PRINCIPLES OF MECHANICS IN BIOLOGY

RODRIGO SOTO PHYSICS DEPARTMENT UNIVERSIDAD DE CHILE

Optics, Forces \& Development 2024

MOLECULAR MOTORS
 $\mathrm{F}=\mathrm{m}$ a VECTORS

FORCES
 TENSORS

NEWTON

TENSION

FORCES ACTING ON DEVELOPMENT

IN THE GREEN DOMAIN, IN WHICH DIRECTION DO THE FORCES ACT?
Drosophila pupal wing
R. Etournay et al, eLife 2015

AT THE FINAL EQUILIBRIUM STATE, ARE THERE FORCES ACTING?
IS THE TISSUE UNDER STRESS?

FORCES IN THE MICROSCOPIC WORLD

$$
\begin{aligned}
& F=m a \\
& m \sim \rho \times \mathrm{vol} \\
& m \sim \ell^{3}
\end{aligned}
$$

SCALING OF DIFFERENT FORCES

Adhesion: $\quad F \sim$ area $\sim \ell^{2}$
Weight: $\quad F \sim$ mass $\sim \ell^{3}$
Friction by weight: $F \sim$ mass $\sim \ell^{3}$
Friction by compression: $F \sim$ area $\sim \ell^{2}$

> AT THE MICROSCOPIC SCALE, MASS AND WEIGHT ARE NEGLIGIBLE.

Viscous friction: $F \sim$ area $\sim \ell^{1-2}$
Elastic: $\quad F \sim$ area $\sim \ell^{0-2}$

FORCES IN THE MICROSCOPIC WORLD

AT THE MICROSCOPIC SCALE, MASS AND WEIGHT ARE NEGLIGIBLE.

NO INERTIA

Newton's law reduces to

$$
F_{1}+F_{2}+F_{3}+\ldots F_{n}=0
$$

At every instant, not only on average How is it possible that $\mathrm{F}=0$ gives rise to motion?

FORCES ACTING ON DEVELOPMENT

Drosophila pupal wing
R. Etournay et al, eLife 2015

On each cell, $F_{\text {total }}=F_{\text {friction }}+F_{\text {traction }}=0$
$F_{\text {friction }}=-\gamma V$
Then, $F_{\text {traction }}=\gamma V$
THE TRACTION FORCES PRESENT A GRADIENT

FORCES ACTING ON DEVELOPMENT

At the final state, there is no motion $(\mathrm{V}=0)$.
Then $F_{\text {traction }}=0$
How is that compatible with the idea of the tissue being under stress?

Drosophila pupal wing
R. Etournay et al, eLife 2015

CELULAR STRESSES

Kasza et al. Curr Opin Cell Biol (2007)

The filaments are polar and the molecular motors can "walk" in a specified direction

Microfilaments (actin)

Microtubules (tubulin)

Intermediate filaments

Gao et al. (2015)

CELULAR STRESSES

Gao et al. (2015)

PAIR OF OPPOSITE FORCES. SEPARATED BY FEW NANOMETERS. A FORCE DIPOLE

CELULAR STRESSES

THE STRESSES ARE FINITE, BUT THE SUMMED FORCE VANISHES

BUT ON THE SURFACE THERE IS A NET FORCE A TENSILE OR TRACTION STRESS.

THE NET FORCE IS PROPORTIONAL TO THE AREA

STRESS TENSOR (tensor de esfuerzos o de tensiones)

$$
\begin{aligned}
& F_{x} \propto L_{y} \\
& F_{y} \propto L_{x} \\
& \sigma_{x}=F_{x} / L_{y} \\
& \sigma_{y}=F_{y} / L_{x}
\end{aligned}
$$

$$
\sigma=\left(\begin{array}{cc}
\sigma_{x} & 0 \\
0 & \sigma_{y}
\end{array}\right)
$$

Stress tensor:

It gives the stress on each direction (principal directions), two or three

Stresses (or tensions) are forces per unit of length or surface The direction of the force depends on the stresses and the surface

ACTVE STRESS (CYTOSKELETON)

Polarized cytoskeleton

$$
\sigma_{x}>\sigma_{y}
$$

$$
\sigma^{a}=\left(\begin{array}{cc}
\sigma_{x} & 0 \\
0 & \sigma_{y}
\end{array}\right)
$$

ACTIVE STRESS (CYTOSKELETON)

$$
\begin{aligned}
F & =N f_{o} & & \\
& =\left(\frac{N f_{o}}{L_{y}}\right) L_{y} & & \sigma_{a}=n_{\text {filam }} f_{o} \\
& =\sigma_{a} L_{y} & & \text { Active stress }
\end{aligned}
$$

EQULLIBRIUM CONDITION

$$
\begin{aligned}
\vec{F}_{\text {total }}= & {\left[\sigma_{x}\left(x+L_{x}\right)-\sigma_{x}(x)\right] L_{y} \hat{x} } \\
& +\left[\sigma_{y}\left(y+L_{y}\right)-\sigma_{y}(y)\right] L_{x} \hat{y}
\end{aligned}
$$

Force equilibrium, $\mathrm{F}=0$:
$\sigma_{x} \approx$ cte. But, different $\sigma_{y} \approx$ cte. between directions

$$
\sigma=\left(\begin{array}{cc}
\sigma_{x} & 0 \\
0 & \sigma_{y}
\end{array}\right)
$$

IN EQULLIBRIUM, FORCES VANSH, AND STRESSES ARE UNIFORM CAN BE ANISOTROPIC $\sigma_{x} \neq \sigma_{y}$

STRESS TENSOR

THE SUMMED FORCE VANISHES

THESOUMMED FORCE IS NOT ZERO
A NET FORCE APPEARS BECAUSE THE FILAMENT CONCENTRATION IS NOT HOMOGENEOUS

THIS FORCE MUST BE BALANCED WITH ANOTHER FORCE (E.G. FRICTION, THEN MOTION)

$$
f=\nabla \cdot \sigma_{A} \quad \text { force density }
$$

DEFORMATION (STRAIN) TENSOR

Only deformations have energy cost

That is, require forces

DEFORMATION (STRAIN) TENSOR

Deformations can be described in terms of principal axis (directions)

They are identified as the directions for which a rectangle deforms into a rectangle

These directions are perpendicular

FOR EXAMPLE

DEFORMATION (STRAIN) TENSOR

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\Delta x}{L_{x}} \\
& \varepsilon_{y}=\frac{\Delta y}{L_{y}} \\
& \varepsilon>0 \text { stretched } \\
& \varepsilon<0 \quad \text { compressed }
\end{aligned}
$$

STRAIN - STRESS RELATION

1) Elastic materials

$$
\begin{aligned}
& \sigma \propto \varepsilon \\
& \sigma=Y \varepsilon
\end{aligned} \quad Y \text { Young modulus }
$$

Interpretation of the Young modulus
If $\sigma=1 \mathrm{Y}$, then $\varepsilon=1$

$$
\varepsilon=1=\frac{\Delta x}{L_{x}} \quad \text { Deformation of } 100 \%
$$

Typical values: $1 \mathrm{kPa} . . .1 \mathrm{GPa}$
2) Fluid materials

$$
\begin{array}{ll}
\sigma \propto \dot{\varepsilon} & \eta \text { Viscosity } \\
\sigma=\eta \dot{\varepsilon} &
\end{array}
$$

STRAIN - STRESS RELATION

3) Visco-elastic materials

$$
\sigma=Y \varepsilon+\eta \dot{\varepsilon}
$$

4) Active materials (living materials)

The stress tensor depends on the polarization axes and the intensity of the activity

EXAMPLE: CELLULAR DEFORMATION

$$
\begin{aligned}
\sigma & =\sigma_{E}+\sigma_{A} \\
& =Y\left(\begin{array}{cc}
\varepsilon_{x} & 0 \\
0 & \varepsilon_{y}
\end{array}\right)+\left(\begin{array}{cc}
\sigma_{a} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

With free boundaries
In the borders, $\sigma=0$
But, the mechanical equilibrium dictates that $\sigma=$ cte.
Then, in all the cell, $\sigma=0$

$$
\varepsilon_{x}=-\sigma_{a} / Y, \quad \varepsilon_{y}=0
$$

The cell contracts

EXAMPLE: CELL TRACTION

The substrate is elastic. Then, it deforms

$$
\varepsilon_{r}=-\sigma_{a} / Y
$$

TRACTION FORCE MICROSCOPY

Place fluorescent beads in the substrate

Measure their displacement $\vec{u}(\vec{r})$

Deduce the deformation tensor of the substrate ε

Using $\varepsilon=\sigma_{a} / Y_{\text {substrate }}$, compute the applied stresses σ_{a}

DEFORMABLE MICRO-DROPLETS

Spherical droplets are immersed in the cell

The stresses deform the beads and adopt an ellipsoidal shape

The new lengths give principal axes and the strains of the droplet $\sigma_{\text {droplet }}=\epsilon / Y_{\text {droplet }}$

The stresses must be equal across the interface $\sigma_{\text {citos }}=\sigma_{d r o p l e t}$

LASER ABLATION

The cytoskeleton is generating an active stress $\sigma_{\text {citos }}$

When the membrane is cut, a force appears in the new free surface.

To reach the new equilibrium (net zero force), the tissue contracts, generating an elastic force. The deformation is $\epsilon=\sigma_{\text {citos }} / Y$

The retraction length is proportional to the cut length L, then

$$
\delta \propto \epsilon L=\sigma_{\text {citos }} L / Y
$$

PRINCIPLES OF MECHANICS IN BIOLOGY

RODRIGO SOTO PHYSICS DEPARTMENT UNIVERSIDAD DE CHILE

Optics, Forces \& Development 2024

