

Universidad de Concepción

PRINCIPLES OF TRANSCRIPTOMICS IN DEVELOPMENT" COURSE "OPTICS, FORCES & DEVELOPMENT" 12TH MARCH 2024

ESTEFANÍA TARIFEÑO-SALDIVIA PHD.

FACULTAD DE CS. BIOLÓGICAS Universidad de Concepción

Class Outline

- Transcriptomics
- Sequencing Technologies
- Repositories
- Data Analysis
- Results visualization
- Developmental studies

TRANSCRIPTOMICS -- What distinguishes one cell from another?

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Approximately 20,000 coding and 20,000 non-coding genes are expressed in varying combinations and intensities, contributing to the definition of the cellspecific transcriptomic fingerprint.

The transcriptome is defined as the complete set of transcripts, encompassing both coding and non-coding RNAs, expressed in a cell or tissue at a specific time or condition.

Transcriptomics

The cell transcriptome is **dynamic**, undergoing changes triggered by external stimuli.

Transcriptomics is the compressive study of the transcriptome, to understand how stimuli modulate transcripts expression.

What are the differences between gene and transcript?

What elements does the basic structure of a gene contain?

Is there any difference in the structure between coding and non-coding genes?

What are transcripts?

Are molecules of RNAs synthetized from a DNA template

Alternative Alternative transcription transcription startpoints endpoints Exon 1 Exon 2 Exon 3 Exon 4 Gene 2 3 2 3 1 1 3 2 mRNAs 2 3 2 1 3 1 3 4 3 1 4 1 2

Related to the complexity of the organism

So, How can we define a gene?

Any interval of DNA transcribed into a functional RNA molecule

Accounts for:

- ✓ Non-coding RNAs
- ✓ Coding Genes
- ✓ Splicing Variants

Exclude:

Pseudogenes:

non-functional copies of genes often resulting from gene duplication events, mutations, or evolutionary processes.

Transcriptomics is performed by

I) RNA-Microarrays

- Based on probe hybridization of a predefine set of genes.
- Required previous knowledge of the sequence to be hybridized
- It is quantitative

2) RNA-Sequencing

- Allows the discovery of new transcripts/genes/alternative splicings
- It is quantitative
- The analysis is more complex than microarray

Transcriptomic analysis output

• Estimate the presence/absence and quantify transcripts.

- Evaluate alternative splicing to determine or predict protein isoforms.
- Quantitatively estimate the influence of genotype on gene expression.

SEQUENCING TECHNOLOGIES -- Let's talk about nucleotide sequencing

3 sequencing generations

Sanger sequencing or chain termination method

Negative end

Automatized sanger sequencing with fluorescent terminators (current)

A different fluorescence to each terminator allows for running just one reaction.

Fragments separation perform on capillary electrophoresis coupled to an electronic detector

The detector is connected to a computer and the signal is read on a chromatogram (electropherogram)

Shotgun sanger sequencing

Sequencing Range: 100-1000bp

It was implemented to sequence long DNA fragments

The principle is based on random fragmentation of the long DNA piece.

Those fragments are sanger sequenced and posteriorly assembled based on overlapping sections to reconstruct the original DNA molecule.

For RNA-seq, transcripts will be randomly fragmented on small pieces (300bp)

Key Sequencing Concepts

Two concepts/features of sequencing that must be defined before we continue

What do we sequence?

Sequencing Depth and Coverage

What do we sequence in RNA-seq experiments?

A fragment of DNA with two adapters sequences attached, one at each end, which are used for the sequencing reaction

On shotgun sequencing, the known regions around the insert will play as adapters

On <u>next-generation sequencing</u>, this sequences must be compatible with the sequencing technology

Sequencing Depth and Read Coverage

Sequencing depth is the number of reads (so, DNA fragments) sequenced. This number must be defined before sequencing according to the transcriptome/genome size. Organisms with big genomes will require more sequenced reads than organisms with small genomes.

Read Coverage is the number of sequences covering a specific region of the genome or transcriptome.

partly overlapping sequencing reads result from the multiple templates being sequenced across the flow cell

Read Coverage for RNAseq

Read Coverage for RNA-seq is often calculated in terms of sequence depth by sample and will depend on your objective.

<u>Recommendations for eukaryotes organisms (by Illumina)</u>:

- For quick snapshots of highly expressed genes, 25 millions reads by samples is enough
- For a global view of gene expression and some information on alternative splicing, typically 60 million reads by sample will work (most of the published works are using this sequence depths).
- In-depth transcriptome exploration will need a minimum of 200 million reads is need
- Targeted sequencing 3 millions

Read length recommendations:

- mRNA profiling \rightarrow SE 75bp
- Transcriptome assembly \rightarrow PE 75bp or 100bp
- Small RNA \rightarrow SE 50bp

G OPEN ACCESS 👂 PEER-REVIEWED

RESEARCH ARTICLE

Evaluating the Impact of Sequencing Depth on Transcriptome Profiling in Human Adipose

Yichuan Liu, Jane F. Ferguson, Chenyi Xue, Ian M. Silverman, Brian Gregory, Muredach P. Reilly 🚥 🖾, Mingyao Li 🚥 🖾 Published: June 24, 2013 • https://doi.org/10.1371/journal.pone.0066883

Article	Authors	Metrics	Comments	Media Coverage			
*							
Abstract	Abstract						
Introduction	Recent advances in RNA sequencing (RNA-Seq) have enabled the discovery of novel transcriptomic variations that are not possible with traditional microarray-based methods. Tissue and cell specific transcriptome changes during pathophysiological stress in disease cases versus controls and in response to therapies are of particular interest to investigators studying cardiometabolic diseases. Thus, knowledge on the relationships between sequencing depth and detection of transcriptomic variation is needed for designing RNA-Seq experiments and for interpreting results of analyses. Using deeply sequenced Illumina HiSeq 2000 101 bp paired-end RNA-Seq data derived from adipose of a healthy individual before and after						
Materials and Methods							
Results							
Discussion							
Supporting Information							
Author Contributions							
References	systemic administration of endotoxin (LPS), we investigated the sequencing depths needed for studies of gene expression and alternative splicing (AS). In order to detect expressed genes						
Reader Comments Figures	and AS events, we found that ~100 to 150 million (M) filtered reads were needed. However, the requirement on sequencing depth for the detection of LPS modulated differential expression (DE) and differential alternative splicing (DAS) was much higher. To detect 80% of events, ~300 M filtered reads were needed for DE analysis whereas at least 400 M filtered reads were needed for DE analysis whereas at least 400 M filtered reads were needed for DE analysis whereas at least 400 M filtered reads were needed for DE analysis whereas at least 400 M filtered reads were needed with modest sequencing depths (~100 M filtered reads), the estimated gene expression levels and exon/intron inclusion levels were less accurate. We report the first study that evaluates the relationship between RNA-Seq depth and the ability to detect DE and DAS in human adipose. Our results suggest that a much higher sequencing depth is needed to reliably identify DAS events than for DE genes.						

Figures

SEQUENCING TECHNOLOGIES -- Let's talk about nucleotide sequencing

3 sequencing generations

Next Generation sequencing — What is Second Generation?

- It is massive sequencing which is characterized by high depth (millions of fragments sequenced at once)
- Compared with Sanger, it is >100x cheaper and faster
- During the development of this technology appear several platforms, however, Illumina is the gold standard now.

Instrument	Method	Read Length	Yield	Quality	Value
Illumina	synthesis + fluorescence	250	++++	++++	++++
SOLiD	ligation + fluorescence	75	++++	+++	+++
Roche 454	non-term NTP + luminescence	600	+	++++	++

Illumina Sequencers

Sequencing System	iSeq [°]	MiniSeq [~]	MiSeq [®]	NextSeq [®]	HiSeq®	HiSeq* X	NovaSeq®
					4000	Five/Ten	6000
Output per run	1.2 Gb	7.5 Gb	15 Gb	120 Gb	1.5 Tb	1.8 Tb	1 Tb - 6 Tb¹
Instrument price	\$19.9K	\$49.5K	\$99K	\$275K	\$900K	\$6M ² /\$10M ²	\$985K
Installed base ³	NA	~600	~6,000	~2,400	~2,3	3004	~285

1. Output per run for the S1, S2 and S4 flow cells equal 1 Tb, 2 Tb and 6 Tb, respectively assuming two flow cells per run

2. Based on purchase of 5 and 10 units for HiSeq X Five and HiSeq X Ten, respectively

3. Based on end of fiscal year 2017

4. Combined HiSeq family

5

Video of how Illumina sequencing works

Third Generation sequencing

It was developed based on the need for larger reads, which help resolve complex genomic structures such as repetitive elements, copy number alterations, alternative splicing, and structural variations.

	PacBio ¹		Oxford Nanopore ²	
Instrument Specifications	RS II (P6-C4)	Sequel	MinION	PromethION
Average read length	10 – 15 kb	10 – 15 kb	Variable (up to 900 kb) ^{3,4}	*
Error rate	10 – 15 %	10 – 15 %	5–15 % ^{4,5}	*
Output	500 Mb – 1 Gb	5 Gb – 10 Gb	~5 Gb^4	*
# of reads	~50k	~500k	Variable (up to 1M) ^{6,7}	*
Instrument price/Access fee ^a	\$700k	\$350k	\$1000 ⁸	\$135k bundle ⁹
Run price	~\$400	~\$850	\$500-\$900 ⁷	*

Third-Generation sequencing— PacBio Platform

The third-generation sequencing is also known as single-molecule real-time (SMRT) sequencing. In the case of PacBio technology, it is based on the use of zero-mode waveguides (ZMWs).

PacBio utilize circular consensus sequences to improve accuracy

Circular consensus sequencing involves multiple passes of the sequencing template. The system records multiple reads of the same circular DNA molecule, generating a consensus sequence by aligning these reads. This process helps correct errors that may occur in individual reads, improving overall accuracy.

(>99% accuracy)

We got a big amount of data...so, what now??

Why do we care about repositories??

- ✓ Open Source and Open Science Advocacy:
- Encourage transparency in scientific research by sharing raw data with the scientific community.
- ✓ Journal Publication Requirement:
- Reputable scientific journals often require the release of data before accepting and publishing a research paper.
- Fulfilling this requirement demonstrates a commitment to the highest standards of scientific integrity.
- ✓ Global Scientific Collaboration:
- Acknowledge the role of shared biological data as a valuable resource for the global scientific community.
- By contributing to a collective pool of information, researchers worldwide can access and utilize this data for diverse scientific endeavors.

Some well-know data repositories

- ENA / European Nucleotide Archive
- SRA /Sequence Read Archive
- GEO /Gene Expression Omnibus
- BioSD / BioSamples Database
- TIARA /Total Integrated Archive of short-Read and Array

Check complete list here: https://www.nature.com/sdata/policies/repositories

Data Analysis General Pipeline

Data Analysis General Pipeline

Primary format for NGS data

FASTQ (FASTA + Quality)

• Format that associates sequences with quality value by nucleotide base

BAM

• Format for aligned and not aligned sequences. It is binary (compressed)

SAM

• Format for aligned and not aligned sequences. It is text (extended and human readable)

BED

• Format describing one feature (CDS, Exon, Intron, UTR, etc..) per line

GFF/GTF (gene annotation)

• Format describing one feature (CDS, Exon, Intron, UTR, etc..) per line, often contains more information than bed format

Formato FASTA: Componentes

Formato FASTQ

Is an extension of the FASTA format carrying quality values associated with each base

https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/#fastq-files

Quality Value are expressed by phred score

Sequencing quality scores measure the probability that a base is called incorrectly. With sequencing by synthesis (SBS) technology, each base in a read is assigned with a quality score by a phred algorithm.

The sequencing quality score of a given base, Q, is defined by the following equation:

 $Q = -10\log 10(e)$

where e is the estimated probability of the base call being wrong.

How quality value are generated

Illumina quality scores are calculated for each base call in a two-step process:

- I. Quality predictor values are observable properties of clusters from which base calls are extracted.
 - a) intensity profiles
 - b) signal-to-noise ratios

2. A quality model, also known as a quality table or Q-table, lists combinations of quality predictor values and relates them to corresponding quality scores.

Quality Score	Error Probability
Q40	0.0001 (1 in 10,000)
Q30	0.001 (1 in 1,000)
Q20	0.01 (1 in 100)
Q10	0.1 (1 in 10)

Quality value code

The quality values are coded on letters and symbols

The coding system is the ASCII (American Standard Code for Information Interchange)

 !"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 33 64 73 59 104 126 Phred+33, raw reads typically (0, 40) S - Sanger Solexa+64, raw reads typically (-5, 40) X - Solexa I - Illumina 1.3+ Phred+64, raw reads typically (0, 40) J - Illumina 1.5+ Phred+64, raw reads typically (3, 41) with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold) (Note: See discussion above). L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

!"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHIJ						
1	I	I	I	l I		
Q0	Q10	Q20	Q30	Q40		
bad	maybe	ok	good	excellent		

Quality value exercise

How data quality impacts on my results?

Quality recommendations

Experimental design Minimize variability in your samples Have at least 3 biological replicates

Samples

Avoid degradation, use an RNA Stabilization Reagent Integrity of RNA must be RIN \geq 8 Samples must be DNA-free (DNase treatment) Select appropriate library prep method for RNA available

Sequencing

Consider sequencing depth based on exp objective Run read QC controls, reproducibility test and Mapping QC.

The GIGO (GARBAGE IN - GARBAGE OUT) PARADIGM

Quality issues on sequencing data

The sequences might contain errors such as:

- > Duplicated Reads (Low complexity libraries and PCR duplicares)
- > Reading into the adapters (short fragments in comparison with read length)
- > Error Indel (Deletion or insertion of a base during sequencing)
- > Undetermined Base (base calling base was uncertain and it is replaced by an N)
- > Substitution errors (wrong base calling base)

Rare

ALL OF THEM CAN BE RECTIFIED OR ELIMINATED THROUGH BIOINFORMATICS ANALYSIS

Data Analysis General Pipeline

RNA-sequencing alignment is challenging

- It requires high computational power (Millions of reads being analyzed)
- Intron presence (mapping to the reference genome alignment must be splice aware)
- Inefficient alignment (Genetic variants, repeat sequences and contaminations)

Sequence alignment: Two Types

We must align reads to find the correct position in the reference genome from where they were originated.

Global Alignment

Target Sequence 5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3' ||||||||||| 5' ACTACTAGATT----ACGGATC--GTACTTTAGAGGCTAGCAACCA 3' Query Sequence

Local Alignment

- Performed end-to-end for both sequences introducing gaps if needed
- Aligns all the bases both for query and target
- Ideal for related sequences with similar length

- Perform alignments only in the most similar regions
- Align pieces of query and target sequences (substrings/subsequences)
- Can provide more than one alignment

Features of alignment strategies

• Genome alignment + Gene model assembly (splice aware alignment) Positive:

Detection of new transcripts

Negative:

Alignment is difficult

Insert size and inner distance are difficult to infer due to the intron presence

• Transcriptome alignment

Positive:

Do not require spliced alignment Simplifies the expression estimation by isoform Insert size and inner distance are informative Negative:

Depends on the gene model quality No discovery of new transcripts 🔅

Alignment visualization with IGV

Data Analysis General Pipeline

Expression level estimation

Is a two steps process:

I) Count aligned reads to genomic features (exons, genes, transcripts)

2) Normalize counts

Normalization is the process of scaling raw counts values to make them comparable

Why do we care about normalization?

Given the number of reads in the draw, which isoform is more expressed?

The blue isoform has more reads, but it is also longer than the green one.

As the library preparation includes fragmentation, long isoforms will generate a greater number of reads

Principal factors included on the normalization

• Global Sequence Coverage

In this case, it is the total number of mapped reads to the genome o transcriptome. This is very important to normalize when comparing expressions between samples.

MI Love: RNA-seq statistical analysis

Principal factors included on the normalization

• Global Sequence Coverage

When comparing expression between genes on the same samples (let's say comparing the expression of gene A with gene B) the length will tend to overestimate the expression of long genes.

• Genes Length

Sample A Reads

• Transcriptome composition

Principal factors included on the normalization

• Global Sequence Coverage

• Genes Length

• Transcriptome composition

It is highly recommended that when comparing two samples with different backgrounds (e.i. different cell types, different genetic backgrounds, etc) the composition of the transcriptome must be taken in account.

ne DE

Most popular normalization methods

Counts per million (CPM)

Fragments per kilobase per million reads (FPKM o RPKM)

Transcripts per million reads (TPM)

Trimmed Mean of M-value (TMM - EdgeR)

DESeq's Median of ratios

Dillies et al., 2013, Brief in bioinformatics

Normalization methods (I)

Normalization method	Description	Accounted factors	Recommendations for use
CPM (counts per million)	counts scaled by total number of reads	sequencing depth	gene count comparisons between replicates of the same samplegroup; NOT for within sample comparisons or DE analysis
TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis

Normalization methods (11)

Normalization method	Description	Accounted factors	Recommendations for use
DESeq2's median of ratios [1]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis ; NOT for within sample comparisons
EdgeR's trimmed mean of M values (TMM) [2]	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depth, RNA composition, and gene length	gene count comparisons between and within samples and for DE analysis

https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html

Data Analysis General Pipeline

Differential Expression Estimation

A right estimation of differentially expressed genes between two conditions is key for understanding phenotypical variations We should estimate:

> The magnitude of differential expression Significance of the differential expression

Significant difference

No significant difference

(Costa-Silva et al., 2017, Plos One)

Comparison of DE methods with qRT-PCR

ΤοοΙ	TPR	SPC	PPV	ACC	<i>F</i> ₁ measure
edgeR	0.71	0.94	0.90	0.85	0.79
baySeq	0.92	0.40	0.52	0.61	0.66
DESeq	0.44	0.59	0.43	0.53	0.44
NOlseq	0.80	0.95	0.92	0.89	0.86
SAMseq	0.44	0.52	0.39	0.49	0.42
limma+voom	0.81	0.93	0.89	0.88	0.85
EBSeq	0.68	0.55	0.52	0.60	0.59
DESeq2	0.84	0.95	0.92	0.90	0.88
sleuth	0.77	0.54	0.54	0.63	0.64

https://doi.org/10.1371/journal.pone.0190152.t004

ACC: Rate of right predictions SPC: ratio of true detection TRP: Sensibility or rate of true discovery

NOIseq, Limma+voom and DESeq2 are the programs highly correlating with qRT-PCR results

(Costa-Silva et al., 2017, Plos One)

Visualization of differential expression analysis

The raw out of a DE analysis is a long table of genes/transcripts with stats results and expression information

ID	Gene_name	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
ENSMUSG0000024907	Gal	1323	2,0	0	3	0	0,019
ENSMUSG0000050541	Adra1b	174	8,0	2	4	0	0,005
ENSMUSG0000072663	Spef2	127	8,2	2	3	0	0,010
ENSMUSG0000082575	Eef2-ps2	130	8,2	2	3	0	0,009
ENSMUSG0000020325	Fstl3	53	8,8	3	3	0	0,097
ENSMUSG0000064202	Spata6l	53	8,8	3	3	0	0,091
ENSMUSG0000075307	Klhl41	106	8,9	3	3	0	0,031
ENSMUSG0000071398	2410004P03Rik	110	8,9	3	3	0	0,038
ENSMUSG00000116735	Gm49555	58	9,0	3	3	0	0,059
ENSMUSG0000026730	Pter	60	9,0	3	3	0	0,093
ENSMUSG00000115569	Gm49169	60	9,0	3	3	0	0,096
ENSMUSG0000018923	Med11	60	9,0	3	3	0	0,086
ENSMUSG0000028840	Zfp593	120	9,1	2	4	0	0,003

We often are interested on:

- Up and Downregulated genes (significantly changing)
- Fold of change
- Expression levels of DE genes

Plotting results (scatterplots)

Plotting results

HeatMap plot

Principal Component Analysis (PCA) plot

Data Analysis General Pipeline

RNA-seq Downstream Analysis

After we got our DE gene list, we need to add biological meaning to this set of genes based on the following questions:

Biological function of modulated genes?

Biological pathway affected by my treatment?

RNA-seq Downstream Analysis

Then, we can run different analyses to get ideas about the function of the modulated genes:

- Gene Ontology Mapping
- Enrichment Analysis
- Gene Set Enrichment analysis

Gene Ontology

The Gene Ontology (GO) describes our knowledge of the biological domain with respect to three aspects:

Molecular Function:

describe activities that occur at the molecular level, such as "catalysis" or "transport".

Cellular Component:

Locations relative to cellular structures in which a gene product performs a function, either cellular compartments (e.g., mitochondrion), or stable macromolecular complexes of which they are parts (e.g., the ribosome).

Biological Process:

The larger processes, or 'biological programs' accomplished by multiple molecular activities. Examples of broad biological process terms are DNA repair or signal transduction.

They do not represent biological pathways

Gene Ontology plot

The **GENEontology** Consortium

About Ontology Annotations

Downloads Help

Any Ontology Gene Product

Hint: can use UniProt ID/AC, Gene Name, Gene Symbols, MOD IDs

Panther: a webtool for GO

GENEONTOLOGY Unifying Biology	PANT Classificati	HER
		LOGIN REGISTER CONTACT US
Home About PANTHER Data	PANTHER Tools PANTHER Ser	vices Workspace Downloads Help/Tutorial
PANTHER17.0 Released.		
Search	Gene List Analysis	Browse Sequence Search cSNP Scoring Keyword Search
All		
Go	Please refer to our article in	Nature Protocols for detailed instructions on how to use this page.
	Help Tips	
Quick links	Steps: 1. Select list and list	 Enter ids and or select file for batch upload. Else enter ids or select file or list from workspace for comparing to a reference list.
Whole genome function	type to analyze 2. Select Organism	Enter IDs:
Genome statistics	 3. Select operation 	Supported IDs separate IDs by a space or comma
Data Version	Using enhancer data	Upload Choose File No file chosen
PANTHER API		IDs: File
FAQ		format Please login to be able to select lists from your workspace.
How to cite PANTHER		Select ID List
Recent publication describing PANTHER		List Type: Previously exported text search results
		O Workspace list
News		PANTHER Generic Mapping ID's from Reference Proteome Genome
PANTHER17.0 Released.		Organism for id list Absidia glauca (ABSGL)
Click for additional info.		○ VCF File Flanking region 20 Kb ✔ □ Search Enhancer Data
Newsletter subscription		2. Select organism.
Enter your Email:		Homo sapiens
		Mus musculus Rattus norvegicus
Subscribe		Gallus gallus Danio rerio
(GP)		3. Select Analysis.
PostgreSQL		Functional classification viewed in gene list
		○ Functional classification viewed in graphic charts ○ Bar chart ○ Pie chart
		O Statistical overrepresentation test
		O Statistical enrichment test

Enrichment Analysis

- It characterizes a gene list by looking at classes of genes representing functions that are overrepresented on the list and associated with your study
- The analysis test statistically the overrepresentation of these gene classes and estimate if they are significant
- For this analysis, the gene background used is essential. Your background must respond to the classes of genes used as input.
 - For transcriptome-wide modulated gene set the perfect background would be all the genes expressed in your data set.
 - For regulated kinases gene set a "kinome" background (all kinases annotated in the genome)

DAVID: Webtool for pathways analysis

	Analysis TABASE DAVID Bioinformatics Re	Gene List Manager	Annotation Summary Re			Help and Tool Manual
Home Start Analysis Shortcut to	DAVID Tools Technical Center Download	Select to limit annotations by one	Current Gene List: Downregulated		40 DAVID IDs	
Home Start Analysis Shortcart to	DAVID TOOLS TECHNICAL CENTER DOWNLOAD	or more species <u>Help</u>	Current Background: Danio rerio		heck Defaults 🗹	Clear All
Upload List Background	_		Functional_Annotations (6 selected	-		
opioad List background	Ai	- Use All Species -	COG_ONTOLOGY	5.4% 13	Chart	
Upload Gene List		Danio rerio(240)	PIR_SEQ_FEATURE	0.4% 1	Chart	
opioau dene List		Unknown(2)	UP_KW_BIOLOGICAL_PROCESS	23.8% 57	Chart	
		_	UP_KW_CELLULAR_COMPONENT	51.2% 12	3 Chart	
Demolist 1 Demolist 2		Select Species	UP_KW_MOLECULAR_FUNCTION	44.6% 10	7 Chart	
Upload Help			☑ UP_KW_PTM	21.7% 52	Chart	
	🔰 🤙 Step 1. Submit your gene lis	List Manager <u>Help</u>	UP_SEQ_FEATURE	87.9% 21		
Step 1: Enter Gene List		List_1	☑ Gene_Ontology (3 selected)			
A: Paste a list		Downregulated	General_Annotations (0 selected)			
	An example:		Interactions (1 selected)			
			BIOGRID_INTERACTION	0.8% 2	Chart 🗧	
	Copy/paste IDs to " box A " -> Select Identifie	Select List to:		2.5% 6	Chart 📃	
	1211	Use Rename		0.8% 2	Chart 冒	
Clear	1007_s_at	Remove Combine	UP_KW_LIGAND	25.8% 62	Chart	
	1053_at		■ Literature (0 selected)			
Or	117_at	Show Gene List	Pathways (0 selected)			
B:Choose From a File	121_at 1255_g_at		EC_NUMBER	15.0% 36	Chart	
Choose File No file chosen	1294_at	View Unmapped Ids	KEGG_PATHWAY	42.5% 102	Chart	
	1316_at		REACTOME_PATHWAY	30.8% 74	Chart	
	1320_at			19.2% 46	Chart	
	1405_i_at		Protein_Domains (4 selected)			
Step 2: Select Identifier	1431_at		Tissue_Expression (0 selected)			
AFFYMETRIX_3PRIME_IVT_ID V	1438_at 1487_at		-			
	1494_f_at		***Red annotation categories denote DAVID define	ed defaults***		
	1598_g_at		Combined View for Selected Annota	ation		
			Functional Annotation Clustering			
Step 3: List Type						
Gene List 🔵			Functional Annotation Chart			
Background O						
Step 4: Submit List			Functional Annotation Table			
Submit List						

GENE SET ENRICHMENT ANALYSIS (GSEA)

- Instead of comparing modulated genes list with a background list, we use a ranked list.
- This list will be organized in descending order based on the fold of change, p-value, etc
- Then, "functional terms" (GO, disease, etc) are mapped to the ranked list.
 - Genes upregulated that are enriched for a certain functional term will be at the top of the list
 - Genes Downregulated enriched for a certain term will be found at the bottom of the list
 - Terms not enriched will be mapped all over the list

As results we will get enrichment plots by pathways

Enrichment Plots: Interpreting Results from GSEA

Enrichment plot: PID_IL23_PATHWAY

Enrichment Score:

Which reflects the degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes.

The score at the peak of the plot (the score furthest from 0.0) is the ES for the gene set. Gene sets with a distinct peak at the beginning (such as the one shown here) or end of the ranked list are generally the most interesting.

Interpreting Results from GSEA

Shows where the members of the gene list appears in the ranked list of genes

Interpreting Results from GSEA

Enrichment plot: PID_IL23_PATHWAY 0.8 0.7 Enrichment score (ES) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Ranked list metric (Signal2Noise) TG: (positively correlated) 1.5 1.0 0.5 0.0 Zero cross at 7871 -0.5 -1.0 -1.5 'WT' (negatively correlated) 2,500 5,000 7,500 10,000 15,000 12,500 0 Rank in Ordered Dataset Enrichment profile — Hits — — Ranking metric scores

Leading Edge Subset:

is the subset of members that contribute most to the ES. For a positive ES (such as the one shown here), the leading-edge subset is the set of members that appear in the ranked list prior to the peak score.