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2 CHAPTER 1 Techniques for studying mechanobiology
1 INTRODUCTION TO MECHANOBIOLOGY
Mechanobiology is a field at the forefront of biomedical investigation, situated at the

interface between the fields of engineering and biology. While new examples of the

human body adapting or responding to mechanical loading are regularly being dis-

covered, this phenomenon has long been observed in multiple tissue types and across

numerous anatomical locations. Examples of tissue adaptation in response to

changes in loading include bone, cartilage, tendon, vessels, heart, lung, and skin

[1–7]. Each of these cases involves cell-driven responses by tissues and organs to

loading, requiring translation of loading that occurs at the whole-organ scale down

to mechanical stimulation of individual cells. The resulting changes in cell activity

are then manifested back up through the scales, causing adaption at the tissue or

organ level [8].

While intricately related to what could be termed “classical” biomechanics,

mechanobiology can be thought of as its mirror opposite. Biomechanics largely con-

cerns the study of the physical effects and interactions induced by biological activity

(e.g., the forces imparted onto the ground during running), whereas mechanobiology

describes the biological response to an applied mechanical stimulus (e.g., the loss of

the bone in low-gravity environments). Therefore, while mechanobiological effects

can be observed at the scale of an organ or organism, they are fundamentally the

result of changes wrought by cells in response to mechanical stimuli [9]. In fact,

it has been shown that most eukaryotic cells themselves exert force on their sur-

rounding tissues, even in the absence of any external mechanical stimulus

[10,11]. Furthermore, it has been proposed that all cells are mechanosensitive

[12], as forces are essential for basic cellular functions like mitosis and migration

[13,14]. Thus, mechanobiology is fundamentally a multiscale phenomenon, span-

ning the length scales from the very smallest molecules to whole organs and present-

ing unique challenges to researchers attempting to further our understanding. This

complex relationship across multiple scales is illustrated in Fig. 1.

The objective of this chapter is to introduce researchers from various back-

grounds to some of the wide range of experimental and computational techniques

being applied to advance the study of mechanobiology. The first section examines

investigative methods at the organ and tissue level, including animal models and

tissue-engineering techniques. The second section moves toward the cell and molec-

ular levels, introducing imaging methods, biochemical assays, and molecular anal-

ysis techniques to determine the biological responses to mechanical stimuli. The

final section describes computational methods, which have been applied at multiple

scales to analyze imaging data, quantify loading experienced by biological tissues,

and predict structural responses to mechanical stimuli.

Mechanical stimulation is transferred down from organ to molecular scales, with

various animal models (e.g., the rat ulnar loading model [15]), tissue-engineering

bioreactors (e.g., spinner-flask bioreactor [16]), cell culture techniques

(e.g., stretching individual cells [17]), and cytoskeletal disruption [18] used to



FIG. 1

Mechanobiology describes the adaptation of the body to mechanical stimulation and occurs

across multiple scales, with researchers using a range of techniques to apply loading and

measure the response at different scales.
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replicate this experimentally. These stimuli are then transduced into biochemical and

structural responses, with a range of techniques such as RNA assays (e.g., in situ

hybridization on RNA analysis of gene expression [19]), biochemical assays

(e.g., calcium signaling [20]), tissue labeling (e.g., tetracycline-alizarin staining

for bone tissue growth [21]), and imaging techniques (e.g., image registration of knee

menisci [22]) applied to measure these. Computational techniques (such as FSI

modeling [23]) can operate across multiple levels, acting as a bridge across the length

scales to model in vivo mechanobiology.
2 ANIMAL MODELS AND TISSUE ENGINEERING TO STUDY
MECHANOBIOLOGY
2.1 ANALYSIS OF A SINGLE CELL
Single-cell investigations are advantageous for understanding cell behavior in

response to specific stimuli (mechanotransduction). The results of single-cell inves-

tigations can be used to guide the development of mechanical environments that

elicit favorable cell responses and inform tissue-engineering approaches [24,25].

Single-cell investigations are also used to investigate cell material properties, vital

information that is required for computational investigations [26]. Force-application

techniques are used to investigate single-cell mechanics, whereby the cell is
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deformed in some way by a known force or stress and its mechanical and/or bio-

chemical response is measured. Typically, the surface of the cell is indented or

extended [26,27]. There are a number of force-application techniques available,

as discussed in detail by Rodriguez et al. [26] and summarised in Fig. 2. Optical twee-

zers, atomic force microscopy (AFM), and micropipette aspiration are commonly

used tools for single-cell investigation, shown in Fig. 2.

2.1.1 Force application techniques to analyze a single cell
2.1.1.1 Optical tweezers
Optical tweezers (often referred to as optical trap) are one method often used to apply

a known force to a cell. This technique was developed by Arthur Ashkin in 1970 [28]

and was originally used to trap individual atoms, viruses, and bacteria [29]. In this

method, nano- to micron-sized beads are attached to the cell membrane. Displace-

ment of the cell membrane is controlled by directing infrared lasers at the transparent

beads. When photons pass through the beads, there is a change in their direction. The

change in direction causes a change in momentum, resulting in a force on the bead.

This change is dependent on the refractive index of the beads. Optical tweezers can

exert forces in excess of 100pN on particles ranging in size from nanometers to

microns while simultaneously measuring the 3D displacement of the trapped particle

with subnanometer accuracy and submillisecond time resolution [30].

2.1.1.2 Atomic force microscopy
AFMwas first developed to probe nanoscale features of solid materials using its high

sensitivity to intermolecular forces (�pN) and spatial resolution (�nm). More

recently, AFM has been used throughout the literature to measure the apparent elas-

ticity of living cells. An AFM system generally consists of a probing tip attached to a

flexible cantilever that is lowered onto the cell, and the deflection of the cantilever is

monitored. The local Young’s modulus (E) of a living cell can be measured by

recording the force acting on the AFM tip while it is indented into a cell, which

results in a force-displacement curve. This force-displacement curve can be used

to calculate the force-indentation curve by fitting it with the Hertz model (contact

mechanics) allowing the estimation of the local E; a detailed description is provided
in [31,32]. The following two conditions must be met for an accurate measurement:

(a) The indentation depth is not more than �10% of the sample thickness [33,34],

and (b) the indentation depth is >200nm [35]. Additionally, the variable shape of

a typical AFM probe will determine the nature of the force-deformation curve

[27]. AFM indentation is typically performed on highly localized regions of the cell,

probing individual structures and determining the heterogeneity of cell.

2.1.1.3 Micropipette aspiration
Amicropipette is a small glass capillary with an internal diameter smaller than that

of a cell. In this technique, the micropipette is extended to the surface of a cell, and

a small negative pressure is applied to create a tight seal between the cell and the tip
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FIG. 2

Force-application techniques for single cells. QCM, Quartz Crystal Microbalance; AFM, Atomic Force Microscopy; MTC, Magnetic Twisting

Cytometry; MEMS, Microelectromechanical Systems.
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6 CHAPTER 1 Techniques for studying mechanobiology
of the micropipette. Once this seal is formed, a known negative pressure is applied

inducing cell deformation or “aspiration.” Micropipette aspiration is used to study

whole-cell mechanics by investigating how much cellular material is pulled into a

glass pipette in response to the known negative pressure applied. Video microscopy

is used to monitor the volume of cell material outside the pipette by tracking the

change in radius of material and the height of cellular material inside the micropi-

pette [25,26]. The Young’s modulus of the cell can be calculated from the applied

vacuum pressure, the length of the cell inside the pipette, and the inner radius of the

pipette, if the cell is assumed to be a solid homogenous material [27]. If the cell is

assumed to behave as a viscous solid, the cell viscosity can be calculated from these

aforementioned values, the radius of the spherical portion of the cell outside the

pipette, and the lengthening rate of the cellular material within the pipette

[26,27]. The device can measure piconewton-level forces [27]. This technique

has been used to determine the elastic modulus and viscoelastic properties of var-

ious cell types throughout the years [26,36,37]. It has been extensively used to mea-

sure cells in suspension [38–43] but more recently has been used to measure cells

adhered to a substrate [44,45]. This technique has also been used to investigate the

stiffness of nuclear mechanics by gently isolating the nucleus from the cell cyto-

plasm [41,46].
2.2 CELLULAR INTERACTIONS WITH THEIR LOCAL ENVIRONMENT
In addition to the investigation of cells themselves, forces generated by the cell in

their local environment are key in the study of mechanobiology and tissue engi-

neering. Forces are produced by cells during development, contraction, migration,

and other common cell processes [26]. Contractile cellular forces (cellular trac-

tions) are transmitted to other cells via cell-cell interactions and to the local extra-

cellular matrix (ECM) through cell-matrix interactions. These forces generated by

cells drive the bending, stretching, alignment, and repositioning required for tis-

sue development and homeostasis, and they also regulate cell functions ranging

from receptor signaling and transcription to differentiation and proliferation. Cell

tractions are in the range of pico- to nanonewtons and occur across small-length

scales (nano- to micrometers), making direct measurement a particularly chal-

lenging task. Exciting research in the nascent fields of microfluidics and

organ-on-a-chip technologies provide the promise of studying cell mechanobiol-

ogy in a tailored 3D microenvironment, more closely replicating the physiological

and mechanical environment in vivo. These interesting new techniques combine

much of the methods described in this section, and detailed reviews can be found

elsewhere [46a,46b,46c,46d]. Methods for measuring cellular forces include col-

lagen contraction, tissue pillars, two-dimensional (2D) and three-dimensional

(3D) traction force microscopy (TFM), and micropillar arrays. For a review of

these methods, refer to Polacheck and Chen [47]; TFM and micropillar arrays

are discussed briefly below.
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2.2.1 Techniques to analyze cellular tractions
2.2.1.1 Traction force microscopy
Cellular TFM developed by Dembo and Wang [48] remains the most widely used

method to measure cell forces. Traction forces generated by cells can be decomposed

into a component acting parallel to the substrate surface and a normal component,

which acts perpendicular to the substrate surface. The forces that act parallel to the

substrate surface generate deformations in the optical viewing plane and can be visu-

alized using wide-field microscopy. TFM involves tracking synthetic elastic polymer

substrates as they move in response to cellular forces [47]. Briefly, standard 2D TFM

involves mixing small fluorescent beads (<1μm) into a substrate and seeding cells on/

in the substrate. The substrate used for this applicationmust be a flat, deformablemate-

rial that has well characterized mechanical properties. The material must behave as an

isotropic linear elastic material under deformations that are likely to occur. In addition

to this, the substrate must be resistant to degradation in order to decouple force mea-

surements from changes in mechanical properties of the substrate. The fluorescent

beads are optically imaged in a stressed state, and then, the cell traction forces are

released by cell lysis, detachment, or myosin inhibition, and the beads are tracked

in space and time to determine their position in an unstressed state. Computational

algorithms are then used to determine the displacement of the beads from the images

and the force required to cause such displacements. This technique allows cellular

forces to be mapped at a subcellular resolution as the size of the beads is much smaller

than the size of the cells. However, complicated computation calculations are required

to determine bead displacements and forces [47]. Various computational techniques

are discussed in detail in the following publications [49–51].
Tracking substrate deformation in a 2D plane (as described above) is not repre-

sentative of a 3D environment as contractile forces generated by cells are distributed

throughout the 3D space. For this reason, TFM techniques have been modified to

track bead displacement in 3D with confocal microscopy. However, computing trac-

tion forces in 3D requires considerable computational resources. Measuring tractions

of cells in 3D is difficult for two main reasons: (a) the experimental/computational

complexities and (b) the mechanical properties of biologically relevant 3D culture

substrates are much more complicated than those of well-characterized nondegrad-

able synthetic materials used for 2D TFM [47].

TFM and related techniques have enabled characterization of the force dynamics

involved in a variety of cell biological processes such as adhesionmaturation [52,53],

migration [48,54–56], differentiation [57], and malignant transformation [58].

Although great progress has been made in this field over the past number of years,

it still remains unclear how forcesmeasured in vitro onmechanically simplifiedmate-

rials relate to forces in living tissues. Current methods measure the forces between a

cell and a single material, but in vivo, cells are connected to a host of materials and

other cells, all of which contribute to the generation and propagation of cellular forces

[47]. However, the ever-growing community of engineers, mathematicians, and sci-

entists are working on the continual development of solutions to overcome the short-

comings of current methods.
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2.2.1.2 Micropillar arrays
Micropillar arrays are another method to measure cellular traction forces. In this

technique, single cells are seeded onto an array of micron-sized evenly distributed

pillars/cantilevers. The tops of the cantilevers serve as the cell substrate, which

results in a high density of force sensors beneath a single cell. Cellular- or

subcellular-scale pillars are typically 0.5–10μm. The displacements of each cantile-

ver in an array can be tracked, and the observed displacements can be used to cal-

culate the tissue traction forces using beam theory [25,47]. Furthermore, these posts

can be fabricated in a cost-effective manner, as described by Rodriguez et al. [26].

Micropillars are also known as micropost arrays or microfabricated postarray detec-

tors (mPADs) [26,47]. Micropillar arrays have been used to investigate cell spread-

ing [59,60], migration [61–63], contractility [60,64,65], focal adhesion strength [66],
and cadherin junction tractions [67,68].
2.3 BIOREACTORS TO MIMIC THE IN VIVO ENVIRONMENT
In the body, the forces experienced by tissues and cells vary in both type and mag-

nitude depending on the physiological location. As a result, each type of tissue con-

struct (skin, bone, cartilage, tendon, blood vessel, etc.) has different requirements,

making bioreactor design a complex task. For this reason, tissue-specific bioreactors

have been developed based on a thorough understanding of biological and engineer-

ing aspects, to generate loading conditions in vitro similar to those experienced by

cells in their native niche [69]. A tissue-engineering bioreactor can be defined as a

device that uses mechanical means to influence biological processes [70]. Bioreac-

tors are generally designed to perform at least one of the following functions:

(a) provide a spatially uniform cell distribution, (b) maintain the desired concentra-

tion of gases and nutrients in culture medium, (c) facilitate mass transport to the tis-

sue, (d) expose the construct to physical stimuli, and/or (e) provide information about

the formation of 3D tissue [71–73]. Numerous studies have demonstrated that the

application of mechanical cues assists in the differentiation and growth of stem cells

and the production of functional ECM, such as aligned tendon [74–77], cartilage
[78–81], and mineralized bone [52,82–84]. Bioreactor studies are often combined

with computational/mathematical modeling to advance the understanding of the

dynamic environment.

2.3.1 Types of bioreactors
Bioreactors range from advanced commercial systems to custom-built systems

developed and built by researchers. Bioreactors have been specifically developed

to apply mechanical stimulation via compressive loading, tensile strain, hydrostatic

pressure, shearing fluid flow, or indeed a combination of these elements. These types

of bioreactors are shown in Fig. 3. For a more thorough review, refer to P€ortner
et al. [69].

Flow perfusion bioreactors are most commonly used as they replicate a dynamic

environment by allowing 3D structures to obtain nutrients and eliminate waste. Flow



Static

Media filled scaffold
chamber

 Static culture  Perfusion/fluid flow
bioreactor

 Compression
bioreactor

 Tensile strain
bioreactor

 Hydrostatic pressure
bioreactor

Compression Tension Hydrostatic

Piston which
applies
static or
dynamic
compressive
loads

Piston
which
applies
static or
tensile
strain

Piston which
applies
static or
dynamic
compressive
loads

Perfusion

Cell loaded 
scaffold

Media flow out

Media flow through
the scaffold pores

Cell loaded 
scaffold

Cell loaded 
scaffold

Cell loaded 
scaffold

Cell loaded 
scaffold

(A) (B) (C) (D) (E)

FIG. 3

Static culture (A) and perfusion (B), compression (C), tensile (D), and hydrostatic (E) forces applied to cell loaded scaffolds using bioreactors.
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perfusion bioreactors generally consist of a pump that forces the media through a scaf-

fold (located in a scaffold chamber) at a quantifiable flow rate. Media can be easily

changed in this experimental setup; however, results may largely depend on the flow

rate. Microfluidics systems typically consist of cells grown on a porous scaffold or flat

surface, and fluid is pumped across the cell layer, whereas in microcarrier systems,

cells are seeded on a scaffold that is placed in an agitated solution [69,71].

Compressive forces in vivo generate shear stress and strain as fluid is forced from

the compressed area to the interstitial spaces. Both static and dynamic forces occur in

vivo. Compression bioreactors are particularly important in the musculoskeletal sys-

tem; specifically, osteocytes and chondrocytes are particularly sensitive to compres-

sive forces. Generally, compression bioreactors consist of a motor that provides a

linear motion and a controlling mechanism providing displacement regimes. The

compressive force is transferred to the construct by flat platens that distribute the

load evenly. Mass transfer is usually improved in dynamic compression bioreactors

as compression causes fluid flow through the scaffold [71,85].

Tensile forces are commonly experienced in tendons, ligaments, and muscles. In

order to grow these tissues in vitro it is necessary to align the cell growth along the

appropriate axis. Once the cells are aligned, the intracellular cytoskeleton and ECM

deposition will also be aligned parallel to the strain axis. Many tensile strain biore-

actors have very similar design to compression bioreactors, differing only in the

direction in which the load is applied. In this case, the scaffold is clamped in position

using nonslip grips, and tensile strain is applied [69,71].

Hydrostatic pressure bioreactors can be used to apply mechanical stimulus to

cell-loaded constructs and are commonly used in cartilage tissue engineering.

Hydrostatic pressure bioreactors generally consist of a scaffold chamber that can

withstand the pressure applied and a means to apply the pressure, such as an

actuator-controlled piston. In this case, the piston must apply the pressure via an

impermeable membrane so as not to sacrifice sterility of the experimental setup [71].

The four basic steps of bioreactor design are (a) identifying the needs and tech-

nical requirements, (b) defining and evaluating the related concepts, (c) designing

and drawing the device, and (d) building and validating the device. Furthermore,

the design has to be adapted to the specific purpose of the research and how the tis-

sues will be used [86]. A description of bioreactor design requirements is provided by

Partap et al. [71].

2.3.2 Future of bioreactors
Static culture conditions do not accurately represent the dynamic in vivo environ-

ment and are being gradually replaced by bioreactor culture systems. A better under-

standing of the mechanobiological environment of cells in 3D is required for the

successful fabrication of functional engineered tissue. Bioreactors are a vital cog

in the transition to the next generation of cell research, whereby readily available,

easy-to-use systems will allow researchers to apply appropriate mechanical loading

to their experiments and hence mimic the native cell environment [87]. However,

currently, most bioreactors are specialized devices with a low-volume output. Many
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exhibit operator-dependent variability, and their assembly is time-consuming and

labor-intensive [71]. First, bioreactors are required to enable us to study this complex

3D environment, and following on from this, scaled-up automated bioreactors are

required to produce this engineered tissue.
2.4 ANIMAL LOADING MODELS
Animal loading models are often required to elucidate the mechanobiology of a liv-

ing tissue under normal and altered mechanical conditions. These models are com-

monly used to study bone mechanobiology, as loading is particularly important for

bone development, remodeling, and regeneration. The bone is constantly remodeled

by the coordinated action of bone-resorbing osteoclasts and bone-forming osteo-

blasts. During physical activity, mechanical forces are exerted on bones through

ground reaction forces and by the contractile activity of muscles [88,89]. These phys-

ical forces result in a maintenance or gain of bone mass and adaptive bone remodel-

ing. The lack of physical activity/mechanical loading results in resorption of the bone

[90]. Numerous animal loading models have been developed throughout the years to

test specific hypothesis about bone modeling and remodeling. Animal loading

models are used to apply forces at the organ scale in order to generate responses

at the cellular level in an effort to determine what mechanical signals elicit specific

cellular responses.

In a controlled experimental environment, the force required to generate these

mechanical signals can come from intrinsic sources, such as voluntary muscle con-

traction during a vigorous exercise session (noninvasive), or from normal activity

following the surgical removal of a nearby bone that formerly shared the load (inva-

sive). Alternatively, the load can originate from extrinsic sources, such as pressure

applied to the skin adjacent to the bone (noninvasive) or loads applied to surgically

implanted pins (invasive) [91]. For a review of some of the most widely used animal

loading models for bone, refer to Robling et al. [91]. While we focus here on skeletal

tissues, animal models have been applied in mechanobiological studies of a number

of other organs, for example the tendons in mouse treadmill running (described in

Chapter 5), the vasculature of hypertensive mice (described in Chapter 7) and scar

mechanotransduction in pig skin tissue (described in Chapter 14).
2.4.1 Noninvasive extrinsic skeletal loading models
Early models enabling extrinsic control of load levels provided a significant insight

into bone remodeling; however, they typically employed invasive surgical proce-

dures, which can present complications (e.g., infection and inflammation) in exper-

iments and interpretation of results. This led to the development of noninvasive

animal loading models that are capable of applying a well-defined mechanical signal

to the bone without the potential complications of surgery. Noninvasive models are

technically simpler, less expensive and do not rely on healing processes, as compared

with the surgical models [91]. The two most commonly used noninvasive animal



FIG. 4

Skeletal animal loading models. (A) Tibial four-point bend model [94]; (B) ulnar compression

model [15].
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loading models are the tibial four-point bending approach developed by Turner and

coworkers [92] and the ulnar compression model of Lanyon and coworkers [93].

2.4.1.1 Tibial four-point bend model
The tibial four-point bend model was first described by Turner [92], whereby the rat

tibia is subjected to four-point bending in the mediolateral direction. The right hind

limb of an anesthetized animal is placed between pairs of upper and lower padded

load points. A downward force is applied to the upper points, and the load is trans-

mitted to the tibia through the skin, fascia, muscle, and periosteum, resulting in the

production of a bending moment in the region between the two upper points. The

bending moment imposes a compressive strain on the lateral tibial surface and tensile

strain on the medial surface, as shown in Fig. 4A (top). On the contralateral leg of the

animal, a sham configuration is implemented, whereby the upper and lower points

directly oppose each other, as shown in Fig. 4A (bottom). In this configuration, the

sham leg is squeezed, but the bone does not deform [95]. This model has since been

scaled down for a mouse model [96].

2.4.1.2 Ulnar compression model
In the ulnar compressionmodel [93], the forearm of an anesthetized animal is secured

between two small metal cups that are mounted on the platens of a materials testing

machine or other actuator. The elbow is secured with one cup, and the dorsal surface

of the volar-flexed wrist is secured in the second cup. Compressive forces applied

to the platens are transmitted to the ulnar diaphysis through the skin, fascia, articular

cartilage (at the distal end), and ulnar metaphyseal bone, as shown in Fig. 4B.
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The natural curvature of the ulnar diaphysis translates�90%of the axial compression

into a mediolateral bending moment [91]. The ulnar loading model was also initially

developed for the rat and has been modified for the mouse [97] and rabbit [98].

In both the tibial four-point bend model and the ulnar compression model

dynamic loads are applied, and the load magnitude, rate, number of cycles, and dura-

tion are well controlled. These noninvasive models, combined with increased com-

puting power, higher resolution imaging, and new molecular techniques, will enable

systematic evaluation of loading parameters to understand the nature of the osteo-

genic stimuli and pathways [99]. Additionally, the explosive growth of transgenic

animal technology will undoubtedly lead to a more comprehensive understanding

of the process of mechanically induced bone formation.

2.4.2 Embryonic animal models with an altered mechanical environment
Evidence from animal models has been key to help our understanding of the impor-

tance of movement as a regulatory tool in sculpting skeletal development. In animal

models, the mechanical environment can be altered in a number of ways including

the in vivo immobilization of the musculature (in ovo immobilization) or the use of

mutant mouse embryos in which the skeletal rudiments develop with reduced,

absent, or noncontractile muscle (reviewed in Ref. [100]). Both the chick and mouse

are valuable vertebrate models used to investigate the effect of mechanical stimula-

tion on embryonic skeletal development, due to their similarities with human mus-

culoskeletal development.

2.4.2.1 In ovo immobilization
An advantage of the chick embryonic model is that it can be physically manipulated

in ways that are impossible in the mammalian embryo. The chick shares many fea-

tures of embryonic development with mammals and has a huge advantage of devel-

opment external to the mother, in ovo (in the egg), which allows procedures and

alterations to the embryos and resulting effects to be examined (reviewed in Ref.

[101]). During chick development, innervations of chick myotomes occur at approx-

imately embryonic day 3 (E3) [102], and it has been reported that spontaneous limb

movements occur from E3.5 to hatching [103]. Immobilization can be achieved in

the developing chick embryo either surgically, by extirpation of the spinal nerves,

or by application of pharmaceutical agents that block neuromuscular signals

(e.g., Refs. [104–106]). Immobilization studies on the chick have shown that bio-

physical stimuli are required for correct initiation of ossification [104], several

aspects of joint morphogenesis [105,107–110], and correct spine development [106].

2.4.2.2 Mammalian models
Essential information about regulatory genes and the role of environmental stimuli

for skeletal development has emerged using the developing chick model; however,

for appropriate comparison with human development, the mammalian murine model

has been utilized. Another benefit of the murine model is the substantial knowledge

of the genome and the similarity in gene regulation mechanisms with the human.

Muscle contractions begin relatively early in development, at approximately the
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same time as the cartilage template is taking shape, after approximately E12.5 in the

mouse [111]. Genetic manipulation has produced mouse models that can be used to

study the effect of mechanical stimulation from movement on skeletal development;

they include mice with reduced (Myf5nlacZ/+:MyoD�/� [112]), immobile (Mdg�/�

[113]), or absent (Splotch [114,115], Splotch delayed [116,117], Myf5nlacZ/nlacZ:
MyoD�/� [118,119], Six1�/�:Six4�/� [120]) skeletal muscle. These mouse models

that lack normal muscle contraction show similar skeletal phenotypes to those

observed in the chick immobilization studies including joint fusions and alterations

in the ossification pattern [121].
2.4.2.3 Zebrafish models
The recent emergence of the zebra fish as a model for mechanoregulation of the skel-

etal system builds on the work of the previously described chick and mouse. The

zebra fish is a system, however, in which many transgenic lines are available, spe-

cifically those that mark the various cell types of the musculoskeletal system [122].

This system has aided the understanding of cellular behavior following the manip-

ulation of the mechanical environment [123]. Paralysis of the zebra fish exhibits a

reduction in the size of all pharyngeal cartilage, establishing muscle loading in this

model as a regulator of chondrocyte intercalation [124]. Similarly, zebra-fish

mutants that lack neuromuscular nicotinic receptors (nic b107) and are therefore

immobile display jaw morphology abnormalities, such as smaller and wider ele-

ments [124]. Both flaccid and rigid paralysis of the zebra fish have been shown to

show similar changes to the morphology and function of the jaw joint [125]. It

has recently been demonstrated using live zebra-fish joint imaging that cell behavior

such as proliferation, migration, intercalation, and cell morphology changes required

to shape the jaw joint are altered under reduced biomechanical conditions [126]. The

malleable nature of this model could potentially hold promise for joint malformation

recovery studies following periods of immobilization, as may occur in utero.
2.5 FLUORESCENT PROTEINS (FPs) AND IMAGING TECHNIQUES
The discovery of green fluorescent protein (GFP) in 1962 [127] has led to the devel-

opment of a number of FPs with various hues. FPs are members of structurally sim-

ilar class of proteins that share the unique property of emitting fluorescence at a

specific wavelength when excited by a specific wavelength. FPs can be fused to vir-

tually any protein of interest and genetically encoded into cells to analyze protein

geography, movement, and chemistry in living cells [128]. FPs have been widely

used for live-cell imaging over the past 20 years and have advanced our understand-

ing of many important molecular and cellular functions in live cells. For a thorough

review on the various FPs, refer to Wang et al. [129]. As a result of the innovation in

FPs, new imaging technologies that utilize FPs have also been developed. Tech-

niques utilizing novel FPs and imaging technology have been making a substantial

impact on mechanobiology research over the past number of years.



152 Animal models and tissue engineering to study mechanobiology
2.5.1 FPs as markers in mechanobiology
Mechanical forces can activate a number of signaling molecules located in the cell

membrane and other subcellular compartments. As FPs are genetically encoded, they

are well suited for the imaging of the spatiotemporal localization and activation of

signaling molecules and structures in live cells in response to mechanical stimuli.

A large number of signaling molecules have been labeled with FPs, and as such,

the position and movement of these molecules can be visualized with high spatio-

temporal resolution techniques [129,130]. FPs and live-cell imaging can be used

to visualize organelles, cytoskeleton, signaling molecules, and gene expression in

mechanobiology, as discussed in detail by Wang et al. [129].

Briefly, at the organelle level, FPs can be fused to signaling molecules that local-

ize to subcellular organelles to monitor where the organelle resides. FPs can high-

light organelles to serve as reference points for the determination of the global

mechanical properties [131–133]. FPs can also be fused to cytoskeleton molecules

such as actin, microtubules, and intermediate filaments making the cytoskeleton

fluorescent whereby morphology and deformations of the cytoskeleton can be mon-

itored in a dynamic fashion [134,135]. Labeling and monitoring the dynamics and

intercompartmental traffic of signaling molecules have been the most successful

use of FPs in mechanobiology to date. FPs have been used to observe the molecular

dynamics in terms of intracellular mechanical tension/stress [136–138], extracellular
mechanical environment [139,140], external mechanical loading [141–144], and the
mechanical impact the cells exert on the extracellular environment [52,53]. FPs have

also been used to investigate the translocation of specific target molecules among

different subcellular organelles [145–148]. In gene expression, FPs are fused to

the promotor region of the gene of interest; when cells are exposed to various types

of mechanical stimulation, the up-/downregulation of the gene can be monitored by

the levels of expressed FPs [129].
2.5.2 Imaging technologies using FPs
2.5.2.1 Live cell imaging
Time-lapse imaging is used to observe and capture cellular dynamics by imaging live

cells at regular time intervals using fluorescent or indeed light microscopy. In this

technique, a camera captures sequences of images that are later viewed at faster

speed to track cellular responses over time. The two main experimental challenges

in collecting robust live-cell imaging data are to minimize photodamage while

retaining a useful signal-to-noise ratio (specifically for fluorescent imaging tech-

niques) and to provide a suitable environment for cells or tissues to replicate phys-

iological cell dynamics. Living cells will only behave normally in a physiological

environment, and control of factors (temperature and cell culture medium) using

an environmental chamber is therefore critically important. The single most impor-

tant factor to successful live-cell imaging and meaningful data is to limit excitation

light as photobleaching is inevitable with this technique, as discussed by Ettinger

et al. [149].
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2.5.2.2 Fluorescent resonance energy transfer (FRET)
Fluorescent resonance energy transfer (FRET) is a phenomenon of quantummechan-

ics that involves the nonradiative transfer of energy from a donor to an acceptor

fluorophore (molecule that fluoresces) [129]. A fluorophore can serve as a FRET

donor if its emission spectrum overlaps the excitation spectrum of another fluoro-

phore, the acceptor fluorophore. When the donor and the acceptor are in close prox-

imity to one another (<10nm) at the correct orientation, the excitation of the donor

can elicit an energy transfer, inducing emission of the acceptor. FRET efficiency is

defined as the proportion of the donor molecules that have transferred excitation state

energy to the acceptor molecules and is dependent on the distance and orientations

between the fluorophores. FRET is a reversible reaction and occurs instantaneously

[129]. Genetically encoded FRET biosensors can be easily introduced into cells mak-

ing this technique well suited to molecular live-cell imaging to monitor mechano-

transduction with high spatiotemporal resolutions. FRET-based techniques have

been employed to visualize signal transduction in response to mechanical stimula-

tion, as discussed by Wang et al. [129]. Briefly, Chachisvilis et al. [150] fused ECFP

and EYFP (fluorescent proteins) to human B2 bradykinin receptor, a G-protein-

coupled receptor (GPCR), to detect the activation of GPCR. Using FRET, they

showed that shear stress activated B2 bradykinin in bovine aorta endothelial cells,

and this effect can be inhibited by B2-selective antagonist. These results suggest that

the membrane B2 bradykinin GPCRs are involved in mediating primary mechano-

chemical signal transduction in endothelial cells [150]. More recently, FRET has

been reported in 3D where Zhao et al. demonstrate that Ca2+ and cAMP levels of

live embryos expressing dual FRET sensors can be monitored simultaneously at

microscopic resolution [151].

2.5.2.3 Fluorescent recovery after photobleaching (FRAP)
Fluorescent recovery after photobleaching (FRAP) is a technique where fluorescent

signals are selectively photobleached within a subcellular region, and the recovery of

the fluorescence is monitored in that region over time. The fluorescent intensity of

the bleached area will recover at different rates, depending on the levels of diffusion

and active transportation of fluorescent molecules [129]. FRAP has been widely used

to investigate molecular dynamics in mechanobiology. Using FRAP, Vereecke et al.

[152,153] assessed the speed of intracellular Ca2+ wave propagation during mechan-

ical stimulation in rat retinal pigment epithelial cells. FRAP has also been used to

show that mechanical stress controls the focal adhesion assembly by modulating

the kinetics of zyxin in bovine adrenal capillary endothelial cells [136].

2.5.2.4 Confocal and two-photon microscopy
Cells in their native 3D environment behave very differently to in vitro 2D cultures

[154–156]. Investigation into cellular responses requires 3D images at the cellular,

subcellular, and ultrastructural levels. Imaging structures in 3D is an inherently dif-

ficult task as the contribution of a signal from above and below the focal plane pro-

duces background fluorescence, affecting the quality of the image. Depths and
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scattering effects [156] require new imaging techniques to achieve high-resolution

images of cells and indeed FPs in 3D environments.

In confocal laser scanning microscopy, a point-source laser light excites a fluor-

ophore in the sample that either is autofluorescent or has been stained with specific

fluorescent dyes. The sample is imaged at sequential focal planes, and a pinhole

detector excludes out-of-focus background fluorescence from detection. A stack

of 2D optical sections is acquired, which enables production of 3D representations

of internal structures [157]. However, in this technique, as the excitation light gen-

erates fluorescence, it also produces photobleaching and phototoxicity throughout

the specimen (even though the signal is only collected from the plane of focus).

The penetration depth is also limited by absorption of excitation energy throughout

the beam path and by specimen scattering of the photons [157–159].
Two-photon excitation microscopy has been developed as an alternative to con-

ventional single-photon confocal microscopy. In two-photon excitation microscopy,

a fluorophore is excited by the simultaneous absorption of two long wavelength (low

energy) photons. In this case, their combined energy induces excitation of a fluoro-

phore, which normally requires the absorption of a high energy to become excited.

This can only occur at a very focused area with limited volume (femtoliter scale)

[129], and as such, noise originating from the areas outside the focal region is elim-

inated. As a result of the enhanced signal-to-noise ratio, the penetration depth of

imaging is improved (several hundred micrometers) without significant photo-

bleaching [129,160,161]. As this technique enables increased depth penetration

and can be less phototoxic to live specimens, it has been widely used at the molec-

ular, cellular, tissue, and animal levels [162–165,165a,165b].
3 MOLECULAR AND GENETIC TECHNIQUES TO STUDY
MECHANOBIOLOGY
3.1 ANALYSIS OF mRNA EXPRESSION
To understand how a biological system works, researchers seek to comprehend the

functioning of the systems’ component parts. As all cells in a given organism possess

an identical genetic makeup, it is the unique phenotypes or observable characteristics

directed by differential gene expression that guide the system’s complexity. The first

step to understanding this complexity in assorted cell types is to discover which

genes are expressed by the cells of interest, thus guiding cellular differentiation into

specific tissue types and then into functioning systems. Great progress has been made

over the recent years toward understanding the role that mechanical stimulation has

on the development and maintenance of tissues and the impact it has in guiding cell

differentiation [100,166,167]. Much of this understanding of the integration of

mechanical forces and cellular responses has been possible through the analysis

of messenger RNA (mRNA) profiles and changes in gene expression following alter-

ations in the mechanical environment. The central dogma of molecular genetics is
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that DNA codes for protein not directly but indirectly through processes called tran-

scription and translation. This indirect route of information transfer involves an inter-

mediate ribonucleic acid (RNA) molecule that relays the message. This so-called

mRNA carries the genetic information transcribed from DNA and is used to translate

a template for protein synthesis. Through the analysis of mRNA by different means,

as discussed below, it is possible to understand the types of proteins that are being

guided to be produced by this molecular information transfer.

The objective of this section is to provide researchers from traditional engineer-

ing backgrounds with the theoretical principles and practical techniques of experi-

mental molecular biology, to utilize in the field of mechanobiology.

The first step in selecting a method of mRNA expression analysis is to assess

whether a hypothesis can be tested using known specific genes that may be respon-

sive to experimental mechanical manipulation. In these cases, methods of detection

of specific individual/single genes would be appropriate. Techniques for individual-/

single-gene expression include in situ hybridization (spatial expression) and quanti-

tative real-time polymerase chain reaction (qRT-PCR). In cases when specific gene

changes would be unknown, a more high-throughput screening approach using tech-

niques such as microarray or RNA sequencing that focus on genome-wide patterns of

gene expression would be more appropriate. Utilizing high-throughput methods of

mRNA detection offers the benefit of simultaneously capturing changes in interact-

ing groups of genes, with the potential of illustrating novel mechanisms of mechan-

otransduction. This section will present the basic principles underlying the molecular

and genetic techniques of high-throughput and individual-level detection of mRNA

expression that have been utilized for mechanobiology studies.

3.1.1 Microarray analysis
DNAmicroarray or chip-based detection was the first of its type to take a large-scale

screening approach to collect large data sets to allow data mining and reveal intricate

functions. The methodological approach was originally used for sequence analysis

but then became widely adopted to quantitatively measure changes in gene expres-

sion (reviewed in Ref. [168]). Microarray technology works on the principle of

nucleic acid site-specific sequence binding or hybridization onto synthetic sequences

present on a chip. A microarray (or chip) is a flat surface in which 10,000–100,000
distinct oligonucleotide (short number of nucleotides) probes are present. These

probes represent unique sequences for individual genes that will allow for comple-

mentary binding of mRNA from cell/tissue samples. For both in vitro and in vivo

experiments involving alterations of the mechanical environment, separate control

and experimental groups are formed. The method includes total RNA extraction,

reverse transcription of the RNA using oligo-dT primers, and inclusion of a promoter

sequence. In vitro transcription is then performed to form complementary DNA

(cDNA) incorporating a fluorescent label. The fluorescently labeled cDNA is hybrid-

ized with the microarray (chip), to allow the complementary sequence-specific bind-

ing of the sample cDNA with the oligonucleotide probe sets on the chip. Following

rinsing and digital scanning of the chip, the abundance of RNA (bound labeled
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Molecular techniques using mRNA expression to analyze mechanobiology. Basic flow

through of each technique as described in the text for both high-throughput identification of

changes in gene expression using microarray analysis (A) and transcriptomic mRNA

sequencing (B) and more individual- or single-based gene expression changes using

quantitative RT-PCR (C) and in situ hybridization (D).
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cDNA) is determined by measuring fluorescent density (Fig. 5A). Data are then nor-

malized among replicates for control and experimental groups and the statistical

analysis performed. Differential gene expression is generally indicated with a fold

change of �2.0 or �2.0.

The molecular response following alterations in the mechanical environment has

been reported in various in vitro and in vivo studies in an attempt to understand in

more detail the means by which mechanical stimuli modulate the cellular response

during cellular differentiation. Profiling of genome-wide changes under altered

mechanical environments has been carried out using in vitro culture systems in con-

junction with microarray technology, including osteoblast cell lines subjected to

weightlessness or microgravity conditions [169] and chondrocytes subjected to ana-

bolic loading [170], dynamic compression [171], or hydrostatic pressure [172].
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Analysis of genetic responses to altered mechanical environment during in vivo con-

ditions has also been performed, including expression changes to an absence of

movement during embryonic limb development [173].

A limiting factor of the hybridization methodology is its high background,

because it is unable to distinguish RNA molecules sharing high sequence similarity.

Microarrays also rely on hybridization with a labeled probe in which sequence is

known, while RNA-sequencing technology doesn’t depend on the genomic

sequences being known that allows the potential to identify novel gene sequences.

3.1.2 Transcriptomics: Total RNA and mRNA sequencing
A transcriptome is the whole set of RNAs transcribed by the genome from a specific

tissue or cell type at a particular developmental stage and/or under a certain physi-

ological condition. Following the sequencing of the genome, transcriptome analysis

allowed researchers to understand further information on gene structure and regula-

tion of gene expression. This technique has been utilized in multiple aspects of biol-

ogy to reveal the regulation network of biological processes and guidance on aspects

of diseases and drug discovery [174–176]. Transcriptome sequencing is a major

advance in the study of gene expression because it allows a snapshot of the whole

transcriptome rather than a predetermined subset of genes. Direct comparisons

between RNA-sequencing-based approaches and microarray technologies to reveal

alterations in gene expression between tissues report that RNA-seq identifies a great

number of differentially expressed genes [173,177–179] and is more sensitive in

reproducibly detecting alterations in gene expression at lower quantitative

levels [173].

The steps for RNA sequencing begin in the same way as for a microarray, and

total RNA is extracted. This RNA is then converted into a library of cDNA frag-

ments. Sequence adaptors are added to each cDNA fragment, and a short sequence

is obtained from each fragment from one end (single-end sequencing) or both ends

(paired) using high-throughput sequencing technology (reviewed in Ref. [180]). The

resulting sequence reads are aligned with the reference genome or transcriptome, or

in the case where there is a limited reference genome, they can be assembled to pro-

duce a genome-scale transcription map that consisted of level of expression for par-

ticular genes (Fig. 5B).

This technique has advanced greatly over the last 10 years and is overcoming

challenges with respect to cDNA library construction, bioinformatics, and sequence

coverage versus cost (reviewed in Ref. [180]). A factor to consider when utilizing

this technique for expression analysis is the quantity of high-quality RNA available

for analysis. Recent work has optimized a protocol to extract high-quality RNA from

human articular cartilage and performed RNA-seq; this advancement could be valu-

able to understand more about expression changes in osteoarthritic patients [181].

More recent advancements in the next-generation sequencing field have seen the

emergence of single-cell RNA-sequencing technology (scRNA-seq) that is designed

to overcome population-averaged RNA-seq that may mask rare subpopulations of

cells (such as stem cells). Single-cell RNA-seq attempts to investigate expression
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profiles at the cell level, and comparisons between tube- and microfluidic-based

extraction methods are being explored [182,183]. The advancement of single-cell

genomics had the advantage of exploring cellular process with a more accurate res-

olution and thus may be of benefit to understanding mechanotransduction events in

multiple contexts.

3.1.3 Quantitative real time PCR
qRT-PCR is a technique that is comprehensively used to analyze the expression

levels of individual gene transcripts in a particular tissue or cell population following

environmental manipulation. PCR was first devised in 1985, and it has had a major

impact on biological research and genetic engineering. Through which, it is now pos-

sible to analyze 40,000-year-old DNA, DNA from fingerprints, blood, and tissue

found at crime scenes, and analyze single embryonic cells for prenatal diagnosis

of genetic disorders and virally infected cells. It is no doubt that this technique

has been invaluable to our understanding of mechanobiology and the analysis of cel-

lular changes following a change in the mechanical environment. qRT-PCR begins

by converting sample mRNA into cDNA with corresponding sequences (using

reverse transcriptase and DNA polymerase). PCR amplification is then performed

encompassing a denaturation step (to separate DNA strands), an annealing step

(to allow known sequence-specific primers for a particular gene to bind to the ends

of the target sequence), and an extension phase (when DNA polymerase adds free

nucleotides to the end of each primer). These steps are then repeated up to 40 cycles,

which results in an exponential growing population of identical DNA molecules.

Inclusion of a fluorescently bound dye during the annealing phase that fluoresces

only when bound to a double-stranded PCR product is read computationally, and

the levels of expression or Ct (cycle threshold) value for a particular gene can be

quantified. The cycle threshold method [184] is an example of the relative quantifi-

cation approach that compares a gene of interest between experimental and control

samples, following normalization to an endogenous control gene (Fig. 5C).

Changes in or identification of mechanosensitive genes following the application

or removal of mechanical stimulation commonly utilizes qRT-PCR to confirm high-

throughput data output [169,171,173]. The use of qRT-PCR is also valuable in asses-

sing changes in the cellular phenotype following the manipulation of the mechanical

environment. Work on mechanisms of chondrocyte differentiation shows that the

application of hydrostatic pressure on embryonic cells and adult-derived progenitor

cells results in a “stable” cartilage phenotype [185–187]. Work on wound healing

identified that mechanical strain results in the upregulation of matrix remodeling

genes and the production of morematrix [188]. This technique has also been valuable

in revealing changes in gene expression due to changes in the mechanical microen-

vironment in glaucomatous cells [189] and changes in the thermal environment of

bone cells during surgical cutting [190,191]. The value of this approach supports

the quantification of the molecular changes in a tissue or cell population; however,

it does not show the exact location in which these changes are taking place; this can

be addressed with the technique called in situ hybridization.
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3.1.4 In situ hybridization
In situ hybridization is a powerful tool for detecting DNA or RNA sequences in intact

cells, tissues of whole organisms. Mary Lou Pardue and Joseph Gal pioneered the

technique of in situ hybridization by using a radioactive test DNA to label stationary

DNA of a cytological preparation [192] (Fig. 5D). This approach allowed for the first

time the spatial localization of genetic information. This technique has continued to

advance, and the method of complementary binding of a nucleotide probe to a spe-

cific target sequence is still applicable, with probes being labeled radioactively, col-

orimetrically, or fluorescently [193]. In situ hybridization is extensively used in

research and clinical applications, especially for diagnostic purposes. Use of this

technique has aided interpretation of phenotypic changes following the manipulation

of the mechanical environment during skeletal development (Fig. 6A)

[104,110,173,194,196] to elucidate the expression profile of genes in mechanosen-

sitive regions [197].

Gene expression profiling at an individual-/single-gene level that has altered the

mechanical environment in vivo has investigated candidate genes for altered expres-

sion, in order to assess the molecular response to alterations in biophysical stimuli.

Both qualitative and quantitative approaches, as described above, to investigate

changes in these genes have been performed [104,173,194,196,198,199].
FIG. 6

(A) In situ hybridization shown by Kahn et al. [194] in the developing mouse humeroradial

joint at 14.5 days of embryonic development. Sections of control (m, p) and Spd muscleless

mutant (m0, p0) show no Gdf5 expression in Spd (arrow in (m0)) in contrast to the control joint

region (m). Arrows indicate joint loss in the mutant as visualized by Sox9 (p0) gene expression
(ul, ulna; h, humerus). (B) Immunofluorescent detection of nuclear or cytoplasmic YAP,

shown by [195]. This study investigates the effect of age and substrate stiffness on MSCs on

nuclear-to-cytoplasmic location of YAP as a measure of osteogenic mechanotransductive

signaling. (A and B) YAP is located in the nucleus of children-derived MSCs (C-MSCs), while

(C and D) it is located in the cytoplasm of adult-derived MSCs (A-MSCs) when cultured in

control conditions.
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Application of various forms of mechanical stimulation during in vitro culture

regimes is a major goal of bioengineering techniques in order to create tissue suitable

for regeneration applications. Through the methods described, it has been possible to

reveal molecular responses to mechanical stimulation and identify tissue composi-

tions due to the known molecular identity profiles.
3.2 ANALYSIS AT THE PROTEIN LEVEL
How cells perceive and relay dynamic mechanical signals to illicit an intracellular

response and an alteration at the mRNA transcript level still remains unclear. Other

avenues to aid understanding of these changes are at the protein level. It is credible

that biomechanics impacts on proteins that guide cell matrix, cell-cell adhesion, and

cytoskeletal and ultimately nuclear interactions [200]. This perspective in analyzing

mechanobiology has been driven by the recent developments in functional proteo-

mics and the ongoing advances in mass spectrometry quantitation (reviewed in

Ref. [200]). More traditional approaches to understanding or observing changes at

the protein level include the use of antibodies through spatial localization

(immunohisto-/cytochemistry) or enzyme-linked immunosorbent assay (ELISA)

or the identification of proteins based on molecular weight (western blotting

[201]). The basis of these three techniques relies on a particular antigen-antibody

complex binding.

3.2.1 Immunohistochemistry
To identify specific proteins in a tissue or cell type of interest, antibody molecules for

specific target molecules are exposed to the sample. The binding of these molecules

is detected by incubating the sample with a secondary antibody specific for immu-

noglobulin molecules and conjugated to a fluorophore (for fluorescent detection).

This provides both a visible signal and amplification of the signal that can be visu-

alized using a fluorescent microscope. Immunohistochemistry (IHC) provides infor-

mation about the spatial localization of protein expression and qualitative evaluation

of expression levels. The general steps for the procedure involve fixation, embed-

ding, and sectioning (for tissue samples); detergent permeabilization of cell mem-

branes; antigen retrieval (commonly used for paraffin-embedding sections to

increase specificity of binding); and blocking and incubation with appropriate pri-

mary and secondary antibodies. Double or triple labeling of antigens can be per-

formed in a single sample, as long as each primary antibody is either a different

isotype or raised in a different species so that each can be recognized by distinct sec-

ondary antibodies with different labels. Appropriate negative controls are required

during the procedure to confirm specificity of staining. A common approach is to

use “no primary antibody controls,” in which the primary antibody is omitted but

the secondary is placed on the sample; this will give insight into nonspecific binding.

The use of IHC inmechanobiology research has facilitated investigation into phe-

notypic changes in cell populations following the application of mechanical stimu-

lation in vitro [187,202,203]. This technique also provides value for the investigation
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of mechanisms of mechanotransduction, for example, through the evaluation of pri-

mary cilia following the application of mechanical stimulation [204–206]. The
nuclear localization of specific signaling pathway components similarly utilizes this

technique, in an attempt to understand how cells sense and adapt to external forces

and physical constraints. An example of this is the analysis of the role of the YAP/

TAZ (Hippo pathway components) as nuclear relays of mechanical signals exerted

by ECM rigidity and cell shape (Fig. 6B) [195,207].

3.2.2 Western blotting
Western blotting (or sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE)) is a technique that identifies specific proteins based on separation

by molecular weight through gel electrophoresis. The theory of the procedure is

as follows: sample preparation (most commonly cell lysates), gel electrophoresis

(two types of agarose gels: stacking and separating), blotting (electric transfer from

gel to a membrane), washing, blocking, and antibody incubation [201]. The signal is

then detected from the bound antibody, usually with an enzyme; this then corre-

sponds to the target protein. Normalization among samples and experimental groups

is based on the loading of each sample lane with an equal amount of total protein. For

further validation, it is common practice to reprobe the membrane for a putatively

constitutively expressed protein, such as beta-actin.

3.2.3 ELISA
The most sensitive and quantitative technique for protein analysis, ELISA, allows

high specificity, even in complex solutions such as blood. The technique uses a bio-

chemical assay to detect the presence of an antigen in a liquid sample. Since its first

description by Engvall et al. in the 1970s [208], ELISA has experienced rapid adop-

tion as a diagnostic tool in medicine, a valuable investigative method in scientific

research and a quality control check in various biotech industries. While several dif-

ferent variations of the technique have been developed, the “sandwich” ELISA is the

most pertinent and useful for analyzing soluble proteins in scientific research and

will therefore be discussed in detail here. A sandwich ELISA operates by using

two separate antibodies that recognize different epitopes, which can be either two

different monoclonal antibodies or a polyclonal antibody solution. This method

allows the measurement of growth factors and/or cytokine levels in cultures or bio-

logical liquids, providing convenient assessment of the biological responses to stim-

uli such as mechanical loading. ELISA kits are commercially available (typically as

a 96-well plate), though they can be expensive. It is recommended that for high-

throughput experiments for repeated analysis of particular antigens, a custom kit

be developed in-house. However, custom sandwich ELISAs used for research pur-

poses should be validated due to the risk of false-positive results [209].

The initial step in a sandwich ELISA involves coating the surface of the wells

such that a known quantity of the capture antibody adsorbs onto its surface. Follow-

ing blocking of any nonspecific binding sites, the wells should be incubated with

serially diluted standards of known concentration and experimental samples.
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A “blank” group, one without samples or standards, should be included to allowmea-

surement of the background signal in the assay. Next, an enzyme-conjugated detec-

tion antibody should be added, followed by a substrate that forms a soluble

colorimetric, fluorescent, electrochemical, or chemiluminescent product when

cleaved. Between each step, extensive washing should be performed, adding a

“stop” buffer at the end of the assay to terminate the enzyme reaction. A plate reader

is then employed to collect the raw data, and a standard curve is generated upon

removal of the background signal. Given appropriate conditions, ELISA can accu-

rately measure sample concentrations in the low (<10) pictogram/millimeter range,

and ELISA data are usually normalized to total protein or DNA (e.g., pictogram anti-

gen/nanogram DNA) in order to account for potential variability in cell number

among samples and experimental groups [210]. ELISA kits have been applied to

study mechanobiology in varied tissues and organs, for example, exploring the effect

of loading on intervertebral disk degeneration [211], examining correlation between

pressure and cell stiffness in heart valve cells [212], and incorporating into micro-

fluidic devices to characterize mechanotransduction in vitro [213].
3.3 TECHNIQUES FOR EDITING GENE FUNCTION AND ALTERING THE
MECHANICAL ENVIRONMENT
3.3.1 In vitro mutagenesis—Mice
A technique called in vitro mutagenesis encompasses specific mutations being intro-

duced into a cloned gene, and the mutated gene is returned to a cell in such a way that

it disables or “knocks out” the normal cellular copies of the same gene. If the intro-

duced mutations alter or destroy the function of the gene product, the phenotype of

the mutant cell may help reveal the function of the missing normal protein. Using

molecular and genetic techniques worked out in the 1980s, researchers can generate

mice with any given gene disabled in order to study the role of that gene in devel-

opment and in the adult. Multiple mouse models have been utilized to examine and

investigate the role of the mechanical environment on cellular function, some of

which are detailed below.

3.3.2 CRISPR
The novel molecular technique that has become increasingly popular over the past

5 years based on the identification of the functions of clustered regularly interspaced

short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes and the

manipulation of these for genome editing. The functions of CRISPR and Cas genes

are essential for adaptive immunity, enabling organisms to eliminate invading

genetic material [214,215]. The relative simplicity of the CRISPR nuclease system

makes it amenable to adaptations for genome editing, which was realized in 2012

[216]. Manipulation of this system as a tool in molecular biology allows for either

gene silencing or activation. To date, this tool has been used in multiple systems,

including human, bacteria, zebra fish, and mice (reviewed in Ref. [214]). This tool

has recently been utilized to eliminate gene function in a model of tendon biology in
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rats, to understand the cellular responses to mechanical stress [217]. CRISPR has the

potential to expand our knowledge of the molecular mechanisms that are involved in

mechanobiology, and the potential of its use will unquestionably be demonstrated

over the next 5–10 years.

3.3.3 In ovo/ex ovo manipulation—Chick
A powerful tool for unraveling the molecular mechanisms involved in developmen-

tal processes is to ectopically express a gene or signaling pathway of interest and

examine the effect. The avian embryo offers many advantages for developmental

studies over mammalian embryos, due to the ease of access for in ovo (in the

egg) manipulations. Different types of manipulations can be performed in ovo

including surgical and chemically induced immobilization (discussed below). Ret-

roviral transmission has been used very successfully to deliver genes into tissue loca-

tions in chick embryos (reviewed in Ref. [218]). Retroviral independent gene transfer

can be achieved in chick embryos using in ovo electroporation, a more successful

technique for targeting specific embryonic tissues/cells compared with microparticle

bombardment and lipofection, offering a positive alternative to broad retroviral

infection [219,220]. The basis of the electroporation technique relies on the transient

generation of pores in the plasma membrane, to allow macromolecules to penetrate

the cytoplasm and DNA to enter due to its negative charge [221]. Multiple electro-

poration systems have been described with respect to targeting different tissues in the

developing chick, for example, the neural tube [222], the somites [223], and the eye

[224]. In general, in ovo electroporation has been most commonly applied to chick

embryos at early stages of development, younger than Hamburger and Hamilton

stage 20 (HH20/�E3.5). Therefore, an alternative to carrying out the DNA transfer

in ovo for older embryos is to use shell-less culture techniques [225–229]. Such ex

ovomethods have described using petri dishes [226], plastic cups [229], and drinking

glasses [228]. These ex ovo methods provide additional accessibility that may be

required in order to target a specific tissue at older stages of development. The

use of this targeted technique may prove advantageous for investigating the molec-

ular mechanisms involved in mechanoregulation, as it is possible to combine this

technique with that of an altered mechanical environment.
4 COMPUTATIONAL TECHNIQUES IN MECHANOBIOLOGY
Computational techniques for probing research questions in the field of mechano-

biology have developed alongside experimental investigations, as these techniques

can both inform experimental design and glean new information from experimental

observations. As computational power increases exponentially, these methods have

become ever more sophisticated and enlightening. Indeed, many advances in

mechanobiology have been spurred by computational investigation, shedding new

light on problems ranging from the mechanical response, to loading of individual

cells, to predicting tissue differentiation in response to loading.
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While many experimental techniques exist to study mechanobiology, as outlined

in the previous sections, almost all involve some sort of destructive interference with

the tissue or cellular mechanical environment. Therefore, most mechanobiological

problems represent excellent examples of Heisenberg’s uncertainty principle,

wherein it is effectively impossible to observe an intact in vivo mechanobiological

environment without interfering with its native behavior. Examples of this include

osteocytes in the bone [23], skeletal development in utero [230,231,231a,231b], cell

migration in the intestinal epithelium [232], and growth of aortic aneurysms [233].

This section will outline a number of computational methods that have proved

invaluable to the study of mechanobiology and will give a perspective on its future

development as a field.
4.1 COMPUTATIONAL MODELING
Computational, or in silico, modeling comprises interdisciplinary methods that apply

mathematics, physics, and computer science to replicate and analyze the behavior of

complex systems through the use of computer simulation. By characterizing a system

using numerous variables, the simulation can adjust these variables and predict the

resulting effects on the system. In silico modeling of physical behaviors has devel-

oped from theoretical origins in the early 20th century into a powerful engineering

tool to assess the mechanical behavior of physical structures; mechanical systems;

and, more recently, biological processes. Rapid advances in computational power

over the past two decades have brought computational modeling to the fore as a

key tool to test prevailing theories or develop entirely new ones. The primary

methods by which this is achieved are finite element (FE) method and finite volume

method, whereby the system is broken down into a mesh of smaller, simpler regions,

allowing modeling of solid or fluid behaviors, respectively. While FE modeling

involves treating these elements like simple structures obeying physical laws, finite

volume modeling calculates the change in flow of a fluid through the simple volume

and into the next discrete volume. The standard physical equations solved in the ele-

ments or volumes are then assembled into a larger system of equations, allowing

modeling and analysis of the entire problem [8]. The use of these techniques both

complements and enhances the development of new and existing theoretical models

in the field of mechanobiology. These techniques have been applied to a range of

different tissues and diseases, a selection of which will be described in the following

sections.

4.1.1 Computational fluid dynamics
Computational fluid dynamics (CFD) as a technique is readily applicable to the car-

diovascular system, given its key role as a fluid transport system for the body. It has

been applied for some time to investigate a wide range of vascular diseases, in dis-

parate locations in the body. Since the early application of CFD methods to aneu-

rysms in 1992 [234], they have developed rapidly to gain the confidence of

clinicians as a strong diagnostic tool for predicting risk of rupture [235,236].
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Similarly, the first application of CFD to coronary artery disease was published in

2000 [237] and has since been combined with significant advancements in medical

imaging to develop realistic patient-specific models in 3D [238,239]. A recent and

intriguing development is the study of mechanobiology of blood cells themselves

using CFD [240], with multiple research groups simulating the interactions of

crowded blood cell clusters in 3D [241–243]. Similar use of CFD in mechanobiology

allows modeling the vitreous humor of the eye, predicting concentrations of shear

stress on the chamber wall [244].

The other major mechanobiological application of CFD has been to predict flow

of marrow or interstitial fluid within the bone. Early computational models were

developed to characterize loading-induced fluid flow across whole bones [245]. Sim-

ilar techniques were used to analyze an idealized lacunar-canalicular system, predict-

ing abrupt changes in the drag forces within the canaliculi arising from changes in

geometry or proximity to bone microporosity and haversian canals [246]. CFD tech-

niques facilitated analysis of models of bone cells, in particular osteocytes, with ide-

alized models predicting high shear stresses within the canaliculi [247]. More

recently, CFD studies have demonstrated the importance of local geometry on fluid

flow in the pericellular space, with geometries obtained from transmission electron

microscopy (TEM) and ultrahigh-voltage electron microscopy (UHVEM) images

suggested [248,249]. Additionally, numerical models have explored the effect of

the pericellular matrix on flow through the canaliculus, investigating the permeabil-

ity [250–252], fluid movement [253,254], and electrochemomechanical effects

[254,255]. On a larger scale, shear stress within bone marrow under macroscopic

loading has been characterized using CFD [256,257], predicting important mechan-

ical stimuli for tissue engineering of the bone [258].
4.1.2 FE analysis
Given that the bone is a stiff, mechanically active, adaptive tissue, FE models have

been employed for decades to investigate the biomechanics of the bone. Application

of FE to orthopedic tissues began in 1972 [259] and initially was largely focused on

either the design of prostheses or fundamental research into structural biomechanics

[260]. More recently, FE has been used to determine adaptation of tissue structure in

response to loading and mechanical stimuli at the tissue and cell levels under mac-

roscale mechanical loading. Adaption is largely modeled through either tissue

growth or tissue differentiation algorithms (reviewed in Ref. [8]), with these

approaches being used to successfully model fracture healing [261], skeletal mor-

phogenesis [230,262], and regeneration [263]. A range of mechanical stimuli at

the tissue or cell level can be computed from models, predicting stress and strain

[264,265], marrow shear stress [266–268], and even thermal stimuli [269] at the tis-

sue and cellular scales. At the cellular level, first complete 3D idealized FE model of

the bone cell environment predicted that strains in the lacunar walls are amplified by

the local matrix geometry [270]. These findings were corroborated by recent FE

studies applying accurate 3D geometries of osteocytes using scans from confocal
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laser scanning microscopy and X-ray nanotomography, predicting that geometry

alone can amplify strain transfer to the osteocyte in vivo [271,272]. FE models have

also been applied to investigate mechanosensation of bone cells in vitro, allowing

exploration of the stimulatory effects of cell morphology, focal adhesion density

[273], and substrate material properties [274], as well as the translation of mechan-

ical stimulation to the nucleus via the cytoskeleton [275].

The complex process of modeling of heart valve mechanics at the organ scale

began as structural models, applying blood pressure as static loads [276–280].
Dynamic loading developed later and incorporated realistic geometries [281–283]
and anisotropic [284] and nonlinear [285,286] material properties. At the tissue

scale, research has concentrated on developing constitutive models to capture the

mechanical behavior of heart valve tissue, with FE modeling recruited to implement

these models (reviewed in detail elsewhere [287]). Modeling at the cell scale has

developed recently and advanced rapidly, applying FE methods to either model

the cell itself as a continuum [288,289] or characterize the structural behavior of

the cytoskeleton [288,289].

Similar to the bone, cartilage is a mechanically responsive tissue for which FE

analysis has provided many insights, including articular cartilage thickness distribu-

tions, skeletal morphology, and endochondral ossification patterns (reviewed in Ref.

[290]). FE models have also been applied to investigate the expansion and growth of

skin tissue, allowing the development of algorithms to predict mechanically con-

trolled skin growth in health and disease [291–294]. Promising research into

mechanics and mechanobiology in the vocal folds [295] and the vocal ligament

[296] is also being carried out using FE analysis, demonstrating the wide breadth

of research topics that benefit from these methods.

4.1.3 Multiscale and multiphysics modeling
While the various models outlined above focus on research questions confined to

individual loading cases of a specific tissue structure or cell type, mechanobiology

in vivo occurs across multiple scales, with translation of loading to cell and molec-

ular levels followed by transduction into responses expressed at tissue and organ

scales. Therefore, researchers across varying fields of study have recently applied

multiscale modeling techniques to investigate this phenomenon.

In bone tissue, multiscale modeling techniques have been applied alongside peri-

odic boundary conditions to determine that the strain experienced by osteocytes

under the same macroscopic loading varies significantly and strongly depends on

their location relative to microstructural porosities [297]. Furthermore, it was found

that orientation of tissue structures such as lamellae can have a significant effect on

strain experienced at the level of individual bone cells [297]). A similar multiscale

FE approach has been applied to cells suspended in bone marrow, demonstrating the

importance of cell-cell attachments for mechanosensation within the bone marrow

under macroscopic bone loading [298].

Multiscale modeling has also been applied in more disparate cases, such as

modeling fluid flow and matrix deformation in the liver, allowing optimization of
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stress distribution (left) and velocity profile (right); (B) an individual bone cell environment,

with extracellular matrix strain, interstitial fluid velocity, and shear stress on the osteocyte

surface shown [23].
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perfusion conditions for tissue engineering [299]. In the study of morphogenesis,

multiscale models are used both to investigate tissue-level effects in response to

cellular- and molecular-scale events and to study cell arrangement in developing

tissue [300].

As has been discussed, cells are exposed to various types of interrelated physical

stimuli and therefore reside in a multiphysics environment. Multiphysics modeling

represents a novel and developing array of methods that couple the effects of several

physical phenomena in a single simulation or system of coupled simulations (see

examples in Fig. 7). The type of multiphysics modeling most applicable to the study

of mechanobiology is fluid-structure interaction (FSI) techniques, which couple

classic CFD and FE modeling by relaying results between solvers in an iterative

manner until a solution to both is converged upon. These new methods have been

applied to models of in vitro systems, allowing determination of the mechanical stim-

ulation applied to cells by experimental settings [302] and the stimulation experi-

enced by individual cells at different locations in a tissue-engineering scaffold

[303,304].

In the bone, FSI models have elucidated the function of the primary cilium as a

mechanosensor on bone cells, determining the importance of cilia length [305]. Fur-

thermore, FSI has been applied to the complex multiphysics environments within the

bone, recently predicting that stimulatory magnitudes of shear stress result from

macroscopic loading-induced fluid flow in accurate 3D models of osteocytes

[23,306]. In an attempt to definitively compare these various mechanosensors, a

comprehensive study of bone cell mechanosensation both in vitro and in vivo used

FSI to predict that both integrin attachments and primary cilia are highly stimulated

in vitro but that the primary cilia is less stimulated in vivo unless embedded in the

surrounding matrix [307].
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Multiscale techniques have been deployed to investigate in-stent restenosis

alongside agent-based and cellular automata-based FE models of cell behavior

[308–313], multiphysics modeling incorporating blood flow shear stress stimuli

[314], and most recently mechanical/damage stimuli to individual cells [311], signif-

icantly advancing our understanding of this complex problem. Early advances were

made in tying together mechanobiological stimuli across multiple scales and captur-

ing multiphysics behavior in the aortic heart valve, with different forms of FSI sim-

ulations in this area developing over a decade of research (reviewed in detail

elsewhere [315]). The use of these methods has shed new light on a range of different

cardiovascular conditions, allowing analysis of transient, three-dimensional behav-

ior over a range of length scales.

These multiscale and multiphysics models demonstrate the value of computa-

tional mechanobiology models for providing information on biophysical parameters

that cannot be measured experimentally and the localized effects of multiple types of

mechanosensors and complex patterns of physiological loading.
4.2 IMAGE ANALYSIS
One of the key problems in the study of mechanobiology is quantifying physical

effects caused or experienced by cells, which is particularly challenging without

directly interfering with them. While computational modeling attempts to recreate

these effects, image analysis allows researchers to calculate the mechanics of

mechanobiological behavior from experimental observations. These techniques

can be developed in different manners and for various cells or tissues, with a selec-

tion of methods particularly useful in the field of mechanobiology discussed here.

4.2.1 Digital image correlation
Digital image correlation (DIC) is an optical technique that combines image regis-

tration and tracking methods for accurate 2D measurements of changes in images.

Correlation theories for the measurement of alterations in data were first applied

to digital images in 1975 [316]. These theories have been optimized in the recent

years to apply to numerous applications [317], including confocal microscopy

[318]. DIC is based upon the calculation of a correlation coefficient that is deter-

mined from pixel intensity array subsets on multiple corresponding images and

extracting the deformation mapping function that relates the images. In this manner,

the displacements of individual regions in an image are tracked over a series of

images, with the resulting strain calculated.

DIC can thus be applied in mechanobiology to characterize strain at the tissue

level or within individual cells under loading. The various tissues for which the tech-

nique has provided detailed strain maps and material properties include the skin

[319,320]; the gallbladder [321]; the vasculature, such as the aorta [322–324]; the
tympanic membrane of the ear [325]; and individual trabecular struts within bone

[326]. DIC techniques have been recruited to diagnose cancer, as demonstrated

by the detection of a basal cell carcinoma via strain mapping [327]. DIC can also
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be applied at the scale of cells and can quantify the displacement field in a substrate

under cell contraction [328] (Fig. 8A) or the velocity of cell migration [330]. A recent

study applied this technique to osteocytes and osteoblasts in vivo, allowing cellular

strains to be observed for the first time in bone tissue and providing direct evidence

that loading of whole bones is amplified at the cell level [329] (Fig. 8B). DIC was

also recently applied to analyze the beating of individual human cardiomyocytes,

measuring both beating time and phases [331].
4.2.2 Particle image velocimetry
Developed over the past three decades, particle image velocimetry (PIV) has become

a standard tool in experimental fluid mechanics. Given its ability to measure the

instantaneous velocity field simultaneously at many points, it is possible to compute

fluid vorticity and strain in rapidly evolving flows [332]. The technique has evolved

from theoretical origins [333], with significant increases in computing power facil-

itating the development of digital PIV [334], while the advent and proliferation of

standard digital cameras provided inputs perfectly suited to PIV [332].
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and (B) movement of the cytoskeleton within a cell [346].
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PIV has been used extensively to investigate vascular biomechanics and mechan-

obiology, shedding light on the complex flow around heart valves and heart valve

replacement devices [335–338]. Further development has facilitated the use of

PIV to investigate flow inside bioreactors and scaffolds used for tissue engineering

[339–341], including for the study of heart valve tissue mechanobiology [342].

Higher resolution capabilities have facilitated the investigation of cell level flow,

including the dynamics of individual red blood cells [343]. Indeed, micro-PIV tech-

niques are capable of capturing the flow around individual red blood cells [240,344].

In a fascinating application of the technology, it has recently been used at the cellular

scale to calculate the shear stress affecting cell cytoskeletons [345] and to detect

deformation of the cytoskeleton itself [346], as shown in Fig. 9. Finally, PIV has also

been applied to capture the guidance of collective cell migration by substrate geom-

etry [347] and the mechanical waves generated during the expansion of tissue, as

occurs in both development [348] and cancer [349].
5 FUTURE PERSPECTIVES
Mechanobiology is a nascent field that, as is evident from the methods discussed,

has benefitted from rapid advancements in molecular analysis, imaging, and compu-

tational techniques. Our understanding of mechanisms of mechanosensing and

mechanotransduction is deepening, alongside growing recognition in many overlap-

ping fields of the importance of mechanical effects in cell behavior, tissue develop-

ment, and various diseases. In particular, the potential of mechanobiological tools

to augment tissue engineering by replicating in vivo mechanical environments

provides an important avenue of study. The precision through which experimental

manipulation of mechanical stimuli has advanced, in addition to improvements in

measurements of cell mechanics, provides opportunities to investigate mechano-

transduction in ever greater detail. Furthermore, the power and sophistication of
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computational tools have improved significantly and will likely spur further discov-

eries in the future. As engineering techniques become more intertwined with cellular

and molecular analysis techniques, novel insights into the fundamental mechanisms

by which cells appraise their mechanical environment will be gleaned. This will

likely shed new light on the pathways by which cells transduce these stimuli into

mechanical signals, presenting new therapeutic targets.
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