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IMAGE SEGMENTATION: SUMMARY

\, image acquisition

registration & restoration
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segmentation tracking motion estimation
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shape, topology, organization speed, persistence, choreography
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Computational Methods for Analysis of Dynamic Events In Cell Migration.
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OUTLINE

Segmentation (clustering)

Segmentation (random forest)

http://fiji.sc/



IMAGE PROCESSING: CHAGAS

Infection cycles of Chagas disease

Infective stage
Triatomine bug takas a blood meal

(passas metacyclic trypomastigotas enter
bite wound or mucosal membranes,
such as the conjunctiva)
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0 Metacyclic
trypomastigotes in hindgut
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Metacyclic trypomastigotes
penetrate various cells at bite
wound site. Inside cells they
transform into /
amastigotes.

N
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N Multiply in midgut and transform into intra-
callular amastigotes
in new infection sitas. :
Clinical manifestations 9 mﬁ;ggt; ?)inary
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Source: www.dpd-cde-gov/ dpdx




IMAGE PROCESSING: PARASITES

Fig. 1. Infection of BeWo cells with T. cruzi amastigotes. BeWo cells were challenged
with T. cruzi Ypsilon strain trypomastigotes at a parasite:cell ratioof 1:1 for 24 h and
were processed for DAPI staining after 48 h. The arrows show BeWo cell nuclei, and
the arrowheads show intracellular amastigotes. Scale bar: 10 p.m.

» Pregnancy?



IMAGE SEGMENTATION

The simplest segmentation... a manual global threshold

segmentation (>46)

segmenation (>158)

raw image



IMAGE SEGMENTATION

How to define the threshold ? ...

O Threshold
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255
Default u Red ﬁ

Dark background Stack histogram

Auto Apply Reset Set

FIJI interface




IMAGE SEGMENTATION

We have free parameters (!)

BUT, we know there are two groups of pixels: cells, and
background.

A kind of (statistical) learning problem!
clustering

classification



IMAGE SEGMENTATION: UNSUPERVISED APPROACH

» We can model threshold selection as how to discover the
best k groups or clusters at a pixel level.

» K-means clustering (k=3):
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clusters assignation +
voronoi diagram

cluster assignation +
voronoi diagram

Random centroids centroids re-computation



IMAGE SEGMENTATION: UNSUPERVISED APPROACH

K-means for our image...

Using the histogram:

@ Threshold

46
255

Default d Red ﬁ

.4 Dark background Stack histogram

Auto Apply Reset Set




IMAGE SEGMENTATION: UNSUPERVISED APPROACH

@ Threshold

» 1.- Start by guessing 2 centroids.
» 2.- Associate each intensity to 1 centroid.
» 3.- Recompute centroids

» 4.- Repeat step 2.



IMAGE SEGMENTATION: SUPERVISED APPROACH

e |[f we know input and expected output:
supervised learning.

e Features: voxel intensity, color, shape, size.

e | earning = how to identify classes using features.

L |
' Learning
Intensity Gradient model
' f' L‘i'{ s AL u‘ ;}"'.
Hessian Laplacian

INPUT FEATURES OUTPUT



IMAGE SEGMENTATION: SUPERVISED APPROACH

» We may not have examples of
segmentation, BUT we can quickly
build examples.

» Class A (background)

» Class B (objects)




IMAGE SEGMENTATION: SUPERVISED APPROACH

» We can understand pixels in higher dimensions.

» Intensity (0)

» Variance 3x3
» Mean 3x3
» Sobel 3x3

> ...

» How to build rules to identify cells and parasites?



IMAGE SEGMENTATION: DECISION TREES

» To classify pixels we can use many methods (SVM, Neural
networks), even in high dimensions. For instance decision
trees.

» We can think pixels information as “ants” that we want to
classify.

— =
o~romitca (Kl



IMAGE SEGMENTATION: DECISION TREES

» Main idea: divide & conquer. Reproductive

organs?

» (1) Divide examples using no/ g ves

simple rules.

» (2) Conquer: repeat with
subgroups




IMAGE SEGMENTATION: DECISION TREES

» Main idea: divide & conquer.

» (1) Divide examples usin
simple rules.

» (2) Conquer: repeat with
subgroups
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IMAGE SEGMENTATION: DECISION TREES

» Objetive: From observations
(X), identify the probability of
class (Y), or P(Y|X).

» (1) Partition: each rule
divide feature space.

» (2) Model: Compute P(Y|X)
per partition.

» The tree estimates P(Y|X) by
parts (partitions).

L2

Input data in feature space
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PL(YIX) X
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IMAGE SEGMENTATION: DECISION TREES

We still need to know:
How to build the tree?

How to measure how good the tree is?



IMAGE SEGMENTATION: HOW TO BUILD TREES?

Node training Information gain Shannon’s entropy
0" = argmax [ _ _ |5°) i p(c)log(p
g [ =H(S) ‘Z S H(S%) ZE;
1€{1,2}
data before split class distribution
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IMAGE SEGMENTATION: HOW TO BUILD TREES?

Split 1

» We will compare two rules: horizontal or vertical

partition.

Info Gain = 0.40
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IMAGE SEGMENTATION: HOW TO BUILD TREES?

Split 2

» We will compare two rules: horizontal or vertical

partition.

Info Gain = 0.69
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IMAGE SEGMENTATION: HOW TO BUILD TREES?

» Horizontal or vertical?

Info Gain = 0.40 top bottom
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IMAGE SEGMENTATION: HOW GOOD THE TREE IS?

» But maybe, “Reproductive organs” was a too good or too
bad question to start with or we did too many questions
(overfitting)

Reproductive
. organs?
\yes




IMAGE SEGMENTATION: OVERFITTING

» Asingle decision tree is sensitive to overfitting.

underfitting overfitting
A too little model capacity too much model capacity

error

best generalization

test set error

training set error

>
model capacity (e.g. tree depth)




IMAGE SEGMENTATION: OVERFITTING

» ldea: to replace the tree by a
forest.

» In a forest each tree is slightly
different.

» The uncorrelated tree set
improves generalization
properties.




IMAGE SEGMENTATION: FOREST SUMMARY

» Main parameters:

» Trees depth

» Number of trees

» Select input features

» DEMO: Use weka to train for k-mean threshold a random
forest to segment nuclei + parasites [FI1JI plugin]



