

Course "Optics, Forces & Development"

Caboratorio de Señalización y Desarrollo

Principles of Signalling in Mechanobiology

Marcela Torrejón Quezada Laboratorio de Señalización y Desarrollo Facultad de Ciencias Biológicas Universidad de Concepción

March 12th 2024

Mechanical stresses regulate a diverse array of physiological functions and diseases

Mechanotransduction is cellular signal transduction in response to mechanical stimuli.

Physiological Conditions:

- Tissue Development and Homeostasis
- Muscle Contraction
- Bone Remodeling
- Blood Flow and Vascular Mechanics

Pathological Conditions:

- Cancer Invasion and Metastasis
- Fibrosis
- Cardiovascular Diseases
- Neurological Disorders
- Osteoarthritis

Signal Transduction and Targeted Therapy (2023)8:282

Cellular mechanotransduction in tissues and organs.

Mechanosensors are molecules or structures within cells that can detect mechanical cues.

Regulatory mechanisms of tensile force, hydrostatic pressure, and shear stress on different cell types.

Different types of mechanosensors, such as integrins, focal adhesions, stretch-activated ion channels and membrane receptors.

The importance of force magnitude, direction, and duration in influencing cellular responses.

Various cellular responses are triggered by mechanical signals, such as changes in gene expression, cell migration, proliferation, and differentiation.

How mechanical cues can influence cell fate decisions and tissue development.

Tissue Development and Homeostasis: During embryonic development, mechanobiological cues guide cell differentiation, tissue patterning, and organ formation. In adult tissues, mechanical forces help maintain homeostasis by regulating cell renewal, differentiation, and proper tissue function.

A Xenopus laevis gastrulation

Nature Reviews Molecular Cell Biology 23, 169–184 (2022)

How mechanical cues can influence cell fate decisions and tissue development.

The signaling pathways involved in mechanotransduction, including focal adhesion kinase (FAK), Rho GTPases, and the Hippo pathway

How these pathways regulate cellular functions in response to mechanical stimuli.

How these pathways regulate cellular functions in response to mechanical stimuli.

Mechanisms of integrins responding to mechanical stimulation. The β integrin interacts with ILK and talin to trigger downstream cascades. ECM extracellular matrix, ILK integrin-linked kinase

Cellular mechanotransduction of ECM stiffness.

- The integrins convey mechanical and biochemical signals from ECM into cells and facilitate cell proliferation, differentiation, migration, and invasion.
- The RhoA/ROCK pathway is activated, enhancing collagen and fibronectin accumulation.
- Talin/FAK facilitates the assembly of F-actin to promote signal transduction.
- The actin connects with myosin II and conveys the mechanical cues to the nucleus.
- YAP/TAZ is translocated into the nucleus to promote the transcription of downstream genes, collagen synthesis, and cell differentiation.

ECM extracellular matrix, ER endoplasmic reticulum, ERK extracellular signal-related kinase, FAK focal adhesion kinase, ILK integrin-linked kinase, P phosphate, TGF β transforming growth factor β

Cell engine Actin polimerization Actomyosin contractility

ATP→ Forces

Cell Migration

Mechanobiology is a dynamic and bidirectional process; cells not only respond to mechanical signals but also actively generate forces and modify their microenvironment.

Example: Focal adhesions serve as a prime illustration of bidirectional mechanobiological processes. When a cell adheres to the ECM, it experiences mechanical forces transmitted through integrin receptors at focal adhesions. This mechanical signaling can trigger intracellular responses, such as changes in gene expression, cytoskeletal rearrangements, or cell migration.

Conversely, the cell actively generates forces at these focal adhesions through the actomyosin cytoskeleton. These forces are involved in various cellular processes, including cell migration, tension sensing, and tissue remodeling. As the cell applies forces to the ECM, it can influence its own microenvironment, potentially affecting neighboring cells and the overall tissue architecture.

How mechanobiological processes are involved in various physiological and pathological conditions.

Table 2. Typical clinical trials targeting integrins								
Integrin subtype	Intervention/treatment	Disease type	Phase	Current status	ClinicalTrials.gov identifier			
α5β1	Volociximab	Metastatic renal cell carcinoma	2	Terminated	NCT00100685			
		Pancreatic cancer	2	Completed	NCT00401570			
		Ovarian cancer, primary peritoneal cancer	1/2	Completed	NCT00635193			
α4β7	Vedolizumab	Ulcerative colitis	4	Recruiting	NCT05481619			
		Crohn's disease; ulcerative colitis	Not applicable	Completed	NCT02862132			
		Inflammatory bowel disease	Not applicable	Completed	NCT02712866			
		Type 1 diabetes	1	Recruiting	NCT05281614			
ανβ1; ανβ3; ανβ6	IDL-2965 oral capsule	Idiopathic pulmonary fibrosis	1	Terminated	NCT03949530			
ανβ6; ανβ1	PLN-74809	Idiopathic pulmonary fibrosis	2	Completed	NCT04072315			
αLβ2; α4β1	7HP349	Solid tumor	1	Completed	NCT04508179			

Table 3. Typical clinical trials targeting YAP/TAZ								
Target	Intervention/treatment	Disease type	Phase	Current status	ClinicalTrials.gov identifier			
YAP	Simvastatin	Prostate cancer	2	Recruiting	NCT05586360			
	ION537	Advanced solid tumors	1	Completed	NCT04659096			
YAP/TAZ	Zoledronate	Breast cancer	2	Terminated	NCT02347163			
TEAD	IK-930	Solid tumors	1	Recruiting	NCT05228015			

Cell polarity and directed cell motion

Mechanosensing in soft and stiff substrate

Mechanisms of Directional Migration

Chemotaxis

Gradient Formation of Migratory Cues

Schematic diagram of how forces applied through the ECM (A) or directly to the cell surface (B) travel to integrin-anchored focal adhesions through matrix attachments or cytoskeletal filaments, respectively.

Techniques such as atomic force microscopy, traction force microscopy, and microfabrication tools that enable us to study mechanobiology at the cellular and molecular levels.

Migratory response to ECM stiffness

Cell spreading celular

Chemotactic migration

Sdf1 → CXCR4 (GPCR)

Craneal Neural crest Explants de Cresta Neural Craneal de *Xenopus*

[E. Barriga et al., (2018) Nature]

Durotaxis

[Chun-Min Lo et al., (2000) Biophys J]

[Adam Shellard & Roberto Mayor (2021) Nature]

Mechanosensing by: 1) Cell adhesion tension

Mechanosensing by: 2) plasma membrane lateral stretching

Course "Optics, Forces & Development"

Heterotrimeric G protein Signalling in response to Mechanical cues

Marcela Torrejón Quezada

Laboratorio de Señalización y Desarrollo Facultad de Ciencias Biológicas Universidad de Concepción

March 12th 2024

Gastrulation

Xenopus tropicalis embryo development

Neural crest

Neurulation

[TheDeepSci (2009), Xenbase]

Migration in Craneal Neural Crest (CNC)

GPCRs

Cxcr4 [Theveneau et al. Developmental (2009), Cell]

C3aR [Carmona-Fontaine et al., (2011), Developmental Cell]

Mayor et al., 214, Biochem J.

G-protein dependent cell migration

$G\alpha i2$ controls cranial NC migration by regulating mucrotubules dynamics

Modified from Pruit et al., 2014

Does Gai2 function as a mechanotransducer?

Forces transmission: mechanotransduction

Traction force análisis in Xenopus cranial NC cells.

Cranial NC cells morphology inalysis in response to different stiffness

Laboratory of Signaling and Development

35