Course "Optics, Forces & Development"

Principles of Optics II

Ulrich Kubitscheck

Clausius-Institute of Physical and Theoretical Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn

Sum of Point Spread Functions for Incoherent Point Objects

Radial and axial resolution as function of the NA

The resolution limit in the biological context

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

3D Point spread function (PSF)

Radial and axial intensity profile of the light distribution in the focus of a lens

6. More PSF: convolution and deconvolution

More on the PSF: convolution in microscopy

The irradiance distribution is converted to a function f(x) shown in (a). This is convolved with δ -function (b) to yield a duplicate of f(x). By contrast, convolving f(x) with the spread function h_2 in (d) yields a smoothed-out curve represented by $g_2(x)$ in (e).

Here (a) is convolved first with (b) to produce (c) and then with (d) to produce (e). The resulting pattern is the sum of all the spreadout contributions, as indicated by the dashed curve in (e).

Images are arrays of integer values h(i,j)

Surface profile

i, j-values correspond to position

Line profile

Gauss filter for image smoothing... and convolution

$$h'(i,j) = \{h(i-1,j-1) + 2 h(i-1,j) + h(i-1,j+1) + 2 h(i,j-1) + 4 h(i,j) + 2 h(i,j+1) + h(i+1,j-1) + 2 h(i+1,j) + h(i+1,j+1)\} / 16$$

0	0	1	2	3
0	1	2	3	2
1	2	3	2	1
2	3	2	1	0
З	2	1	0	0

or

$$h'(i,j) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} h(i+u,j+v) \cdot g(u+1,v+1) \qquad g(u,v) = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

or

 $h' = h \otimes g$ h' is the result of the "convolution" of h with g

Image smoothing = low pass filtering

smoothed or low pass filtered

"lenses" are nothing else than "optical low pass filters" Restoration of original object function by deconvolution

object function $O(x,y,z) \leftrightarrow \mathbb{O}(\omega_x,\omega_y,\omega_z)$ lens function $PSF(x,y,z) \leftrightarrow \mathbb{OTF}(\omega_x,\omega_y,\omega_z)$ image function $I(x,y,z) \leftrightarrow \mathbb{I}(\omega_x,\omega_y,\omega_z)$

 $I(x,y,z) = O(x,y,z) \otimes PSF(x,y,z) \iff \mathbb{I}(\omega_x,\omega_y,\omega_z) = \mathbb{O}(\omega_x,\omega_y,\omega_z) \cdot \mathbb{OTF}(\omega_x,\omega_y,\omega_z)$

$$\Rightarrow \mathbb{O}(\boldsymbol{\omega}_{x}, \boldsymbol{\omega}_{y}, \boldsymbol{\omega}_{z}) = \mathbb{I}(\boldsymbol{\omega}_{x}, \boldsymbol{\omega}_{y}, \boldsymbol{\omega}_{z}) / \mathbb{OTF}(\boldsymbol{\omega}_{x}, \boldsymbol{\omega}_{y}, \boldsymbol{\omega}_{z})$$

$$\Rightarrow \mathbb{O}(\boldsymbol{\omega}_{x}, \boldsymbol{\omega}_{y}, \boldsymbol{\omega}_{z}) \longleftrightarrow O(x, y, z)$$

Theoretically, we can invert the effect of the PSF by "deconvolution"

Restoration of original object function by deconvolution

object function $O(x,y,z) \leftrightarrow \mathbb{O}(\omega_x,\omega_y,\omega_z)$ lens function $PSF(x,y,z) \leftrightarrow \mathbb{OTF}(\omega_x,\omega_y,\omega_z)$ image function $I(x,y,z) \leftrightarrow \mathbb{I}(\omega_x,\omega_y,\omega_z)$

 $I'(x,y,z) = O(x,y,z) \otimes PSF(x,y,z) + Noise(x,y,z)$

Theoretically, we can invert the effect of the PSF by ,,deconvolution". Practically, this is far from easy! 7. Image detection by cameras and pixel size

Construction of a microscope by combination of two magnification stages

CCD-Chips

Optical Resolution and Choice of Detection Pixel Size

From "Fluorescence Microscopy: From Principles to Biological Applications"

From "Fluorescence Microscopy: From Principles to Biological Applications"

8. Objective lenses

Objectives

Color code	Magnification
white	100 - 160x
dark blue	60 - 63x
light blue	40 - 50x
green	16 - 32x
yellow	10x
orange	6.3x
red	4 - 5x
brown	2.5x
grey	1.6x
black	1 - 1.25x

Color code	Immersion
white	water
orange	glycerol
red	Multi-immersion
black	oil

With kind permission by Carl Zeiss Microscopy GmbH

From "Fluorescence Microscopy: From Principles to Biological Applications"

Objective Lens Classes

63x objectives from Zeiss. With kind permission by Carl Zeiss Microscopy GmbH

Optical Correction of Objectives

Comparison of the degree of correction for the objectives shown above in terms of the root-mean-square deviations of the optical path length difference (rms-OPD) in the exit pupil of the objective plotted as a function of the wavelength

From "Fluorescence Microscopy: From Principles to Biological Applications" With kind permission by Carl Zeiss Microscopy GmbH

Using an oil immersion objective for imaging in water

From "Fluorescence Microscopy: From Principles to Biological Applications"

The contrast problem: physical contrast techniques

bright field

phase contrast

Differential interference contrast (DIC)

dark field

Image contrast is <u>no</u> inherent object property!

9. Fluorescence

Advantages of Fluorescence Microscopy

green: nuclear envelope labeled by NTF2-GFP red: large ribosomal subunits labeled by eIF6-Halo

- specific labeling
- excellent contrast
- in vivo observation
- observation of dynamics

Fluorescent dyes

Alexa Fluor Synthetic Fluorochromes

Absorption and emission spectra & corresponding band pass filters

10. Fluorescence microscopy

Upright fluorescence microscope

Beam splitting cube

From "Fluorescence Microscopy: From Principles to Biological Applications"

How to find the correct filters for your fluorophore

https://www.omegafilters.com/curvomatic/

Curvomatic Fluorescence Spectral Viewer

Filters and Curves

Fluorescence Sets

Fluorophores

ALEXA FLUOR® 488

XF452 FITC/ALEXA FLUOR 568 DUAL BAND PREMIUM FLUORESCEN	ΞE
FILTER SET	

485-560DBEX:	%1 at nm
485-560DBDR: 💶] %T at nm
520-610DBEM:] %T at nm

Excitation:	% at nm				
Emission:	% at nm				
ALEXA FLUOR® 568					
Excitation:	% at nm				
Emission:	% at nm				

Alternative:

<u>Spectra Viewer</u> by the MPI for Brain Research, Frankfurt, Germany

(Click and drag for horizontal scroll)

II. Confocal microscopy

Combination of focussed laser illumination

and

detection through in pinhole placed in a conjugated optical plane

yields efficient background subtraction and axial resolution: "Optical Sectioning"

1-Photon Excitation Profile

SPE, λ =488 nm

Courtesy of Dr. Christian Verbeek

Excitation 488 nm Fluorescence 525 nm

axial direction

lateral direction

Objective 100X NA 1.32 100 nm/division

Scheme of a point scanning confocal microscope

Acquisition of optical slices

Alternatives: shift of object or shift of objective

Role of the detection pinhole

 $r_{obj,0} = \frac{0.61 \,\lambda}{n \, \sin \alpha}$

 α : opening angle of the objective lens divided by 2

n the refractive index of the medium in front of the objective lens.

$$NA_{Obj} = n \sin \alpha$$

Detection yield, axial and lateral resolution as function of detection pinhole diameter

N. Naredi-Rainer, J. Prescher, A. Hartschuh, D.C. Lamb 2013, chapter "Confocal Microscopy" in "Fluorescence Microscopy", ed. U. Kubitscheck

Confocal Point Spread Function (PSF) as Function of Pinhole size

Fraction of light that is transmitted through the pinhole is shown with the green cursor marking the current pinhole size for the calculated PSF. A smaller pinhole size yields a higher overall resolution, but at a significant loss in detection yield.

N. Naredi-Rainer, J. Prescher, A. Hartschuh, D.C. Lamb 2013, Chapter 5 "Confocal Microscopy" in "Fluorescence Microscopy", ed. U. Kubitscheck, 2017 Wiley VCH

Example: nuclear pore complexes in the nuclear envelope

Example: nuclear pore complexes in the nuclear envelope

