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Class Qutline

* Transcriptomics

* Sequencing Technologies
*  Repositories

* Data Analysis

*  Results visualization

* Developmental studies




TRANSCRIPTOMICS -- What distinguishes one cell from another?

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Approximately 20,000 coding and 20,000 non-coding
genes are expressed In varying combinations and
Intensities, contributing to the definition of the cell-
specific transcriptomic fingerprint.

The transcriptome is defined as the complete set of

transcripts, encompassing both coding and non-coding
RNAs, expressed in a cell or tissue at a specific time
or condition.



Transcriptomics

The cell transcriptome is dynamic, undergoing changes
triggered by external stimuli.

Transcriptomics is the compressive study of the
transcriptome, to understand how stimuli modulate
transcripts expression.




What are the differences between gene and transcript?

What elements does the basic structure of a gene contain?
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Is there any difference in the structure between coding and non-coding genes?



What are transcripts?

Are molecules of RNAs synthetized from a DNA template
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So, How can we define a gene?

Any interval of DNA transcribed into a functional RNA molecule

Accounts for:

v Non-coding RNAs
v’ Coding Genes
v' Splicing Variants

Exclude:

* Pseudogenes:
hon-functional copies of genes often

resulting from gene duplication events,
mutations, or evolutionary processes.



Transcriptomics is performed by

1) RNA-Microarrays
* Based on probe hybridization of a predefine set of genes.

* Required previous knowledge of the sequence to be
hybridized
* It is quantitative

2) RNA-Sequencing

* Mllows the discovery of new transcripts/genes/alternative
splicings

* It Is quantitative

* The analysis is more complex than microarray

[ Total RNA extraction from sample source J
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Chip prepared with an array of probes
designed in sequence to hybridize with
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fragmentation and sequencing
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Reference sequence

The RNA in the sample is fragmented,
sequenced and re-assembled against a
reference sequence

[ Requires a priori sequence knowledge ]

[ No a priori knowledge required ]

Detection of known transcriptsfisoforms
Quantification of transcriptsfisoforms

Detection of known transcriptsfisoforms )
Discovery of novel transcripts/isoforms
Quantification of transcriptsfisoforms
Allele specific expression (ASE)
Detection of structural variations D,

Standard pipelines

S

Straightforward Interpretation of results ]

"N

No standard pipeline
Requires intensive data processing /




Transcriptomic analysis output

Estimate the presence/absence and quantify transcripts.

Evaluate alternative splicing to determine or predict
protein isoforms.

Quantitatively estimate the influence of genotype on
gene expression.




SEQUENCING TECHNOLOGIES -- Let’s talk about nucleotide sequencing

3 sequencing generations

Second Thrid

Short Reads Long Reads

© 1990-2001: Human Genome Project
1993: Development of pyrosequencing
1998: Single molecule emulsion PCR
1998: Founded Solexa

| 2000: Founded 454 Life Sciences
" 2005:454 GS20 sequencer

I 2008:Solexa Genome sequencer
0 2006: lllumina acquires Solexa
) 2007:ABISOLID
[ 2007:Roche acquires 454 Life Sciences
| 2008:GSFLXsequencer
) /2008:NOS Hismiai Garioriis Sagusrang,
1 BB 2010:Hi-Seq 2000
I 8 2011:lontorrent
|
| - 2012: PacBio
: @ 2014: Oxford Nanopore |



Primer for
replication

Sanger sequencing or chain termination method

Strand to be sequenced
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Automatized sanger sequencing with fluorescent terminators (current)

A different fluorescence to each terminator allows for running just one

re acti 0 n DN& Fragments with Dye Terminators
° (Smaller fragments pass through the Capillary tube
capillary first)
(6060006,600060600606 ]
(6,006,600606,06,0,060)
0,.00.066006,060.0

00066006060

Fragments separation perform on capillary electrophoresis coupled to an
electronic detector

CROROEO®
The detector i1s connected to a computer and the signal 1s read on a iyt
of the same size) moves
chromatogram (electropherogram) EOORR

past the detector, it creates
apeak inthe signal which is

| Base G252

lGCCCCTG AGATTTCTCTTGGTGAACAGT TTGTAIITGCTGGAAGGTGACAAGAGTGTGATAAGCC TGACCCACC T

AAT CA L T
Sequence output

—




Shotgun sanger sequencing

Sequencing Range: 100-1000bp
It was implemented to sequence long DNA fragments

The principle 1s based on random fragmentation of
the long DNA piece.

Those fragments are sanger sequenced and
posteriorly assembled based on overlapping sections
to reconstruct the original DNA molecule.

For RNA-seq, transcripts will be randomly fragmented
on small pieces (300bp)

Large DNA
molecule

Fragmentation

Sequenced

Assembly of
overlapping
DNA sequencing

Assembled
sequence

CATACACGTAGCTATACG
GTTACAGTGCTGCATA
GCTATCAGGCTACGTTA

GCTATCAGGCTACGTTACAGTGCTGCATACACGTAGCTATACG



Key Sequencing Concepts

A Two concepts/features of sequencing that must be defined before we continue Q

> What do we sequence?

> Sequencing Depth and Coverage



What do we sequence in RNA-seq experiments?

A fragment of DNA with two adapters sequences attached, one at each end, which are used for the sequencing reaction

On shotgun sequencing, the known regions around the insert will play as adapters

¢

On next-generation sequencing, this sequences must be compatible with the sequencing
technology

Adapter 1 Insert Adapter 2



Sequencing Depth and Read Coverage

Sequencing depth is the number of reads (so, DNA fragments)
sequenced. This number must be defined before sequencing
according to the transcriptome/genome size. Organisms with
big genomes will require more sequenced reads than
organisms with small genomes.

Read Coverage i1s the number of sequences covering a specific
region of the genome or transcriptome.

Mumber of reads

=y
(L]
t

18x coverage

ACCIGCTCAGGCCgCCCTCCTAR

ACOCIGC TCAQGCCGCCCTCCTA

AOMGCTCAGGCCACCCTCCTA

A TCTCAGGCCTCCCTCCTAR
CCCCAGCCOCCACECC TACIIGC TC AGGCCGCCCTOC
[CTCCAGCCCCACTCCTACICGCTCaGGECGCCCTCC

caCTgCtCCAgCCCCaCeCCTaC|C) GCTCAGGCC GO

CTTaCTGC TCCAGCCCCARATCCTACITIGCTCAGGCC

TCTTACTGCTCCAGCCCCARTCCTACEGCTCAGGC

CtCCth
CAgGCCGCCCTCCTA

cCGCoATe TTAaCEGC TCCAGCCC CACECC TaCc
CCGCCATCTTACTGCTCCAGCCC CACTCCL ACC
cLgC o CogyCCGCCATCTTACTGC TCCAGCC

L
GC

partly overlapping sequencing reads result from the multiple
templates being sequenced across the flow cell



Read Coverage for RNAseq

Read Coverage for RNA-seq is often calculated in terms of sequence depth by sample and will depend on your objective.

Recommendations for eukaryotes organisms (by lllumina):

* For quick snapshots of highly expressed genes, 25 millions reads by
samples Is enough

* For a global view of gene expression and some information on
alternative splicing, typically 60 million reads by sample will work
(most of the published works are using this sequence depths).

* In-depth transcriptome exploration will need a minimum of 200
million reads Is need

* Targeted sequencing 3 millions

Read length recommendations:

* mRNA profiling = SE T5bp

* Transcriptome assembly —=> PE 75bp or [00bp
* Small RNA = SE 50bp
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Abstract

Recent advances in RNA sequencing (RNA-Seq) have enabled the discovery of novel
transcriptomic variations that are not possible with traditional microarray-based methods.
Tissue and cell specific transcriptome changes during pathophysiological stress in dissase
cases versus controls and in response to therapies are of particular interest to investigators
studying cardiometabolic diseases. Thus, knowledge on the relationships between sequencing
depth and detection of transcriptomic variation is needed for designing RNA-Seq experiments
and for interpreting results of analyses. Using deeply sequenced lllumina HiSeq 2000 101 bp
paired-end RNA-Seq data derived from adipose of a healthy individual before and after
systemic administration of endotoxin (LP3), we investigated the sequencing depths needed for
studies of gene expression and alternative splicing (AS). In order to detect expressed genes
and AS events, we found that ~100 to 150 million (M) filtered reads were needed. However, the
requirement on sequencing depth for the detection of LPS modulated differential expression
(DE) and differential alternative splicing (DAS) was much higher. DR EEREEIE T RS ]
filtered reads were needed for DE analysis whereas at least 400 M filtered reads were

ecessary for detecting DAS. Although the majority of expressed genes and AS events can be
detected with modest sequencing depths (~100 M filtered reads), the estimated gene
expression levels and exonfintron inclusion levels were less accurate. [JERE UGN =TT

that evaluates the relationship betwean RNA-Seq depth and the ability to detect DE and DAS in
human adipose. Our results suggest that a much higher sequencing depth is needed to reliably
identify DAS events than for DE genes.

Figures



SEQUENCING TECHNOLOGIES -- Let’s talk about nucleotide sequencing

3 sequencing generations

Second Thrid

Short Reads Long Reads

© 1990-2001: Human Genome Project
1993: Development of pyrosequencing
1998: Single molecule emulsion PCR
1998: Founded Solexa

| 2000: Founded 454 Life Sciences
" 2005:454 GS20 sequencer

I 2008:Solexa Genome sequencer
0 2006: lllumina acquires Solexa
) 2007:ABISOLID
[ 2007:Roche acquires 454 Life Sciences
| 2008:GSFLXsequencer
) /2008:NOS Hismiai Garioriis Sagusrang,
1 BB 2010:Hi-Seq 2000
I 8 2011:lontorrent
|
| - 2012: PacBio
: @ 2014: Oxford Nanopore |



Next Generation sequencing — What is Second Generation?

* |t 1s massive sequencing which is characterized by high depth (millions of fragments sequenced at once)

* Compared with Sanger, it 1s >100x cheaper and faster

* During the development of this technology appear several platforms, however, lllumina is the gold standard

now.

Instrument Method Read Length Yield Quality Value
lllumina R 250 ++++ e ++++
SOLID Cgation * 75 4+ +++ +++

Roche 454 non-term NTP + 600 + bt tt

luminescence




lllumina Sequencers

g;sqtl;?:cmg MiniSeq" NovaSeq®
4000 Five/Ten 6000
Output per run 1.2Gb 7.5Gb 15Gb 120 Gb 1.5Tb 1.87Tb 1Tb -6 Tb?
::'::’B""“’“t $19.9K $49.5K $99K $275K $900K $6M2/$10M2 $985K
Installed base? NA ~600 ~6,000 ~2,400 ~2,3004 ~285
1. Output per run for the S1, S2 and S4 flow cells equal 1 Tb, 2 Tb and 6 Tb, respectively assuming two flow cells per run
2. Based on purchase of 5 and 10 units for HiSeq X Five and HiSeq X Ten, respectively : I | »
3. Based on end of fiscal year 2017 u m | n a
4. Combined HiSeq family



Yideo of how lllumina sequencing works



Third Generation sequencing

It was developed based on the need for larger reads, which help resolve complex genomic structures such as repetitive
elements, copy number alterations, alternative splicing, and structural variations.

PacBio! Oxford Nanopore?
Instrument )
, ) RS II (P6-C4) Sequel MinION PromethION
Specifications
Average read Variable (up to
10-15kb 10 -15 kb =
length 900 kb)34
Error rate 10-15 % 10-15 % 5-15 %% *
Output 500Mb-1Gb | 5Gb-10Gb ~5 Gb* *
Variable (up to
# of reads ~50k ~500k =
lM)ﬁ’7
Instrument
, $700k $350Kk $10008 $135k bundle?
price/Access fee@
Run price ~$400 ~$850 $500-$9007 "




Third-Generation sequencing— PacBio Platform

The third-generation sequencing 1s also known as single-molecule real-time (SMRT) sequencing. In the case of PacBio
technology, it i1s based on the use of zero-mode waveguides (ZMWs).



PacBio utilize circular consensus sequences to improve accuracy

Circular consensus sequencing involves multiple passes of the sequencing template. The system records multiple reads of the
same circular DNA molecule, generating a consensus sequence by aligning these reads. This process helps correct errors that
may occur in individual reads, improving overall accuracy.

Start with high-quality Circularized DNA
double stranded DNA 7T o o is sequenced in
repeated passes

a l
k}jj‘l B! :ﬂ{g.
e | [
Ligate SMRTbell & . e - o
adapters and size select k’ e \Q‘t{le The polymerase reads o P
are trimmed of adapters # : =
to yield subreads Sanamens L-,{%
. :
<
. | l |
Anneal primers and {“ K-ﬁ_ i;{i““i i}i‘ﬂ Consensus is called
bind DNA polymerase &L ,,,;3”' L{‘t&! !’j from subreads
HiFi READ

(>99% accuracy)



—_

We got a big amount of data. . .so, what now??



Why do we care about repositories??

v" Open Source and Open Science Advocacy:
* Encourage transparency in scentific research by sharing raw data with the
scientific community.

v" Journal Publication Requirement:

* Reputable scientific journals often require the release of data before accepting
and publishing a research paper.

* Fulfilling this requirement demonstrates a commitment to the highest standards of
scientific integrity.

v" Global Scientific Collaboration:

* Acknowledge the role of shared biological data as a valuable resource for the
global scientific community.

* By contributing to a collective pool of information, researchers worldwide can
access and utilize this data for diverse scientific endeavors.




Some well-know data repositories

National Human Genome Research Institute

ENA / European Nucleotide Archive

Sequence Read
S and allow for ne
high-throughput

SRA /Sequence Read Archive s

A Cell Atlas of Worm

The C. elegans transcriptome at single cell resolution

GEO /Gene Expression Omnibus

BioSD / BioSamples Database @) Expression Atlas
>

Gene expression across species and biological
conditions

DATA PORTAL

2. Layer 3. Cells/nuclei 4, Sequencing 5. Analysis

OR:

\
\
\ 14 \

TIARA /Total Integrated Archive of short-Read and Array

"~ Mouse | Human

Check complete list here: https://www.nature.com/sdata/policies/rep



Data Analysis General Pipeline



Data Analysis General Pipeline

{ Raw reads }

Quality control

Read QC

Pre-processing

Mapping >

Alignment QC

Alignment

3 main steps

v

Expression .
Estimation Gene Expression
Normalization

Differential Expression analysis e Downstream analysis




Primary format for NGS data

FASTQ (FASTA + Quality)
* Format that associates sequences with quality value by nucleotide base

BAM
* Format for aligned and not aligned sequences. It is binary (compressed)

SAM
* Format for aligned and not aligned sequences. It is text (extended and human readable)

BED
* Format describing one feature (CDS, Exon, Intron, UTR, etc..) per line

GFF/GTF (gene annotation)
* Format describing one feature (CDS, Exon, Intron, UTR, etc..) per line, often contains more information than bed format



Formato FASTA: Componentes

Start

symbol Sequence D Sequence description

no spaces) (spaces allowed)

>dnaA chromosomal replication initiator protein Dnad
MSLSLWQOCLARLODELPATEFSMWIRPLOAELSDNTLALYAPNREVLDWVRDKYL
EALRDLLALQEKLVTIDNIQKTVAEYYKIKVADLLSKRRSRSVARPROMAMALAKE
LLHAVGNGIMARKPNAKVVYMHSERFVODMVKALONNATIEEFKRYYRSVDALLIDD
FSLPEIGDAFGGRDHTTVLHACRKIEQLREESHDIKEDEFSNLIRTLSS

|

The sequence
(usually 60 letters per line)



Formato FASTQ

Is an extension of the FASTA format carrying quality values associated with each base

Start symbol /Sequence D Seqguence

dread00179
AGTCTGATATGCTGTACCTATTATAATTCTAGGCGCTCAT
GCCCGCGGATATCGTAGCTATATGCTTCA

..—-—-—'—'_'_"P+
8 ;ACCCD?DD???@B9<9<CAC@=AAAABA ,;B<A@882,+

495;;3990,02. .-&-&-*,,,, (0O**§

|

Encoded quality values,
one symbol per nucleotide

Separator line

https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/#fastq-files



Quality Value are expressed by phred score

Sequencing quality scores measure the probability that a base is called incorrectly. With sequencing by synthesis (SBS)
technology, each base in a read is assigned with a quality score by a phred algorithm.

Functions

The sequencing quality score of a given base, Q, Is - Accuracy
defined by the following equation: - Eror

Q = -10logl0(e)

where e is the estimated probability of the base
call being wrong.

Probability (Percent)

Phred Score



How quality value are generated

lllumina quality scores are calculated for each base call in a two-step process:

|. - Quality predictor values are observable properties of clusters from which base calls are extracted.
a) intensity profiles

b)  signal-to-noise ratios

2. A quality model, also known as a quality table or Q-table, lists combinations of quality predictor values and relates them
to corresponding quality scores.

Table 1: Q-Scores and Error Probabilities

Quality Score Error Probability
Q40 0.0001 (1 in 10,000)
Q30 0.001 (1 in 1,000)
Q20 0.01 (1 in 100)

Q10 0.1 (1in 10)



Quality value code

The quality values are coded on letters and symbols

The coding system is the ASCII (American Standard Code for Information Interchange)

33 59 64 73 le4 126
®cococcoococooocooscsoocoo ADosoZiloccooas 48
=Bo0ocllaccoooco %coscococcoscoooocosooooosanca 40
®aocozoooo ®cozoocococonzooooccocoooocsacnoo 40
®cZccoccococoscooccscocoo Ao codiloccooaca 41
S - Sanger Phred+23, raw reads typically (@, 4@)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (e, 48)

-
]

I1lumina 1.8+ Phred+33, raw reads typically (e, 41)

1"H#S%&" () *+,-./0123456789: ;<=>?QRABCDEFGHIJ

| | | | |

Q0 Q10 Q20 Q30 Q40
bad maybe good excellent


https://www.asciitable.com/

Quality value exercise

@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGT TACCCTTAACAACT TAAGGGTTTTCAAATAGA
+SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
TITITITIIIIIIITIIIIIIIIIIIIIIIIOIGOICIITIITIIIIIIITIIIIIIIIIDITIIIIIISIIIINL/

33 59 64 73 184 126
ooccocoococooosococoosac 26...21....... 48
-5 #aosocooo: Scoccocoococooooccocoocoooanac 48
Eocoscooc Beccoosoccoccocoocoococcoconoc 46
®edl-cocoococooccococoococ ATz co2llococcooc 41
S - Sanger Phred+33, raw reads typically (@, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (e, 40)

—
I

I1lumina 1.8+ Phred+33, raw reads typically (@, 41)



How data quality impacts on my results?

Quality recommendations
Experimental design

Minimize variability in your samples The GIGO (GARBAGE IN — GARBAGE OUT) PARADIGM
Have at least 3 biological replicates . = e

Samples
Avoid degradation, use an RNA Stabilization Reagent

Integrity of RNA must be RIN = 8

Samples must be DNA-free (DNase treatment)
Select appropriate library prep method for RNA
available

S eq uen CI ng DATA QUALITY MATTERS ~— VOIGe!
Consider sequencing depth based on exp objective
Run read QC controls, reproducibility test and Mapping

QC.



Quality issues on sequencing data

The sequences might contain errors such as:

Rare
> Duplicated Reads (Low complexity libraries and PCR duplicares)
> Reading into the adapters (short fragments in comparison with read length)
> Error Indel (Deletion or insertion of a base during sequencing )
> Undetermined Base (base calling base was uncertain and it is replaced by an N)
> Substitution errors (wrong base calling base)
h 4
Common

ALL OF THEM CAN BE RECTIFIED OR ELIMINATED THROUGH BIOINFORMATICS ANALYSIS



Data Analysis General Pipeline

E Raw reads }

Quality control

Read QC
a Pre-processing
()
"u-, Alignment
Mapping
c  mapping KR,
.6 Alignment QC
™ Expression Y
Estimation

Gene Expression
Normalization

Differential Expression analysis e Downstream analysis




RNA-sequencing alignment is challenging

* |t requires high computational power (Millions of reads being analyzed)
* Intron presence (mapping to the reference genome — alignment must be splice aware)

* Inefficient alignment (Genetic variants, repeat sequences and contaminations)



Sequence alignment: Two Types

We must align reads to find the correct position in the reference genome from where they were originated.

Global Alignment

[Target sequence] * Performed end-to-end for both sequences

ST U T T s g reeded

5' ACTACTAGATT-- --ACGGATC- -GTACTTTAGAGGCTAGCAACCA 3°  ° Aligns all the bases both for query and target
Query Sequence * Ideal for related sequences with similar length
ocal Alignment e Perform alignments only in the most similar

Target Sequence re ionS
5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3 8

TR * Align pieces of query and target sequences
Query Sequence 5' TACTCACGGATGAGGTACTTTAGAGGC 3' (Substrings/subsequences)

* (an provide more than one alignment



Features of alignment strategies

* Genome alignment + Gene model assembly (splice aware alignment)
Positive:
Detection of new transcripts
Negative:
Alignment 1s difficult
Insert size and inner distance are difficult to infer due to the intron
presence

* Transcriptome alignment
Positive:
Do not require spliced alignment
Simplifies the expression estimation by isoform
Insert size and inner distance are informative
Negative:
Depends on the gene model quality
No discovery of new transcripts &



Alignment visualization with 1GY

[ Human hg19 ¢ | chri2 | |chri2:98,987,293-98,990,302 | Go Fr <« » @ [ ® 2 | S
|
Chromosome > pl3.32 pl32 pl23 plll pll.21 ql2 ql312 ql33 ql42 ql5 q21.2 q21.32 q22 q23.2 q24.11 q24.22 qﬁ!
P ot. - 3,004bp -
osition P> 95,988,000 bp 98,989,000 bp 98,990,000 bp
| | | |
.
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Data Analysis General Pipeline

E Raw reads }

Quality control

Read QC
a Pre-processing
()
"u-, Alignment
Mapping
c  mapping K,
.6 Alignment QC
™ Expression Y
Estimation

Gene Expression
Normalization

Differential Expression analysis e Downstream analysis




Expression level estimation

Is a two steps process:

) Count aligned reads to genomic features (exons, genes, transcripts)
2) Normalize counts

Count Table

Gene A
e I

TTAGCA ACCGAC
ATGGCA A 3
B 3
Gene B Gene C GeneD
—_— HE— - C 0
AACGTT
CTAACG D 2

Normalization is the process of scaling raw counts values to make them comparable



Why do we care about normalization?

Given the number of reads in the draw, which isoform is more expressed?

Reads . __=——= The blue isoform has more reads, but it i1s also longer than the

— e = green one.

— —— As the library preparation includes fragmentation, long isoforms

— e e — will generate a greater number of reads



Principal factors included on the normalization

* (lobal Sequence Coverage
In this case, it 1s the total number of mapped reads to the genome o transcriptome.
This 1s very important to normalize when comparing expressions between samples.

sample 1 sample 2

reads
e e e s &« mRNA transcript — — — — —

K — — — — —

e e s s S

e e
[ [
[ [

MI Love: RNA-seq statistical analysis



Principal factors included on the normalization

When comparing expression between genes on the same samples (let’s say
comparing the expression of gene A with gene B) the length will tend to
overestimate the expression of long genes.

* Genes Length Sample A Reads
"o e -Il. ma .."I
CT— g et | 1T T ——
SplM: o TR b



Principal factors included on the normalization

* Transcriptome composition

It 1s highly recommended that when comparing two samples with different

backgrounds (e.1. different cell types, different genetic backgrounds, etc)
the composition of the transcriptome must be taken in account.

Sample A Reads

R I P T A e e

R AL o W,

“ﬁ"f‘::—'ﬂ-.. -.:'."a.-.-m.:."'_,-"'-nl
paztzeEg [T
e T T T LTS,
o S e e R
S N A

Ty TR g T T
DEDO0ODO0O O oEananond SOoaroand oo op OO ananano oa

Sample B Reads

| Gene DE l

1 Gene DE |




Most popular normalization methods

Transcripts per million reads (TPM)

Trimmed Mean of M-value (TMM - EdgeR)

DESeq’s Median of ratios

Dillies et al., 2013, Brief in bioinformatics



Normalization
method

CPM (counts per
million)

TPM (transcripts per
kilobase million)

RPKM/FPKM
(reads/fragments per
kilobase of exon per
million
reads/fragments
mapped)

Normalization methods (1)

Description

counts scaled by
total number of
reads

counts per length
of transcript (kb)

per million reads
mapped

similar to TPM

https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html

Accounted
factors

sequencing
depth

sequencing
depth and
gene length

sequencing
depth and
gene length

Recommendations for
use

gene count comparisons
between replicates of the
same samplegroup; NOT
for within sample
comparisons or DE
analysis

gene count comparisons
within a sample or
between samples of the
same sample group; NOT
for DE analysis

gene count comparisons
between genes within a
sample; NOT for between
sample comparisons or
DE analysis



Normalization
method

DESeq2's median of
ratios [1]

EdgeR’s trimmed
mean of M values
(TMM) [2]

Normalization methods (11)

Description

counts divided by
sample-specific size
factors determined
by median ratio of
gene counts
relative to
geometric mean
per gene

uses a weighted
trimmed mean of
the log expression
ratios between
samples

https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html

Accounted
factors

sequencing
depth and RNA
composition

sequencing
depth, RNA
composition,
and gene
length

Recommendations for
use

gene count comparisons
between samples and for
DE analysis; NOT for
within sample
comparisons

gene count comparisons
between and within
samples and for DE
analysis
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Differential Expression Estimation

A right estimation of differentially expressed genes between two conditions i1s key for understanding phenotypical variations
We should estimate:

The magnitude of differential expression
Significance of the differential expression

Expression level

O Global mean

. Group mean s
Significant

. Condition A data difference

. Condition B data

No significant difference

(Costa-Silva et al., 2017, Plos One)



Comparison of DE methods with qRT-PCR

Tool TPR SPC PPV ACC F; measure

edgeR 0.71 0.94 0.90 0.85 0.79
baySeq 0.92 0.40 0.52 0.61 0.66
DESeq 0.44 0.59 0.43 0.53 0.44
NOlseq 0.80 0.95 0.92 0.89 0.86
SAMseq 0.44 0.52 0.39 0.49 0.42
limma+voom 0.81 0.93 0.89 0.88 0.85
EBSeq 0.68 0.55 0.52 0.60 0.59
DESeq2 0.84 0.95 0.92 0.90 0.88
sleuth 0.77 0.54 0.54 0.63 0.64

https://doi.org/10.1371/journal.pone.0190152.t004

ACC: Rate of right predictions
SPC: ratio of true detection

TRP: Sensibility or rate of true discovery

NOIseq, Limma-+voom and DESeq2 are the programs highly correlating with qRT-PCR results

(Costa-Silva et al., 2017, Plos One)



Visualization of differential expression analysis

The raw out of a DE analysis is a long table of genes/transcripts with stats results and expression information

ID Gene_name baseMean log2FoldChange IfcSE stat pvalue padj
ENSMUSG00000024907 Gal 1323 2,0 0 3 0 0,019
ENSMUSG00000050541 Adralb 174 8,0 2 4 0 0,005
ENSMUSG00000072663 Spef2 127 8,2 2 3 0 0,010
ENSMUSG00000082575 Eef2-ps2 130 8,2 2 3 0 0,009
ENSMUSG00000020325 Fstl3 53 8,8 3 3 0 0,097
ENSMUSG00000064202 Spata6l 53 8,8 3 3 0 0,091
ENSMUSG00000075307 Kihl41 106 8,9 3 3 0 0,031
ENSMUSG00000071398 2410004P03Rik 110 8,9 3 3 0 0,038
ENSMUSG00000116735 Gm49555 58 9,0 3 3 0 0,059
ENSMUSG00000026730 Pter 60 9,0 3 3 0 0,093
ENSMUSG00000115569 Gm49169 60 9,0 3 3 0 0,096
ENSMUSG00000018923 Med11 60 9,0 3 3 0 0,086
ENSMUSG00000028840 Zfp593 120 9,1 2 4 0 0,003

We often are interested on:
* Up and Downregulated genes (significantly changing)
* Fold of change
* Expression levels of DE genes



Plotting results (scatterplots
MA plot o Yolcano plot
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Principal Component Analysis (PCA) plot
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RNA-seq Downstream Analysis

After we got our DE gene list, we need to add biological meaning to this set of genes based on the
following questions:

Biological function of modulated genes?

Biological pathway affected by my treatment?



RNA-seq Downstream Analysis

Then, we can run different analyses to get ideas about the function of the modulated genes:

* Gene Ontology Mapping
* Enrichment Analysis
* (Gene Set Enrichment analysis



Gene Ontology

The Gene Ontology (GO) describes our knowledge of the biological domain with respect to three aspects:

Molecular Function:
describe activities that occur at the molecular level, such as “catalysis” or “transport”.

Cellular Component:

Locations relative to cellular structures in which a gene product performs a function, either cellular
compartments (e.g., mitochondrion), or stable macromolecular complexes of which they are parts (e.g., the
ribosome).

Biological Process:
The larger processes, or ‘biological programs™ accomplished by multiple molecular activities. Examples of
broad biological process terms are DNA repair or signal transduction.

They do not represent biological pathways



Number of Genes

Gene Ontology plot
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The GENEontology Consortium

Ontology Annotations Downloads Help (9] L f

GENEONTOLOGY About ALLIANCE

© Any @ Ontology ® Gene Product

Hint: can use UniProt ILVAC, Gene Name, Gene Symbols, MOD 1Ds

e ONTOLOGY

The network of biological classes describing
the current best representation of the
“universe” of biology: the molecular functions,
cellular locations, and processes gene
products may carry out.

1 GO Ontology Overview
[0) Browse in AmiGO
& Download

Ubiquitin-protein

ligase activity
GO:D004842

(¢ ANNOTATION

Statements, based on specific, traceable

scientific evidence, asserting that a specific
gene product is a real exemplar of a particular
GO class.

1 GO Annotations Overview
[0) Browse in AmiGO
& Download

GO Causal Activity Model (GO-CAM) provides
a structured framework to link standard GO
annotations into a more complete model of a
biological system.

1 GO-CAM Overview
[C) Browse GO-CAMs
& Download

4' .

LS & GUIDES

\1,

v

Tools to curate, browse, search, visualize and
download both the ontology and annotations.
Includes bicinformatic guides (Notebooks) and
simple AP| access to integrate the GO into
your research.

1 GO Tools Overview
) GO APIs Guide
¢ GO GitHub



Panther: a webtool for G0

@ GENEONTOLOGY PANTHER

Classification System

REGISTER ~ CONTACT US

Home m PANTHER Data | PANTHER Tools | PANTHER Services Help/Tutorial

PANTHER17.0 Released.

[l ~ |

I

GO

Please refer to our article in Mature Protocols for detailed instructions on how to use this page.

Help Tips
Quick links Steps: 1. Enter ids and or select file for batch upload. Else enter ids or select file or list from

+ 1. Select list and list workspace for comparing to a reference list.
Whole genome function type to analyze Enter IDs:
views * 2. Select Organism Supported separate IDs by a space or comma
Genome statistics * 3. Select operation IDs 7~

Using enhancer data
Data Version g :..é}pload Choose File | Mo file chosen

5
PANTHER API Eile
FAQ format
: Please lggin to be able to select lists from your workspace.
How to cite PANTHER S
elec =
Recent publication List Type: ® 1 List
describing PANTHER Previously exported text search results
Workspace list
News PANTHER Generic Mapping
ID's from Reference Proteome Genome

FANTHER17.0 Released. Organism for id list | Absidia glauca (ABSGL) ~

Click for additional info. WCF File  Flanking region |20 Kb » [[] search Enhancer Data

Newsletter subscription 2. Select organism.

Homo sapiens -~
Mus musculus
Rattus norvegicus
Gallus gallus
Danio rerio

Enter your Email:

3. Select Analysis.

@® Functional classification viewed in gene list

O Functicnal classification viewed in graphic charts O Barchart O Pie chart
O Statistical overrepresentation test

O Statistical enrichment test




Enrichment Analysis

It characterizes a gene list by looking at classes of genes representing functions that are overrepresented on the list and
associated with your study

The analysis test statistically the overrepresentation of these gene classes and estimate if they are significant

For this analysis, the gene background used is essential. Your background must respond to the classes of genes used as
Input.
* For transcriptome-wide modulated gene set the perfect background would be all the genes expressed in your
data set.
* For regulated kinases gene set a “kinome” background (all kinases annotated in the genome)



Analysis
DAVID Bicinformatics Rg

Home | Start Analysis | Shortcut to DAVID Tools | Technical Center | Downloac

List Background

Upload Gene List

Step 1: Enter Gene List

Or

Choose File

Step 2: Select Identifier

AFFYMETRIX_ZPRIME_IVT_ID

Step 3: List Type
Gene lList @
Background @

Step 4: Submit List

Ar

«m Step 1. Submit your gene lis

An example:

Copy/paste IDs to "box A" -> Select |dentifie -

1007 _s_at
1053 _at
117_at
121_at
1255_g_at
1294 _at
1316_at
1320_at
1405_i_at
1431 at
1438 at
1487 _at
1494 f at
1598_g_at

Gene List Manager

- Use All Species -
Danio rerio(240)
Unknown(2)

Select Species

List Manager Help
List_1

Downregulated

Show Gene List

athways analysis

Annotation Summary Results

Current Gene List: Downregulated
Current Background: Danio rerio
B Functional_Annotations (6 selected)

Help and Tool Manual

240 DAVID IDs
Check Defaults

COG_ONTOLOGY 5.4% 13 | Chart |mes

[ PIR_SEQ_FEATURE 0.4% 1 [Chart
UP_KW_BIOLOGICAL_PROCESS 23.8% 57 | Chart |
UP_KW_CELLULAR_COMPONENT  51.2% 1232 | Chart
UP_KW_MOLECULAR_FUNCTION 44.6% 107 | Chart |
UP_KW_PTM 21.7% 52 [ Chart |—
UP_SEQ_FEATURE 87.9% 211 | Chart

EH Gene_Ontology (3 selected)

B General_Annotations (0 selected)

B Interactions (1 selected)

[ BIOGRID_INTERACTION 0.8% 2 Chart | &

[ INTACT 2.5% 6 i

[ MINT 0.8% 2 H

UP_KW_LIGAND 25.8% 62 Chart | S

H Literature (0 selected)

B Pathways (0 selected)

(] EC_NUMBER 15.0% 36 Chart |

[ KEGG_PATHWAY 42.5% 102 ]
] REACTOME_PATHWAY 30.8% 74 1
[ WIKIPATHWAYS 19.2% 46 Chart | —

E Protein_Domains (4 selected)
H Tissue_Expression (0 selected)

Combined View for Selected Annotation

Functional Annotation Clustering

Functional Annotation Chart

Functional Annotation Table

***Red annotation categories denote DAVID defined defaults*+*




GENE SET ENRICHMENT ANALYSIS (GSEA)

Most UpRegulated
* Instead of comparing modulated genes list with a background list, we use a ranked list.

* This list will be organized in descending order based on the fold of change, p-value, etc Glucagon Signaling

* Then, “functional terms” (GO, disease, etc) are mapped to the ranked list.

* Genes upregulated that are enriched for a certain functional term will be at the top
of the list

* Genes Downregulated enriched for a certain term will be found at the bottom of the
list

* Terms not enriched will be mapped all over the list

No association

Insulin Signaling

As results we will get enrichment plots by pathways
5 P yP ! Most DownRegulated



Enrichment Plots: Interpreting Results from GSEA

Enrichment Score:

Which reflects the degree to which a gene set is
overrepresented at the top or bottom of a
ranked list of genes.

The score at the peak of the plot (the score
furthest from 0.0) is the ES for the gene set. Gene
sets with a distinct peak at the beginning (such as
the one shown here) or end of the ranked list are
generally the most interesting.

Enrichment scaore (ES)

Ranked list metric (SignalZNoise)
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Zero cross at TET1
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— Enrichment profile — Hits Ranking metric scores




Interpreting Results from GSEA

Enrichment plot: PID_IL23_PATHWAY

Enrichment score (ES)

Shows where the members of the gene list
appears in the ranked list of genes

15 | 'TG' (postively correlated)

1.0
0.5
0.0 Taro cross at T8T1
-0.5
-1.0
-15 1 1 H
WT' (negatively correlated)
0 2,500 5,000 7,500 10,000 12,500 15,000

Rank in Ordered Dataset

Ranked list metric (Signal2Noise)

— Enrichment profile — Hits Ranking metric scores




Interpreting Results from GSEA

Enrichment plot: PID_IL23_PATHWAY

Leading Edge Subset:

Is the subset of members that contribute most
to the ES. For a positive ES (such as the one
shown here), the leading-edge subset Is the set
of members that appear in the ranked list prior
to the peak score.

Enrichment score (ES)

Ranked list metric (Signal2Noise)

15
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— Enrichment profile — Hits Ranking metric scores
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