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MECHANICS?

FORCES

STRESSES
TENSION

VECTORS

TENSORS
NEWTON

F=m a

ACTION-REACTION

MOLECULAR MOTORS



FORCES ACTING ON DEVELOPMENT

IN THE GREEN DOMAIN, IN WHICH DIRECTION DO THE FORCES ACT? 

AT THE FINAL EQUILIBRIUM STATE, ARE THERE FORCES ACTING? 

IS THE TISSUE UNDER STRESS?

Drosophila pupal wing 
R. Etournay et al, eLife 2015



FORCES IN THE MICROSCOPIC WORLD

SCALING OF DIFFERENT FORCES

m ⇠ ⇢⇥ vol

m ⇠ `3` ⇠ 1� 10µm

F = ma

Adhesion: F ⇠ area ⇠ `2

Weight: F ⇠ mass ⇠ `3

Friction by weight: F ⇠ mass ⇠ `3

Friction by compression: F ⇠ area ⇠ `2

Viscous friction: F ⇠ area ⇠ `1�2

Elastic: F ⇠ area ⇠ `0�2

AT THE MICROSCOPIC SCALE, MASS AND 
WEIGHT ARE NEGLIGIBLE. 

NO INERTIA



Newton’s law reduces to 

At every instant, not only on average 
How is it possible that F=0 gives rise to motion?

` ⇠ 1� 10µm

AT THE MICROSCOPIC SCALE, MASS AND 
WEIGHT ARE NEGLIGIBLE. 

NO INERTIA

F1 + F2 + F3 + . . . Fn = 0

FORCES IN THE MICROSCOPIC WORLD



FORCES ACTING ON DEVELOPMENT
Drosophila pupal wing 
R. Etournay et al, eLife 2015

On each cell, Ftotal = Ffriction + Ftraction = 0
Ffriction = − γV Then, Ftraction = γV

FtractionFtraction Ftraction

THE TRACTION FORCES PRESENT A GRADIENT



FORCES ACTING ON DEVELOPMENT
Drosophila pupal wing 
R. Etournay et al, eLife 2015

At the final state, there is no motion (V=0).  

Then  

How is that compatible with the idea of the tissue being under stress?

Ftraction = 0



Kasza et al. Curr Opin Cell Biol  (2007)
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FIG. 1: (a) Schematic of a cluster of polar-aligned and anti-aligned MTs, with plus ends marked by red rings. Motors walk on
neighboring MTs, and (b) exert spring-like forces with a piecewise linear force-velocity relation. (c) An anti-aligned MT pair.
(d) A polar-aligned MT pair. Grey arrows characterize the magnitude of the extensile stress.

can be di�cult to connect to the microscopic dynamics quantitatively.
Here we construct a multi-scale model that identifies the sources of destabilizing active stresses, and study their

consequences in a large-scale model39. We first perform detailed, hybrid Brownian dynamics-kinetic Monte Carlo (BD-
kMC) simulations which incorporate excluded-volume interactions between model MTs, thermal fluctuations, explicit
motors with binding/unbinding kinetics that satisfy detailed balance, and a force-velocity relation. Active extensile
stress is generated from polarity sorting of anti-aligned MTs, and from crosslink relaxation of polar-aligned MTs. It
also provides coe�cients for polar-specific active stresses for a kinetic theory that incorporates polarity sorting and
long-range hydrodynamic interactions, using a similar approach as that used to describe bacterial suspensions40–45,
where hydrodynamic instabilities lead to large-scale collective motions including jets and vortices37,40,41,46–49. We use
this model to study actively streaming nematic states on an immersed surface, as in the Sanchez et al. experiments7.
Numerical experiments demonstrate dynamics strikingly similar to the experiments, with large-scale turbulent-like
fluid flows and the persistent production and annihilation of defects. We correlate the defect dynamics with specific
flow structures and with active stresses. We identify the hydrodynamic instability of nearly 1D coherent “cracks” as
being source of the persistent dynamics. When turning o↵ the induced background surface flow in the kinetic model,
we capture the formation of polar lanes observed in the BD-kMC simulation.

II. THE MICROSCOPIC MODEL

Figure 1 outlines the basic physical picture that underlies both our BD-kMC simulations and the continuum kinetic
model. Consider an immersed suspension of polar MTs, each with a plus-end oriented director p, and all of the same
length l and diameter b (Fig. 1a). Adjacent MTs are coupled by plus-end directed crosslinking motors consisting of
one motor head on each MT connected by a tether that responds as a spring to stretching (Fig. 1b). The motor
on each crosslink endpoint moves with a linear force-velocity relation50: v = vm max(0,min(1, 1 + f/fs)), where f is
the magnitude of the crosslinking force, vm is the maximum translocation velocity, and fs is the stall force. For a
nematically aligned suspension there are two basic types of MT pair interaction. For polar anti-aligned MTs (Fig. 1c)
the motors on each end of an active crosslink move in opposite directions, stretching the tether. This creates forces on
each MT that, acting against fluid drag, slide the MTs relative to each other towards their minus-ends. This process
is termed polarity sorting19. Conversely, for polar-aligned MTs the motors on each end of the crosslink move in the
same direction, there is little or no net sliding, and the tether pulling on the leading motor causes stretched tethers
to relax (Fig. 1d).

III. BROWNIAN DYNAMICS-KINETIC MONTE CARLO MODEL AND SIMULATIONS

We first perform 2D Brownian dynamics-kinetic Monte Carlo (BD-kMC) simulations of MTs driven by explicit
motors with binding/unbinding kinetics. The main purpose is to quantify local MT pair interactions, with long-
ranged hydrodynamics neglected due to its high computational cost. Our model is related to previous simulations of
filaments with crosslinking motors51–53, but new in our work are algorithmic improvements for handling crosslinks and
neglect of filament elasticity that allow us to more accurately treat the statistical mechanics of crosslinking motors,
simulate larger systems and measure the stress tensor.

Gao et al. (2015)

CELULAR STRESSES ( DETAILS IN ANDREA RAVASIO’S  AND  
CRISTINA BERTOCCHI’S LECTURES )



Gao et al. (2015)
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FIG. 4: Schematic for a cluster of MTs undergoing polarity sorting. The plus-ends are marked by red rings. On the right: an
anti-aligned pair of the jth and the kth MTs.

assumed small enough so that all MTs experience the same local flow field. Using Stokesian slender body theory68

we can find the velocities of the left- and rightward pointing MTs. For each MT, the center locates at x
c, with the

director p. We assume that in the cluster there are m MTs pointing leftwards (p = �x̂, with superscript L), and n

MTs pointing rightwards (p = x̂, with superscript R). Each anti-aligned pair (say the jth and the kth MT) shares Q
(Q > 1) motors

xL
j = xL,c

j + s
L
q pj =

⇣
x
L,c
j � s

L
q

⌘
x̂, xR

k = xR,c
k + s

R
q pk =

⇣
x
R,c
k + s

R
q

⌘
x̂, (35)

where j = 1..m, k = 1..n and q = 1..Q. As shown on the right in Fig. 4, one motor locates at s
L
q (t) = s

L,0
j,q + vwt,

and the other locates at sRq (t) = s
R,0
k,q + vwt, with initial positions sL,0

j,q and s
R,0
k,q . The characteristic motor speed vw

is constant for the anti-aligned pair. Hence the distance between the two motors in the tangential direction can be
calculated as

�q
jkx̂ = xL

j � xR
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⇣
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L,c
j � x

R,c
k

⌘
x̂�
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where �c
jk = ��c

kj = x
L,c
j � x

R,c
k , �q,0

jk = �q,0
kj = s

L,0
j,q + s

R,0
k,q . When the motor is walking, it behaves like a linear

spring with rigidity  by exerting equal and opposite forces

fqjk = �fqkj = ��q
jkx̂. (37)

As a result, the two MTs slide past one another undergoing polarity sorting. Following slender-body theory68, the

MT speed is given by ẋc =
⇣

I+pp
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⌘
·
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f , leading to
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where ⌘̃ = 4⇡⌘/ ln (2r), and ⌘ is the fluid viscosity. We seek the time-dependent solutions of the form �c
jk ��q,0

jk =
A+Bt. The coe�cients A and B can be solved as

A = �q
jk = � ⌘̃lvw

Q (m+ n)
, B = 2vw, (39)

leading to

ẋ
L,c
j =

n

(m+ n)
2vw, ẋ

R,c
k = � m

(m+ n)
2vw, (40)

which suggests vL = 2n
n+mvw, v

R = � 2m
n+mvw. This expression shows that the speed of each population depends on

how many opposing MTs there are to pull against, with their drag as the anchor, and their relative velocity fixed at
v
L � v

R = 2vw by the motor protein speed. This latter observation is in agreement with observations of anti-aligned
sliding of MTs in the mitotic spindle69.
Next, we consider a general situation when the MTs are not perfectly aligned but with an intersection angle,

i.e., pj · pk = ±1 + O

⇣
✓
2
jk

⌘
where ✓jk is a small angle between the jth and the kth MTs. As discussed later, at

high concentration, the steric interactions align the neighbouring MTs, which makes the small-angle assumption a

PAIR OF OPPOSITE FORCES. 
SEPARATED BY FEW NANOMETERS. 

A FORCE DIPOLE 

PAIR OF OPPOSITE FORCES. 
SEPARATED BY FEW NANOMETERS. 

A FORCE DIPOLE 

CELULAR STRESSES



THE STRESSES ARE FINITE,  
BUT THE SUMMED FORCE VANISHES 

BUT ON THE SURFACE THERE IS A NET FORCE 
A TENSILE OR TRACTION STRESS. 

THE NET FORCE IS PROPORTIONAL TO THE AREA

Gardel et al., Annu Rev Cell Dev Biol 

CELULAR STRESSES



Stress tensor: 
It gives the stress on each direction 
(principal directions), two or three

y

x

Fx / Ly

Fy / Lx

�x = Fx/Ly

�y = Fy/Lx

� =

✓
�x 0
0 �y

◆

Stresses (or tensions) are forces per unit of length or surface 
The direction of the force depends on the stresses and the surface

STRESS TENSOR (TENSOR DE ESFUERZOS O DE TENSIONES)



Polarized cytoskeleton

�x > �y

�a =

✓
�x 0
0 �y

◆

ACTIVE STRESS (CYTOSKELETON)



fo

fo

F = Nfo

=

✓
Nfo
Ly

◆
Ly

= �aLy

�a = nfilamfo Esfuerzo activo

Active stress

ACTIVE STRESS (CYTOSKELETON)



� =

✓
�x 0
0 �y

◆

But, different  
between directions

x

y

~Ftotal = [�x(x+ Lx)� �x(x)]Lyx̂

+ [�y(y + Ly)� �y(y)]Lxŷ

Force equilibrium, F=0:
�x ⇡ cte.

�y ⇡ cte.

EQUILIBRIUM CONDITION

IN EQUILIBRIUM, FORCES VANISH, AND STRESSES ARE UNIFORM 
CAN BE ANISOTROPIC σx ≠ σy



THE SUMMED FORCE IS NOT ZERO 

A NET FORCE APPEARS BECAUSE THE FILAMENT  
CONCENTRATION IS NOT HOMOGENEOUS 

THIS FORCE MUST BE BALANCED WITH  
ANOTHER FORCE (E.G. FRICTION, THEN MOTION)

f = r · �A force density

�A = �0cp̂p̂ active stress

THE SUMMED FORCE VANISHES 

STRESS TENSOR



Deformacion

Traslacion

Rotacion

Only deformations have  
energy cost 

That is, require forces

DEFORMATION (STRAIN) TENSOR



Deformations can be described in terms of principal 
axis (directions) 

They are identified as the directions for which a 
rectangle deforms into a rectangle 

These directions are perpendicular 

Equivalente

FOR EXAMPLE

IS EQUIVALENT TO

DEFORMATION (STRAIN) TENSOR



Deformation matrix:  

Strain tensor

"x =
�x

Lx

"y =
�y

Ly

" > 0 estirado

" < 0 comprimido

" =

✓
"x 0
0 "y

◆

stretched
compressed

DEFORMATION (STRAIN) TENSOR



1) Elastic materials
� / "

� = Y "
Y Módulo de Young

" = 1 =
�x

Lx
Deformation of 100%

Typical values: 1 kPa … 1 GPa

Young modulus

Interpretation of the Young modulus 

If , then  σ = 1Y ε = 1

STRAIN -  STRESS RELATION

⌘ Viscosidad� / "̇

� = ⌘"̇

2) Fluid materials

Viscosity



3) Visco-elastic materials

STRAIN -  STRESS RELATION

4) Active materials (living materials)

σ = Yε + η ·ε

The stress tensor depends on the polarization axes and 
the intensity of the activity



EXAMPLE: CELLULAR DEFORMATION
� = �E + �A

= Y

✓
"x 0
0 "y

◆
+

✓
�a 0
0 0

◆

� = cte.

En los bordes, � = 0

En toda la célula � = 0

"x = ��a/Y, "y = 0 Se contraeThe cell contracts

In the borders,

� = cte.

En los bordes, � = 0

En toda la célula � = 0

But, the mechanical equilibrium dictates that � = cte.

En los bordes, � = 0

En toda la célula � = 0

Then, in all the cell, 

With free boundaries



EXAMPLE: CELL TRACTION

The substrate is elastic. Then, it deforms

"r = ��a/Y



TRACTION FORCE MICROSCOPY
Place fluorescent beads  
in the substrate 

Measure their 
displacement 

Deduce the deformation 
tensor of the substrate 

Using  ,                      
compute the applied 
stresses

ε = σa/Ysubstrate

�a

~u(~r)

"



DEFORMABLE MICRO-DROPLETS

Spherical droplets are 
immersed in the cell 

The stresses deform the 
beads and adopt an 
ellipsoidal shape

The new lengths give principal axes and the strains 
of the droplet 

The stresses must be equal across the interface

σdroplet = ϵ/Ydroplet

σcitos = σdroplet



LASER ABLATION

The cytoskeleton is generating an 
active stress  

When the membrane is cut, a force 
appears in the new free surface. 

To reach the new equilibrium (net 
zero force), the tissue contracts, 
generating an elastic force. The 
deformation is 

σcitos

ϵ = σcitos/Y

δ ∝ ϵ L = σcitos L /Y

δ
L

σcitos

The retraction length is proportional to the cut length L, then
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