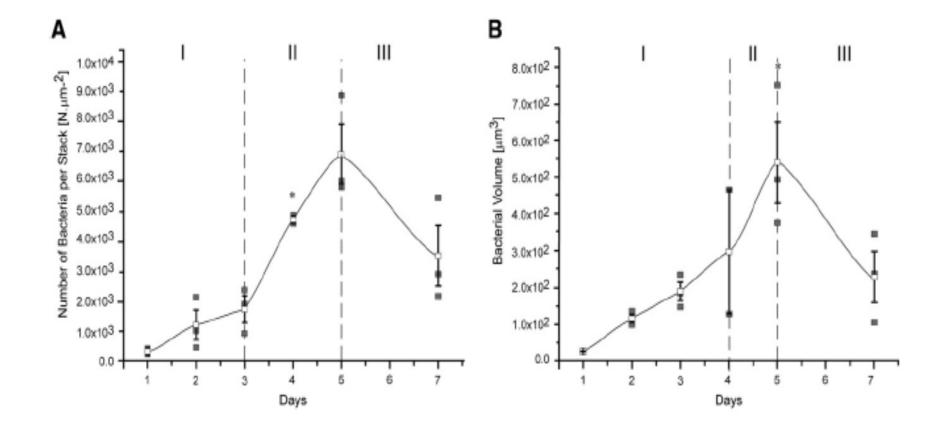

E


5. Dispersión

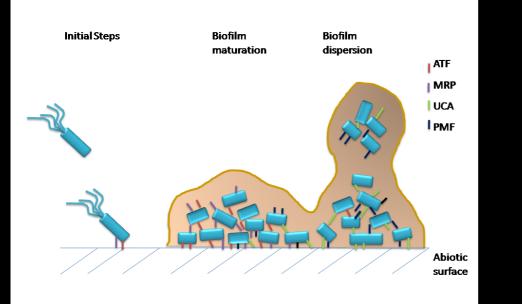

Modelo estático

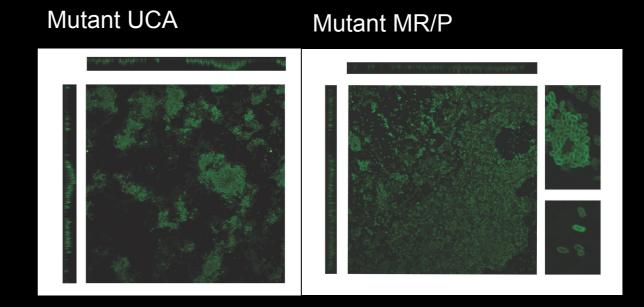

Formación de biofilms P. mirabilis

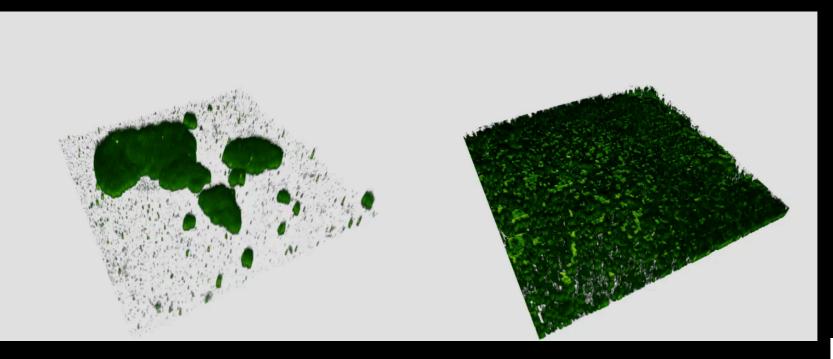
Schlapp et al., 2011



Modelo estático


Formación de biofilms P. mirabilis




Parámetros morfo-topológicos obtenidos de las imágenes

Modelo estático

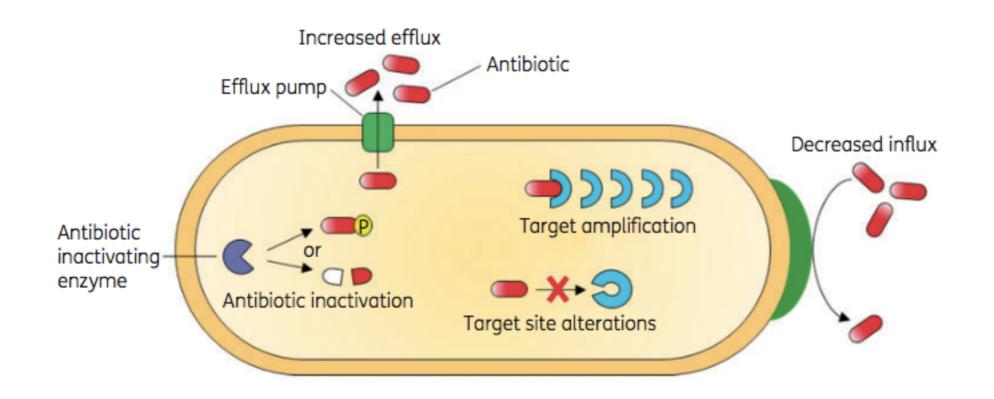
Formación de biofilms P. mirabilis

Scavone et al., 2016

Formación de biofilms P. mirabilis

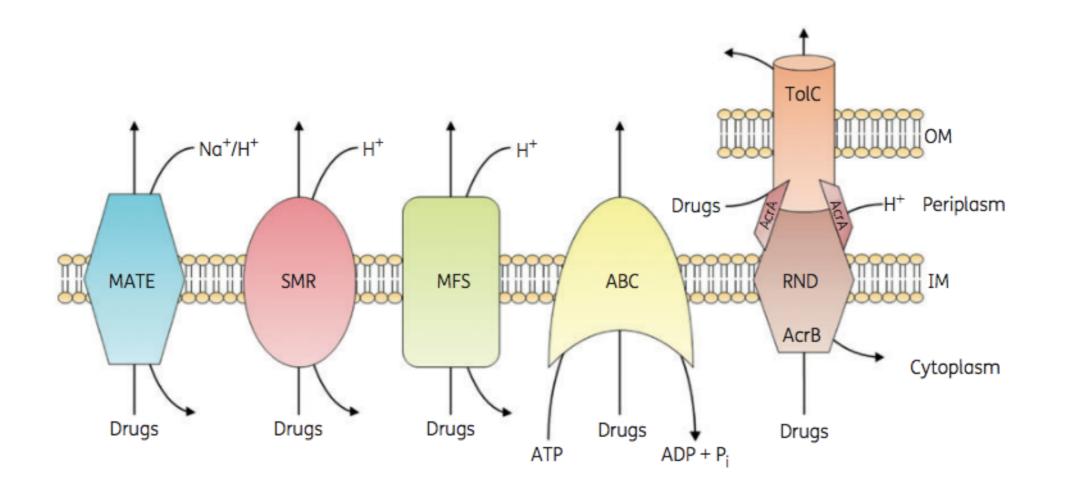
Table 7

Factors involved in biofilm formation


Biofilm Factor	Proposed Role	Reference
Urease	Nickel metalloenzyme, local increase in pH causes mineral deposition which facilitates crystalline biofilms	(<u>5, 30, 306</u>)
MR/P fimbriae	Adherence and auto-aggregation; mutants are defective in biofilm formation	(<u>44</u> , <u>177</u> , <u>244</u> , <u>256</u> , <u>275</u>)
Fimbria 10 (PMI2210)	Adherence; mutant has increased biofilm (perhaps due to fimbrial cross-talk)	(177)
UCA, PMF, and ATF fimbriae	Mutations have varying effects on biofilms (CFU, matrix) depending on culture conditions	(<u>256</u>)
RcsBCD (RsbA) phosphorelay	Phosphorelay system that enhances extracellular polysaccharide production; may control biofilm formation via regulation of fimbriae	(<u>140</u> , <u>177</u> , <u>279</u>)
Pst transporter	High-affinity phosphate transporter, mutants are defective in biofilm formation	(297)
Capsule or extracellular polysaccharides	Facilitates mineral aggregation into crystalline biofilms and bacterial colonization	(<u>282–284</u>)
LPS	P. mirabilis with different LPS charges vary in biofilm formation; pmrI LPS modification mutant and waaE inner- core LPS biosynthetic protein mutant are biofilm-defective	(<u>53, 280, 281</u>)
RsmA	RNA binding protein; expression of P. mirabilis rsmA in Escherichia coli suppresses biofilm	(<u>307</u>)
Ppk	Polyphosphate kinase; may act by regulating MR/P fimbriae	(308)
Hfq	RNA chaperone; may act by regulating MR/P fimbriae or motility	(<u>164</u>)
GlnE	Glutamate-ammonia ligase adenylyltransferase; mutant has increased biofilm	(177)
Lrp NirB	Leucine-responsive regulator Nitrate reductase; biofilm-deficient in crystal violet assay and takes longer to block catheters	(177) (<u>177</u>)
Bcr	Multidrug efflux pump; mutant has increased biofilm but takes longer to block catheters	(177)
GltS	Sodium/glutamate symport carrier protein	(177)
PMI1551	Putative lipoprotein	(177)
PMI1608	Unknown; biofilm-deficient in crystal violet assay but blocks catheters more rapidly	(177)
PMI2861	Putative membrane protein	(177)
PMI3402	MuA-like DNA binding protein; mutant has increased biofilm in crystal violet assay and blocks catheters more rapidly	(<u>177</u>)

Implicadas en la **resistencia** a **antibióticos** evidencia creciente rol en **biofilms**

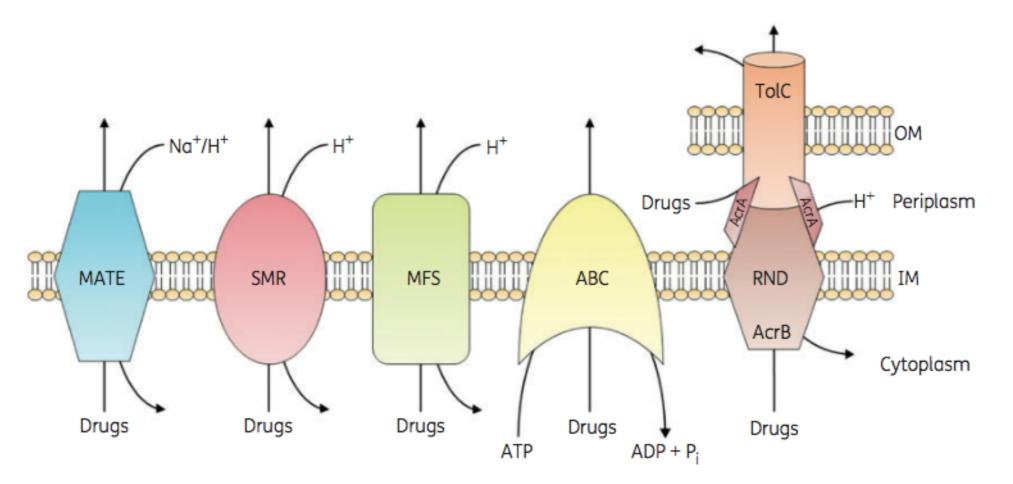
WHO lista de los 12 patógenos MDR (**ESKAPE**) se necesita desarrollo de nuevos antimicrobianos. Prioridad **crítica**, **alta** y **media**. *Acinetobacter*, *Pseudomonas* and various Enterobacteriaceae (including *Klebsiella*, *E. coli*, *Serratia*, and *Proteus*). **ESKAPE+**


Adquisición y desarrollo de resistencia

- 1. mutaciones y transferencia horizontal de genes
- 2. mecanismos de resistencia
- 3. biofilms

Proteínas de membrana involucradas en exportar sustancias nocivas desde el interior celular al medio externo ubiquas

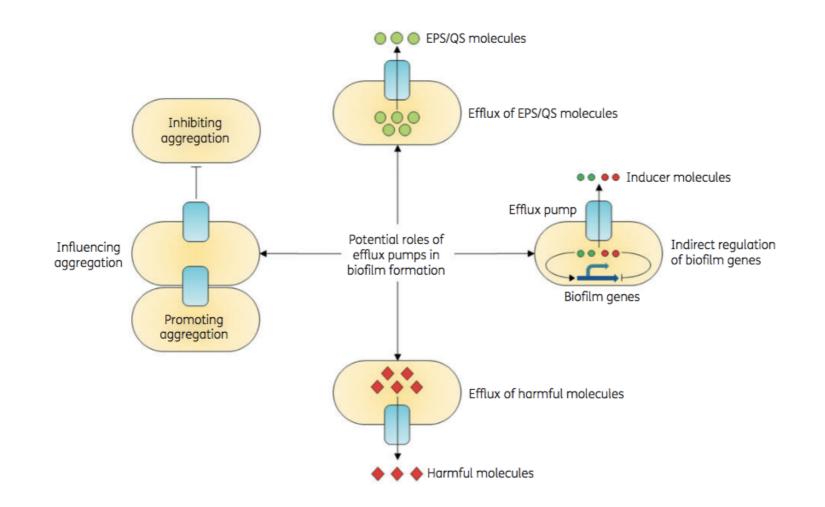
genes cromosómicos y en plásmidos (elementos móviles) exportan una amplio rango de sustancias: antibióticos, detergentes, colorantes, toxinas y desechos metabólicos. 5 superfamilias de bombas asociadas con MDR

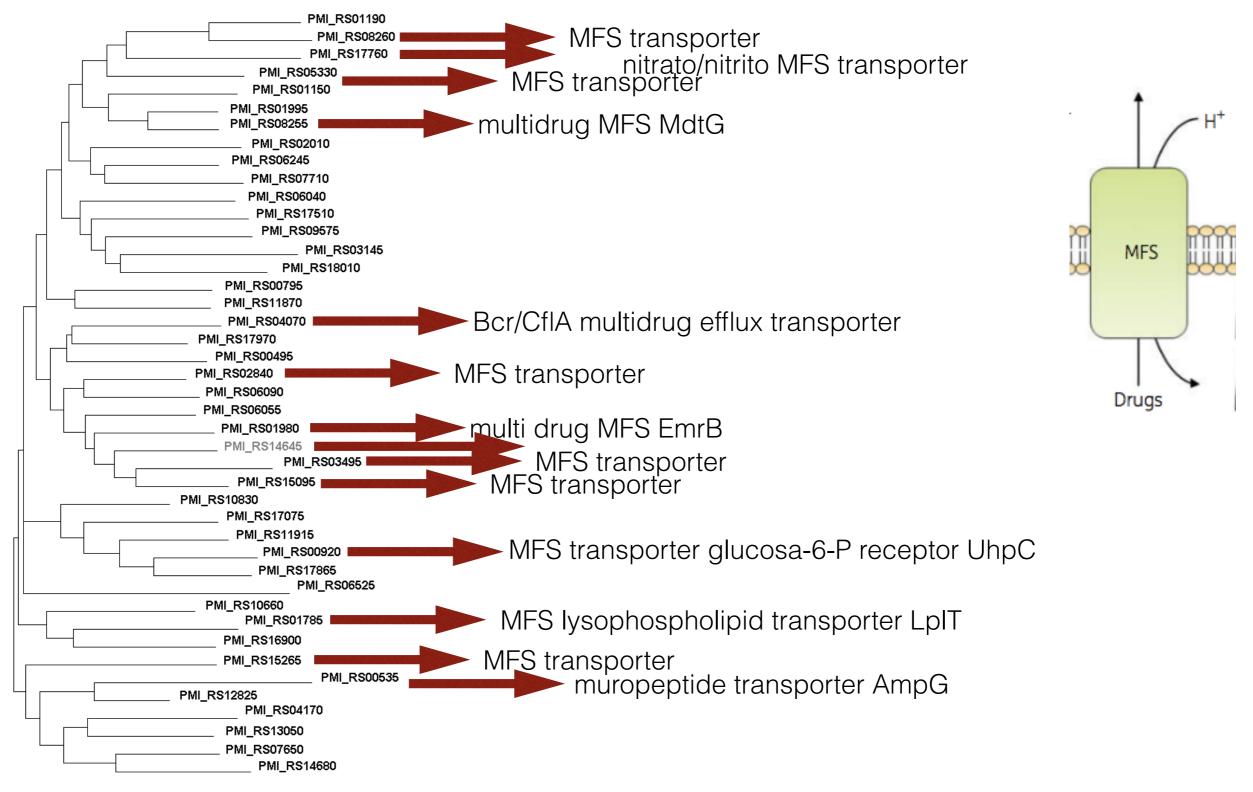

MATE: Multidrug and toxin extrusion

SMR: Small multidrug resistance

MFS: Major facilitator superfamily, muy estudiadas en Gram + (S. aureus NorA exporta fluoroquinolonas y amonios cuaternarios

ABC: ATP-Binding cassette


RND: resistance-nodulation division, solo en Gram - (E. coli y Salmonella enterica AcrAB-ToIC; P. aeruginosa MexAV-OprM; A. baumannii AdeABC) utilizan energía de las bombas protón/sodio excepto las ABC que usan hidrólisis de ATP


Formación de **biofilms**, quorum sensing (QS), patogenicidad y virulencia

eflujo de moléculas de EPS/QS y quorum quenching facilita la formación de matriz y regula QS

regulación indirecta de **genes** involucrados en la formación de biofilms **eflujo** de moléculas **tóxicas** (antibióticos, metabolitos intermediarios) influencia en **agregación** promoviendo o previniendo la adhesión

Proteus mirabilis bombas del tipo MFS

Bombas de flujo

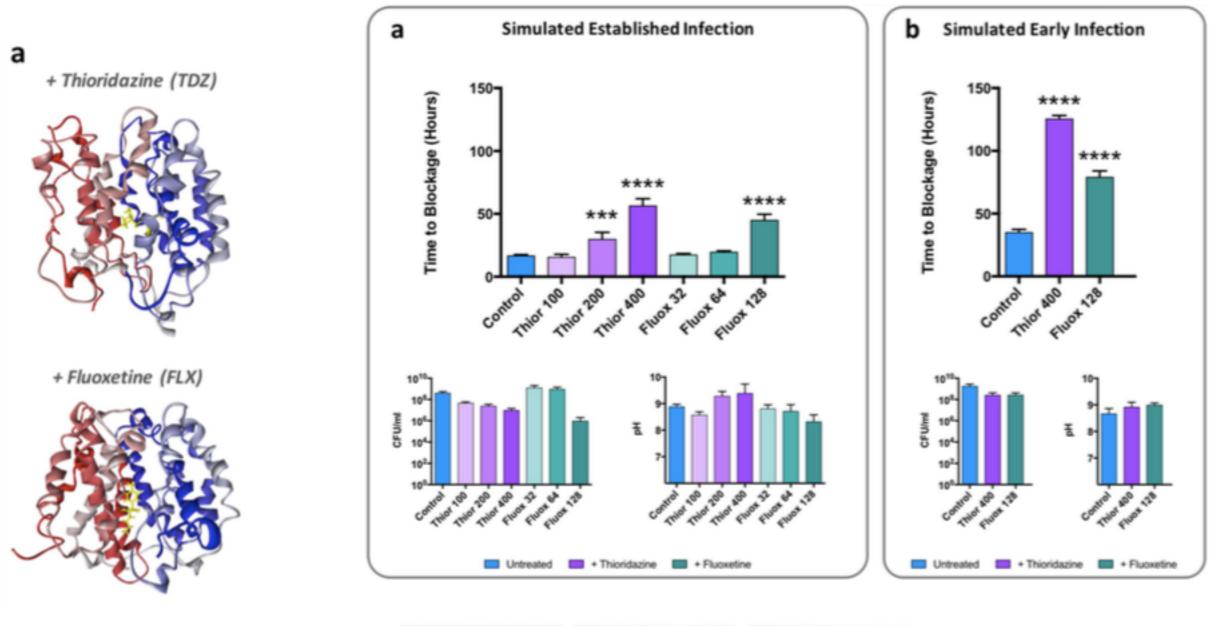
0.20

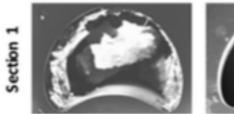
Proteus mirabilis bombas

ATP

ADP + F

Bombas de flujo PMI_RS13340 MexH adaptor


PMI_RS00720 Periplasm Drugs MATE МІ ШШШ RND AcrB Drugs Cytoplasm Drugs PMI_RS13360 QacE quaternary ammonium */H* efflux transporter PMI_RS13355 QacE quaternary ammonium SMR efflux transporter PMI_RS17830 SugE quaternary ammonium compound-resistant protein Drugs


Trugs 172 genes que codifican para ABC transporters

PMI_RS13340 MexH adaptor PMI_RS00635 permeasa PMI_RS17910 permeasa PMI_RS13345 MexW/MexI PMI_RS17905 transporter PMI_RS00640 MexE adaptor

Bombas de flujo

EPI (Efflux pump inhibitors) Thioridazine: antypsychotic drug Fluoxetine: serotonin re-uptake inhibitor (prozac)

No EPI

+ Thior 400

+ F

+ Fluox 128

Proceso altamente programado

se esperaría tener un set de "genes de biofilms" expresados

Análisis transcriptómicos han fallado en encontrar biofilms regulones.

estaría entonces gobernando por respuestas adaptativas dependiente de condiciones **nutricionales** que cambia en respuesta a las condiciones ambientales.

Si requiere la expresión de genes asociados a los productos de matriz era ómica contribuirá al entendimiento de los biofilms

Escherichia coli

condiciones de cultivo aerobias y anaerobias en biofilm y planctónicas

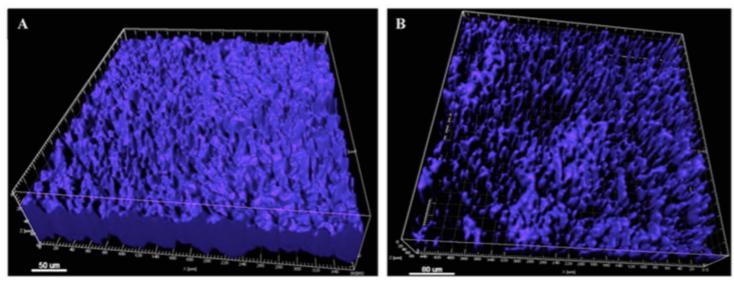
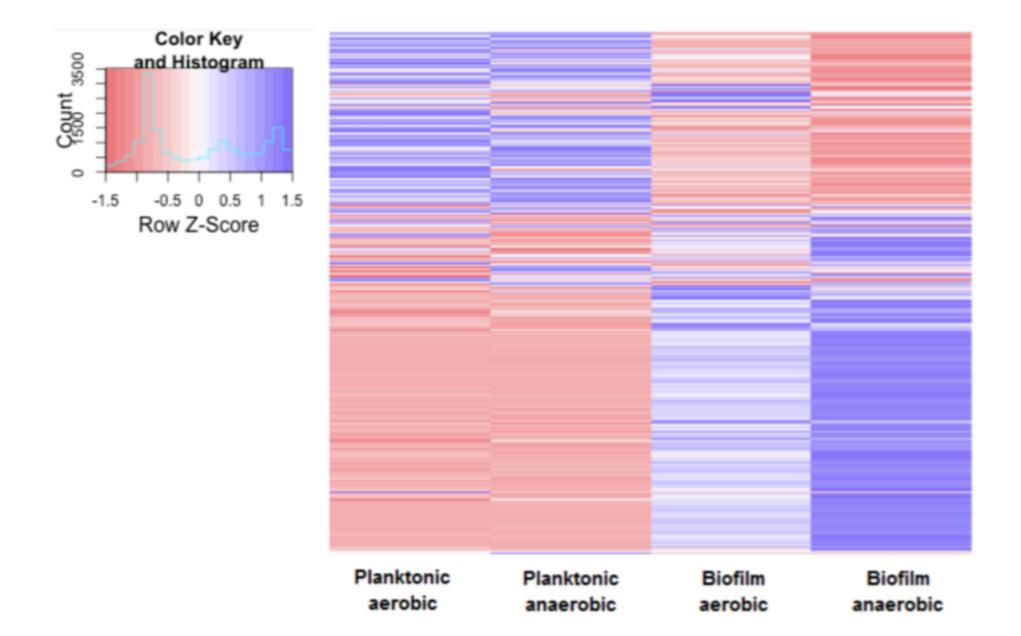
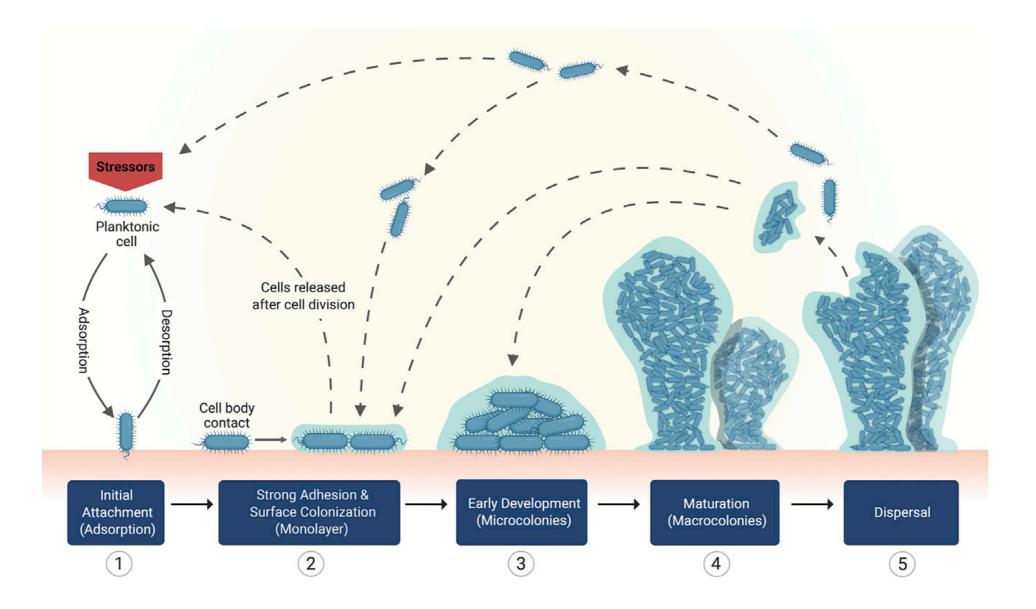



Figure 1. Biofilms of E. coli strain MG1655. Biofilms cultured (A) for 3 days

under aerobic conditions and (B) for 6 days under anaerobic conditions. The

Figure 2. Whole-gene expression profile of planktonic and biofilm cultures growing under aerobic and anaerobic conditions. A heatmap of a hierarchal cluster of


Function		Name	Product	Fold differe nce
	Asparagine	asnA & B	asparagine synthetase A & B	*
	Aspartate	pyrB	aspartate carbamoyltransferase, catalytic subunit	-2.69
	Glutamine	glnB	regulatory protein P-II for glutamine synthetase	-2.79
		glnA	glutamine synthetase	-5.17
		gltD	glutamate synthase, 4Fe-4S protein, small subunit	-2.54
	Histidine	hisL	his operon leader peptide	-3.55
Amino acids	Isoleucine & valine	ilvC	ketol-acid reductoisomerase, NAD(P)-binding	-3.04
		ilvL	ilvG operon leader peptide	-6.57
	Lysine	dapA	dihydrodipicolinate synthase	-2.66
		dapD	2,3,4,5-tetrahydropyridine-2-carboxylate N- succinyltransferase	-4.1
	Phenylalanine	pheL	pheA gene leader peptide	-4.4
		aroG	3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, phenylalanine repressible	-2.69
		serA	D-3-phosphoglycerate dehydrogenase	-4.21
	Serine	serC	3-phosphoserine/phosphohydroxythreonine aminotransferase	-2.62

Function		Name	Product	Fold differe nce
		cvpA	membrane protein required for colicin V production	-2.86
		gnsB	Qin prophage; multicopy suppressor of secG(Cs) and fabA6(Ts)	-2.67
		lpp	murein lipoprotein	-8.8
		pal	peptidoglycan-associated outer membrane lipoprotein	-5.47
		slyB	outer membrane lipoprotein	-3.09
Membrane structure		spr	mutational suppressor of prc thermosensitivity, outer membrane lipoprotein	-3.12
		mipA	scaffolding protein for murein synthesizing machinery	-3.38
		safA	two-component system connector membrane protein, EvgSA to PhoQP	4.38
	Membrane- bound ATP	atp A, C, D, G, H	F1 sector, subunit α , ϵ , β , γ , δ respectively	*
	synthase	atp B, E, F	F0 sector, subunit a, c, b respectively	*
		bdm	biofilm-dependent modulation protein	-2.61
		csrA	pleiotropic regulatory protein for carbon source metabolism	-4.4
		fimA	major type 1 subunit fimbrin (pilin)	-22.52
		flgB & C	flagellar component of cell-proximal portion of basal-body rod	*
Motility		flgK & L	flagellar hook-filament junction protein 1	*
		fliA	RNA polymerase, sigma 28 (sigma F) factor	-3.79

Function		Name	Product	Fold differe
		acrZ	AcrAB-TolC efflux pump accessory protein, membrane-associated	-3.84
		суоА	cytochrome o ubiquinol oxidase subunit II	-3.159
		exbB	membrane spanning protein in TonB-ExbB-ExbD complex	-2.679
		fliY	cystine transporter subunit	-3.19
		glnH	glutamine transporter subunit	-4.084
		malE	maltose transporter subunit	-2.835
Transport		ompC	outer membrane porin protein C	-4.72
		ompF	outer membrane porin 1a (Ia;b;F)	-12.51
		ompX	outer membrane protein X	-7.32
		proV	glycine betaine transporter subunit	-3.55
		sbp	sulfate transporter subunit	-2.88
		secB	protein export chaperone	-4.235
		secE & G	preprotein translocase membrane subunit	*
		skp	periplasmic chaperone	-6.4
		tatA	TatABCE protein translocation system subunit	-2.63
		tolB	periplasmic protein	-2.606
		tsx	nucleoside channel, receptor of phage T6 and colicin K	-2.56

Biofilms

Microbial Biofilms 2nd edition

Role of bacterial efflux pumps in biofilm formation, Ilyas Alav, J Mark Sutton, Khondaker Miraz Rahman; Journal of Antimicrobial Chemotherapy, , dky042, https://doi.org/10.1093/jac/dky042

Genome-wide transcription profiling of aerobic and anaerobic Escherichia coli biofilm and planktonic cultures. Bayramoglu B, Toubiana D, Gillor O. <u>FEMS Microbiol Lett.</u> 2017 Feb 1;364(3). doi: 10.1093/ femsle/fnx006.

Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by Proteus mirabilis. Nzakizwanayo J, Scavone P, Jamshidi S, Hawthorne JA, Pelling H, Dedi C, Salvage JP, Hind CK, Guppy FM, Barnes LM, Patel BA, Rahman KM, Sutton MJ, Jones BV. Sci Rep. 2017 Sep 22;7(1):12222. doi: 10.1038/s41598-017-12445-w.

Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Scavone P, Iribarnegaray V, Caetano AL, Schlapp G, Härtel S, Zunino P. Pathog Dis. 2016 Jul;74(5). pii: ftw033. doi: 10.1093/femspd/ ftw033

Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms-A quantitative confocal microscopy approach. Schlapp G¹, Scavone P, Zunino P, Härtel S. J Microbiol Methods. 2011 Nov;87(2):234-40. doi: 10.1016/j.mimet.2011.07.021. Epub 2011 Aug 12.

Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience. 2021 Apr 17;24(5):102443. doi: 10.1016/j.isci.2021.102443. PMID: 34013169; PMCID: PMC8113887.