Course "Optics, Forces & Development"

Principles of Optics I

Ulrich Kubitscheck

Clausius-Institute of Physical and Theoretical Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn

Contents

- 1. Additional Information
- 2. Basics: waves, diffraction, lenses, aberrations
- 3. Microscope
- 4. Two stage microscope
- 5. Resolution and point spread function (PSF)
- 6. More PSF: convolution
- 7. Image detection by cameras and pixel size
- 8. Objectives
- 9. Fluorescence
- 10. Fluorescence microscopy
- 11. Confocal Microscope
- 12. Nipkow disk confocal microscope
- 13. 2 photon microscopy

high resolution microscopy: STED, STORM light sheet microscopy

techniques: FRET, FRAP and force measurements by light

I.Additional Information

Good Collection of Online Learning Tools

http://micro.magnet.fsu.edu/primer/

https://zeiss-campus.magnet.fsu.edu/

Fluorescence Microscopy, 2017, 2nd edition, ed. U. Kubitscheck, Wiley-VCH

Digital Microscopy, Meth Cell Biology, 2007 ed. G. Sluder and D.E. Wolf

2. Basics: waves diffraction lenses aberrations

The electromagnetic spectrum

The electromagnetic spectrum

Different types of radiation are essentially electromagnetic waves with oscillation frequencies or vacuum wavelengths ranging over many orders of magnitude.

English version of a graphic by Horst Frank (<u>https://de.wikipedia</u>.org/wiki/Elektromagnetisches_Spektrum, https://en.wikipedia.org/wiki/GNU_Free_Documentation_License).

Electromagnetic waves

Sketch of a linearly polarized electromagnetic wave (a) Wave with electric and magnetic field components, E and B (b) Temporal oscillation at a fixed place in space. (c) Still image of the wave. $\lambda_{vac} v = c_{vac}$ $c_{vac} = 299.792.458 \ m / s$ $= 299.792,458 \ km / s$

7

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by U. Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

Interference of waves

From "Fluorescence Microscopy: From Principles to Biological Applications"

The concept of Huygen's elementary waves

"Each point of the wave front can be understood as the origin of a new elementary wave that propagates with the speed and frequency of the original wave"

From "Optics", Eugene Hecht, 2016

9

From "Optics", Eugene Hecht, 2009

Snell's law of refraction

and also that $\sin \alpha_2 = \lambda_2/b$.

Eliminating b yields $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$

From "Fluorescence Microscopy: From Principles to Biological Applications"

10

Diffraction at a pinhole \Rightarrow spherical wave

Diffraction at a grating

A plane wave hits perpendicularly on a grating. The directions of constructive interference, in which maxima and minima of one wave interfere constructively with the maxima and minima of the second wave are shown for the zeroth- and first-order diffraction.

From "Fluorescence Microscopy: From Principles to Biological Applications", online supplemental material

Diffraction grating

The diffraction grating and spectrum on screen g grating constant, λ wave length, a angle of deflection,

Source: http://library.thinkquest.org/19662/low/eng/electron-wave-exp.html

for main maxima we have

 $g\sin\alpha_n=n\lambda$

with

g: grating constant n=1, 2, 3, ..., order of maximum α_n : diffraction angle of order n Diffraction at an open pinhole

(a) A plane wave hits perpendicularly on a large pinhole. Again we find directions of constructive and destructive interference

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition online supplemental material

14

Lenses

From "Fluorescence Microscopy: From Principles to Biological Applications"

Special rays passing lenses

Nice Applet:

Optical reversal: retrace rays and yield identical paths

From "Fluorescence Microscopy: From Principles to Biological Applications"

http://www.walter-fendt.de/ph14d/bildsammellinse.htm

Real images

A single lens imaging an object as an example for drawing optical ray diagrams

From "Fluorescence Microscopy: From Principles to Biological Applications"

Focusing of light: ray model & wave model

A plane wave - sketched by the parallel incoming rays - hits perpendicularly on a large pinhole. The lens focuses the diffracted ways into its focus.

Again we find directions of constructive and destructive interference

Focusing of light with spherical aberration

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

Important aberrations in microscopy

spherical aberration

chromatic aberrations

curvature of field

coma

astigmatism

Chromatic aberrations

Axial Chromatic Aberration

Refraction is wavelength-dependent: each color has its own focus and magnification

Source: microscopy primer, https://micro.magnet.fsu.edu/primer/

Correction of chromatic aberrations

An achromatic doublet brings two wavelengths to a common focus, leaving ultraviolet and infrared uncorrected and out of focus

Curvature of field

The image is actually located on the surface of a sphere, hence the image of a flat object is curved with regard to the optical axis

Source: microscopy primer, https://micro.magnet.fsu.edu/primer/

3. Microscope

Why use a microscope?

Tasks of a light microscope

Magnification (!!!)

light detectors are sensitive for intensity, but nor for color, neither for phase or polarisation of light

Contrast production

bright field, dark field, phase contrast, differential interference contrast, fluorescence

Imaging process in an "infinity beam path"

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

27

4. Two-stage microscope

Construction of a microscope by combination of two magnification stages

29

Epi- and dia-illumination

bright field illumination

30

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

5. What about resolution? The point spread function

Diffraction at a grating I

Diffraction at a grating II

d, grid constantα diffraction angle

for Fraunhofer diffraction:

 $d\sin\alpha_n = n\lambda$

The diffraction pattern is projected into the back focal plane

diffraction pattern proportional to 1/d indeed it is the Fourier transform of the object structure

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

34

Resolution and Numerical Aperture

Grid equation
$$d \sin \alpha_n = n\lambda$$

We need at least the first diffraction maximum in the back focal plane: set n=1 ... and solve for d. However, we will always have a limit of the opening angle due to the finite lens diameter.

Within a medium with refractive index *n* then replace $\lambda \rightarrow \lambda/n$

$$d = \frac{\lambda_0}{n \sin \alpha_{max}}$$
 is the resolution limit for regular (or grid) structures

If d is smaller, then even the first diffraction order cannot be collected and all information is lost!

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

35

Imaging Point Objects

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

Resolution Limit, Airy Pattern and Point Spread Function

Interference of Huygens waves from the exit pupil of the objective

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition

3D Point spread function (PSF)

Radial and axial intensity profile of the light distribution in the focus of a lens

Radial and axial intensity profile of the light distribution in the focus of a lens

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition, Fig. 2.12

Quantitative 3D-intensity profile in the focus of an objective lens with NA = 1.3 at 488 nm

Resolution Limit According to Lord Raleigh

n the refractive index of the medium in front of the objective lens.

 $NA_{Obj} = n \sin \alpha$

Sum of Point Spread Functions for Incoherent Point Objects

Radial and axial resolution as function of the NA

From "Fluorescence Microscopy: From Principles to Biological Applications", edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition, Fig. 2.13

44

The resolution limit in the biological context

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences