BIOFILMS Y EL PROCESO DE SALUD ENFERMEDAD

Innovative Biotechnological Approaches for Biofilm Control and Characterization

PhD. Luciana Robino

Prof. Adj. UA Bacteriología y Virología, Fmed, Udelar Octubre 2025

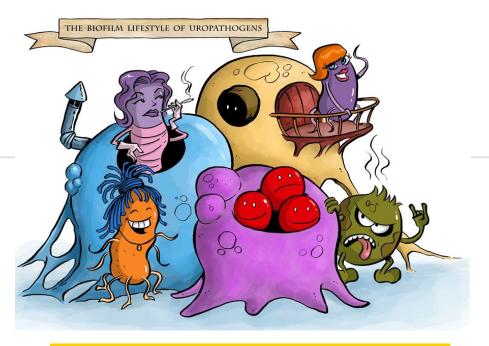
1 — Biofilms y salud

¿Alguna vez presentaron una situación relacionada a la presencia de biofilms?

Biofilms y salud

Biofilms (BF) de la mucosa vaginal:

 Lactobacillus acidificación del pH vaginal por fermentación de glucógeno (prevención de la colonización por microorganismos patógenos)


Placa dental: biofilms formados sobre la superficie de los dientes

-Protegen frente a la colonización por otros patógenos exógenos. Este biofilm suele estar compuesto en una persona por 20-30 especies bacterianas distintas: *Streptococcus* y *Actinomyces* spp.

Biofilms
can often be
good bactaria
but there is also
the bad...

2 Biofilms y enfermedad

65% de las infecciones bacterianas se asocian con biofilms

Biofilm y enfermedad

Asociado a dispositivos médicos

- -Lentes de contacto
- -Tubos endotraqueales
- -Catéteres vasculares centrales/periféricos
- -Válvulas cardíacas protésicas, marcapasos
- -Implantes mamarios
- -Catéteres urinarios
- -Prótesis osteoarticulares
- -Derivaciones ventriculares

No asociadas a dispositivos médicos

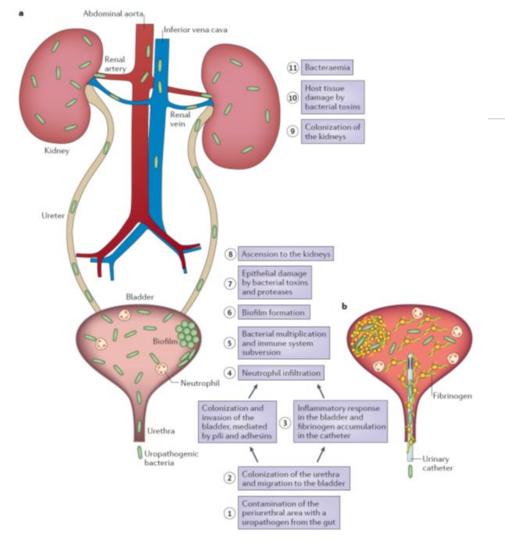
- -Otitis media/ sinusitis crónicas
- -Caries/ periodontitis
- -Laringitis crónica
- -Endocarditis
- -Infección pulmonar en fibrosis quística
- -Litiasis urinaria
- -Infección del tracto biliar
- -Infección urinaria
- -Osteomielitis
- -Infección crónica de heridas

Table 4 Microbes producing biofilms associated with medical devices

Type of implant	Microbe	Reference	
Contact lenses	Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus	Szczotka-Flynn et al. (2009), Dutta et al. (2012)	
	Pseudomonas aeruginosa		
Prosthetic valve	Staphylococcus aureus	Wang et al. (2007), Guio et al. (2009), Bosio et al. (2012)	
	Propionibacterium		
	Mycobacterium fortuitum		
Urinary catheters	Proteus mirabilis	Stickler (2014), Djeribi et al. (2012)	
	Pseudomonas aeruginosa, Klebsiella ornithinolytica		
Intravascular catheters	Chryseobacterium meningosepticum	Lin et al. (2010), Singhai et al. (2012)	
	Klebsiella pneumoniae and Candida spp.	neumoniae and Candida spp.	
Prosthetic joints	Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis	Song et al. (2013)	
Pacemakers	Staphylococcus aureus	Lower et al. (2011), Santos et al. (2011)	
	Staphylococcus epidermidis and Staphylococcus aureus		
Voice prostheses	Rothia dentocariosa, Candida albicans and Candida tropicalis	Elving et al. (2002), van der Mei et al. (2014)	
	Candida albicans and Candida tropicalis		
Endotracheal tube	Acinetobacter baumannii and Pseudomonas aeruginosa Staphylococcus aureus and Pseudomonas aeruginosa	Gil-Perotin et al. (2012), Vandecandelaere et al. (2012)	

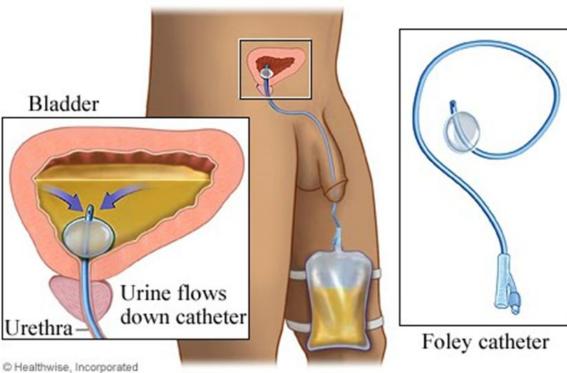
Biofilms e ITU asociada a catéter

- ITU asociada a catéter (CAUTI) principal causa de infecciones nosocomiales (40%).
- 20% de los pacientes hospitalizados tiene un catéter urinario
- Definición CAUTI: ITU que ocurre durante la permanencia del catéter o en las siguientes 72 h tras su retirada
- Bacteriuria asociada al cateterismo urinario se refiere a la presencia de un recuento significativo de bacterias en el urocultivo, en ausencia de síntomas urinarios (lo más frecuente).

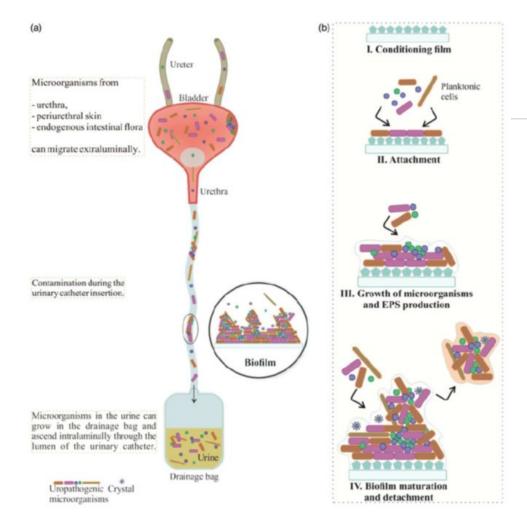


Biofilms e ITU asociada a catéter

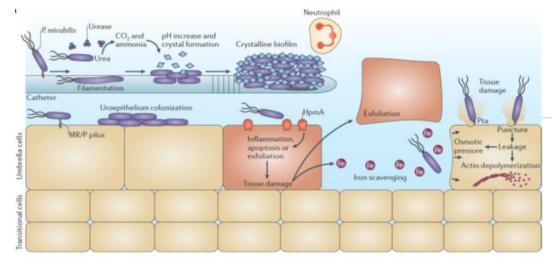
- Infección del tracto urinario (ITU): infección que compromete algún sector del tracto urinario desde la uretra, vejiga, ureteres, hasta los riñones.
- 75% de las ITU adquiridas en los hospitales se asocian al uso de catéteres urinarios
- El principal factor de riesgo de desarrollar una ITU asociada a catéter es el uso prolongado del mismo (aumenta 3-7% cada día de cateterismo)

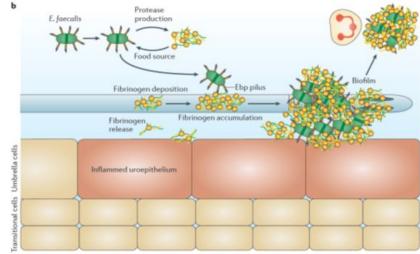


Biofilms e ITU asociada a catéter



Biofilms e ITU asociada a catéter




Patogénesis de la formación de biofilms sobre catéteres urinarios

Patogénesis de la formación de biofilms sobre catéteres urinarios

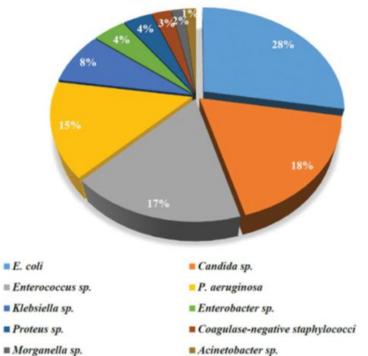
Biofilms e ITU asociada a catéte<u>r:</u> etiología

Corto plazo

(menor 7 dias):

monomicrobiano

Prolongado


(sem-meses):

Polimicrobiano

E. coli

catéter: etiología Most prevalent microorganisms

(b) Other microorganisms

Prol	tarya			
Gram-negative				
Delftia tsuruhatensis	Providencia stuartii			
Sphingomonas sp.	Pantoe sp.			
Oxalobacteraceae sp.	Serratia odorifera			
Achromobacter xylosoxidans	Yersinia rohdei			
Burkholderia fungorum	Burkholderia cepacia			
Hafnia alvei	Flavobacterium sp.			
Khıyvera cryocrescens	Ralstonia pickettii			
Serratia marcescens	Stenotrophomonas maltophilia			
Bordetella bronchiseptica	Providencia rettgeri			
Peptoniphilus asaccharolyticus	Citrobacter sp.			
Gram-	positive			
Streptococcus pneumoniae Peptoniphilus asaccharolyticus Finegoldia magna	Mycobacterium intravellulare Raoultella terrigena			

Diagnóstico de ITU asociada a catéter

- ITU relacionada con el cateterismo urinario la que se presenta durante la permanencia del catéter o en las siguientes 72 h tras su retirada

-Bacteriuria asociada al cateterismo urinario se refiere a la presencia de un recuento significativo de bacterias en el urocultivo, en ausencia de síntomas urinarios (lo más frecuente).

Biofilm en infección de prótesis ósteo-articular

Frecuencia:

- 0,3 a 1,7% de la prótesis de cadera
- 0,8 a 1,9% en prótesis de rodilla
- 3 a 25% implantes osteo–articulares

Mayor riesgo en los primeros 2 años

Biofilm en infección de prótesis ósteo-articular

Causas de pérdida de prótesis articular:

Aséptica

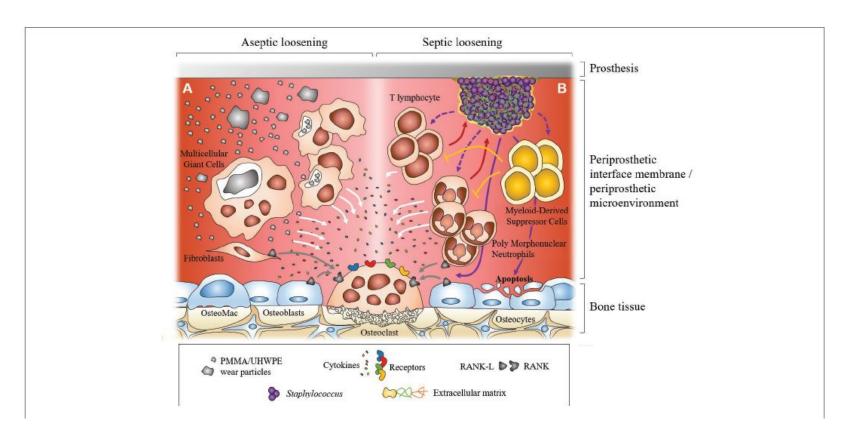
Séptica (infecciosa): Cocos Gram +: 75%

Staphylococcus coagulasa negativos: 35%

Staphylococcus aureus: 25%

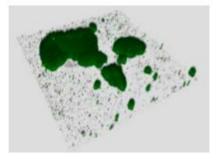
Enterobacterias, Pseudomonas: 10%

Streptococcus, Enterococcus: 10%


	Early Prosthetic Joint Infection	Delayed Onset (3–12 mo After Arthroplasty)	Late Onset
Synovial fluid			
White blood cell count (cells/μL)	>10,000	>3000	>3000
PMN (%)	>90	>80	>80
Serum CRP (mg/L)	>100 ²¹	>10	>10
Serum ESR (mm/h)	Not useful	>30	>30
Clinical presentation	Acute onset Wound drainage, fever, erythema, joint pain	Subacute joint pain; possible sinus tract formation, which diminishes pain	Systemic symptom more likely with concomitant bacteremia, pair
Micrebiologic differential	Virulent organisms S aureus Aerobic gram negative Polymicrobial Anaerobic	Less virulent Coagulase-negative staphylococci Enteroccus Cutibacterium	S aureus β-Hemolytic streptococci Gram-negative bacilli
Etiology	Acquired during arthroplasty	Acquired during arthroplasty, early postoperatively	Hematogenous from other infectious focus
Histopathology	More than 5 PMNs per high-power field in 5 high-power fields		

Typical laboratory values derived from International Consensus definition.²⁰ Low virulence organism criteria could not be met, yet PJI still is present.

Data from Parvizi J, Gehrke T, International Consensus Group on Periprosthetic Joint Infection.


Definition of periprosthetic joint infection. J Arthroplasty 2014;29(7):1331.

Infect Dis Clin N Am (2018) https://doi.org/10.1016/j.idc.2018.06.005

Josse J. Front. Microbiol. 10:1602. doi: 10.3389/fmicb.2019.01602

Biofilms

DIAGNÓSTICO MICROBIOLÓGICO DE LAS INFECCIONES RELACIONADAS CON LA FORMACIÓN DE BIOPELÍCULAS

Infección asociada a la formación de biopelículas	Muestras adecuadas	Observación microscópica	Procesamiento previo al cultivo					
Infecciones relacionadas con la formación de biopelículas en Tejidos								
Infección pulmonar crónica	Secreciones bronquiales (esputo espontáneo, esputo inducido, lavado broncoalveolar o broncoaspirado)	Gram	Agitación con solución salina, sonicación suave					
Rinosinusitis crónica	Secreciones purulentas	Gram	Agitación con solución salina, sonicación suave					
Otitis crónica	Exudados, pus, aspirados (timpanocentesis)	Gram	En función de la consistencia (agitación con solución salina, sonicación suave)					
Infección crónica de herida	Biopsias	Gram	Procesamiento de biopsiasª					
Infección en pacientes quemados	Biopsias	Gram	Procesamiento de biopsiasª					
Infección de válvula cardíaca nativa	Hemocultivos	Gram	No					
Infección prostática	Orina comienzo micción, orina chorro medio, secreción prostática y orina post masaje prostático	Gram	No					
Vaginosis	Secreción vaginal	Gram	No (no se recomienda la realización de cultivo)					

Infecciones relacionadas	con la formación de biopel	ículas en cuerpos	exógenos
Infección asociada a	Sin retirar catèter: hemocultivo	Gram	No
catéter vascular	Con retirada de catéter: punta catéter	Gram rodado ^b	Controvertido ^b (sonicación, lavado intraluminal, etc), método <i>standard</i> Maki sin procesamiento previo
Endocarditis sobre válvula	Hemocultivos	Gram	No
cardíaca protésica	Si reemplazo valvular o necropsia: vegetación	Gram	Procesamiento de biopsiasª
Infección asociada a dispositivos de	Sin retirada dispositvo: hemocultivo	Gram	No
electroestimulación: Marcapasos, desfibrilidadores implantables y dispositivos de resincronización	Con retirada dispositivo: dispositivo	Gram	Sonicación dispositivo
Neumonía asociada a ventilación mecánica	Secreciones bronquiales (esputo espontáneo, esputo inducido, aspiración nasotraqueal, aspiración endotraqueal, broncoscopia)	Gram	Agitación con solución salina, sonicación suave
Infección asociada a	Líquido sinovial	Gram	No
prótesis articular	Tejido periprotésico.	Noc	Procesamiento de biopsiasª
protesis articular	Prótesis	Gram sonicado	Sonicación
Infección asociada a sonda urinaria	Orina (sonda)	Gram	No
Infección asociada a otro	Dispositivo retirado	Gram sonicado	Sonicación
tipo de dispositivos biomédicos (implantes de mama, malla abdominal, pene, etc)	Colección perimplante	Gram	En función consistencia (agitación con solución salina, sonicación suave)

Del Pozo L (SEIMC); 60: 2017

Microscopía

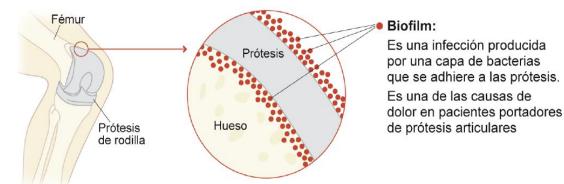
- Óptica
- Confocal
- Microscopía mediante hibridación de fluorescencia in situ (FISH)
- Microscopía electrónica

Del Pozo L (SEIMC); 60: 2017

Cultivo

- De acuerdo al tipo de infección: procesamiento de muestra, medio de cultivo, incubación
- Liberar los microorganismos de la biopelícula para que puedan ser cultivados en los medios de cultivo:
 - . Sonicación
 - . Trituración
 - . Agitación
- -Cuantitativo o semicuantitativo

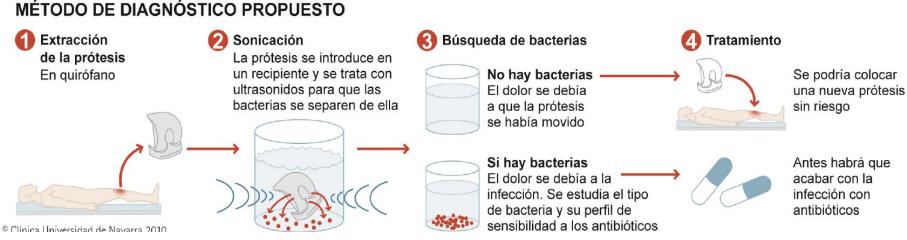
Diagnóstico Microbiológico de infección de prótesis articular

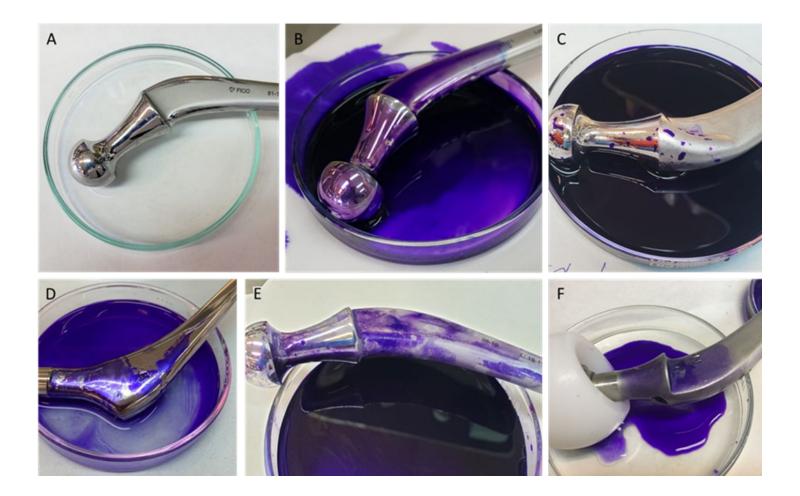

WAIOT GOLDEN RULES

Microbiology best practice for the diagnosis of peri-prosthetic joint infections and implant-related infections in ortho-trauma

Drago L. J. Clin. Med. 2019, 8, 933; doi:10.3390/jcm8070933

LOS BIOFILMS


Es muy difícil de detectar



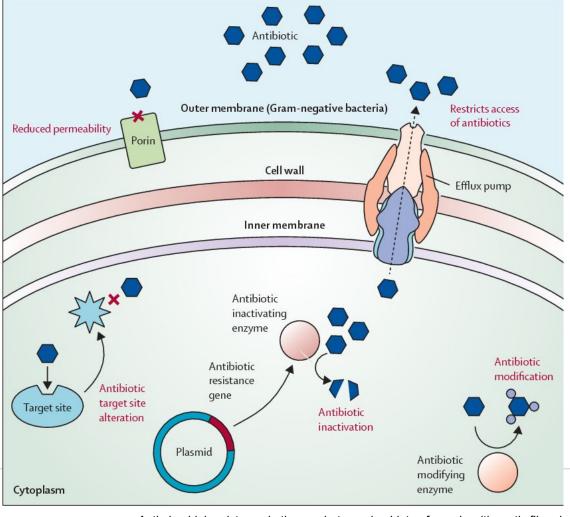
Biopsias

Son el procedimiento habitual, pero sólo se consigue aislar la bacteria en el 65% de los casos

MÉTODO DE DIAGNÓSTICO PROPUESTO

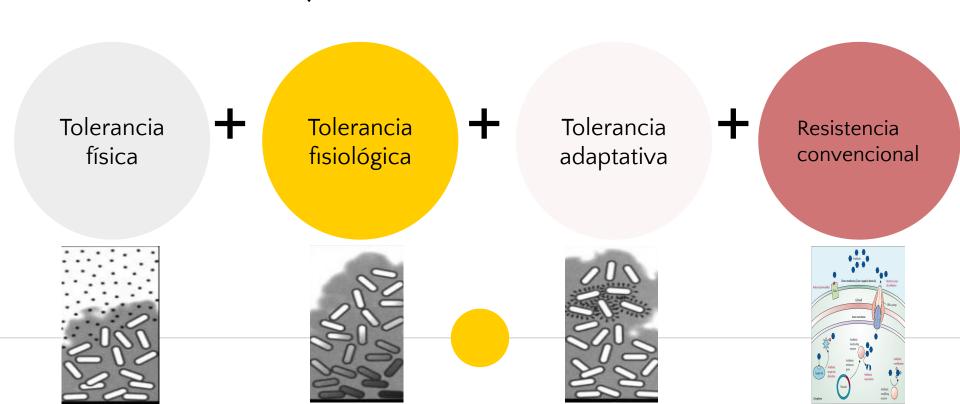
Muchas Gracias!

Tolerancia a antimicrobianos en biofilms


Innovative Biotechnological Approaches for Biofilm Control and Characterization

PhD. Luciana Robino

Prof. Adj. UA Bacteriología y Virología, Fmed, Udelar Octubre 2025

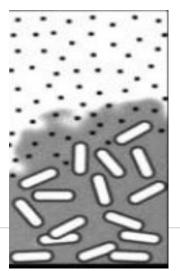

Tolerancia a antimicrobianos en biofilms

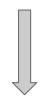
Mecanismos de resistencia convencionales

Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis.

Resistencia / Tolerancia

↑ CIM 100-1000 veces


Mayor resistencia: Antibióticos, Desinfectantes y Germicidas

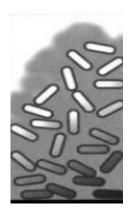


Matriz polisacarídica

Baja Penetración

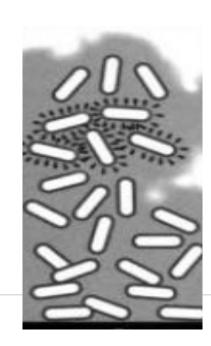
Condiciones de la matriz : ADN extracelular, oxigenación

Penetración de antibióticos en la matriz


ntibiotic Microorganism		Penetration?		
Piperacillin	P. aeruginosa	No		
Rifampin	S. epidermidis	Yes		
Vancomycin	50 O \$3 O C	Yes		
Gentamícin	P. aeruginosa	No		
Ofloxacin		Yes		
Vancomycin	S. epidermidis	Yes		
Latamoxef	E. coli	Yes		
Ciprofloxacin	P. aeruginosa	Yes		
Levofloxacin	3	Yes		
Ofloxacin	S. epidermidis	Yes		
Cefotiam		Yes		
Amikacin	P. aeruginosa	No		
Ciprofloxacin	3	Yes		
Gentamicin		No		
mipenem		Yes		
Levofloxacin		Yes		
Ofloxacin		Yes		
Piperacillin		Yes		
Sparfloxacin		Yes		
Ampicillin	K. pneumoniae	No		
Ciprofloxacin		Yes		
Ciprofloxacin	P. aeruginosa	Yes		
Tobramycin	<u>-</u>	No		
Rifampin	S. epidermidis	Yes		

Stewart 2002. doi: 10.1078/1438-4221-00196

Table 1. Experimental measurements of antibiotic penetration into biofilms. The criterion for penetration was attainment of 30% of the applied antibiotic concentration (or 30% of the antibiotic concentration determined in a sterile control) during the test duration.



Alterarción en la tasa de crecimiento

Cambios fisiológicos
Crecimiento lento
Superficie vs profundidad
Células persisters

Tolerancia adaptativa

40

Presencia de genes de resistencia

Aumento en la <mark>expresión</mark>

<mark>Intercambio</mark> genético

Aumento en presencia de ATB

Respuesta frente al stress

Tratamientos Prolongados concentraciones subóptimas

Presión de <mark>selección</mark> ATB

Aumento de la biomasa

Inducción de la expresión de genes de resistencia

Table 1 Biofilm	Table 1 Biofilm tolerance of antibiotics and biocides							
Antibiotics and biocides	Physical (biofilm matrix- related) tolerance	Physiological tolerance	Adaptive tolerance*					
β-lactam	Diffusion partially impaired ⁹¹	No activity on non-dividing cells ²³⁹	 Induction of β-lactamase, which can impair diffusion in the biofilm by hydrolysing the β-lactam molecules⁹⁰ Subinhibitory concentrations induce alginate genes⁷³ Upregulation of efflux pumps as stress response¹⁰¹ 					
Quinolones	No impact ²⁴⁰	Impaired activity in anaerobic conditions‡	 Upregulation of efflux pumps as stress response¹⁰¹ Upregulation of PA1874-1877 multidrug efflux pump in combination with ndv (PA14)²⁴¹ 					
Aminoglycosides	 Diffusion impaired by alginate²⁴² Extracellular DNA chelates cations and thereby creates cation-limited conditions; this induces LPS modifications and impaired self-promoted uptake of antibiotics²⁴³ 	Impaired activity on non-dividing cells ³¹	 Upregulation of MexXY efflux pumps²⁴⁴ Subinhibitory concentrations induce biofilm formation⁷⁴ ndv-dependent glucan production in the periplasm and sequestration of aminoglycosides in this compartment²⁴⁶ Upregulation of PA1874-1877 multidrug efflux pump in combination with ndv²⁴¹ 					
Antimicrobial peptides and other membrane-active biocides	Extracellular DNA chelates cations and thereby creates cation-limited conditions; this induces LPS modifications and impaired self-promoted uptake of		 Specific: induction of arn operon and LPS modification Nonspecific: upregulation of efflux pumps^{17,100} Upregulation of efflux pumps as stress response¹⁰¹ 					
i:10.1038/nrd4000 Azithromycin	antibiotics ²⁴³		Upregulation of MexCD-oprJ efflux pump ⁹⁹					

Muchas Gracias!

Estudios de susceptibilidad antibiótica

European Society of Clinical Microbiology and Infectious Diseases

Table 2A. Enterobacteriaceae (Continued)

Test/Report	Antimicrobial	Interpretive Categories and Zone Diameter Breakpoints, microbial Disk nearest whole mm		points,	Interpretive Categories and MIC Breakpoints, µg/mL								
Group	Agent	Content	S	SDD	1	R	S SDD I R		R	Comments			
PENICILLINS	i												
Α	Ampicillin	10 μg	≥17	-	14–16	≤13	≤8	-		16		≥32	(4) Results of ampicillin testing can be used to predict results for amoxicillin. See general comment (2).

Enterobacteriaceae

EUCAST Clinical Breakpoint Table v. 5.0, valid from 20

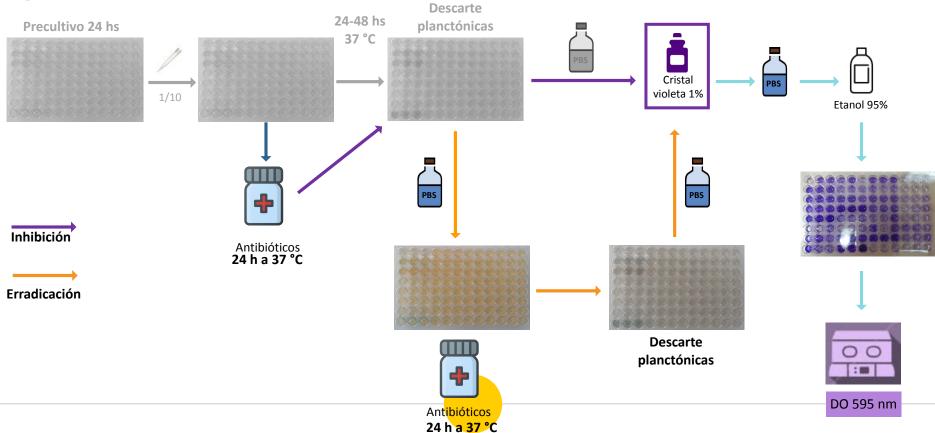
Disk diffusion (EUCAST standardised disk diffusion method)

Medium: Mueller-Hinton agar Inoculum: McFarland 0.5 Incubation: Air, 35±1°C, 18±2h

Reading: Read zone edges as the point showing no growth viewed from the back of the plate against a dark b

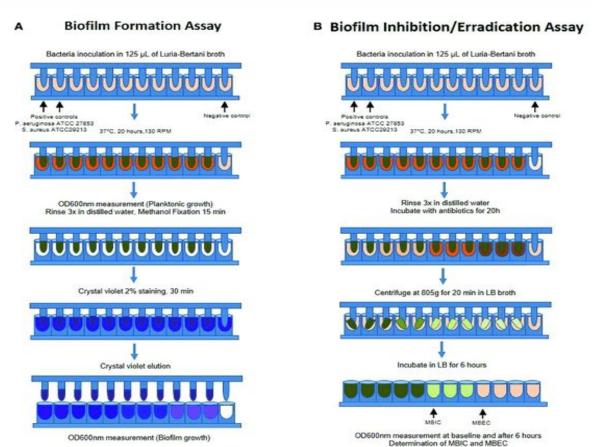
illuminated with reflected light.

Quality control: Escherichia coli ATCC 25922


12									
Penicillins ¹		akpoint g/L)	content breakpoint		point	Notes Numbers for comments on MIC breakpoints Letters for comments on disk diffusion			
	S≤	R>		S≥	R<				
Benzylpenicillin) <u></u>	3.50		1 E	-	1/A. Wild type Enterobacteriaceae are categorised as susceptible to aminopenicillins.			
Ampicillin	8 ¹	8	10	14 ^{A,B}	14 ^B	Some countries prefer to categorise wild type isolates of <i>E. coli</i> and <i>P. mirabilis</i> as intermediate. When this is			
Ampicillin-sulbactam	8 ^{1,2}	8 ²	10-10	14 ^{A,B}	14 ^B	use the MIC breakpoint $S \le 0.5$ mg/L and the corresponding zone diameter breakpoint $S \ge 50$ mm.			
Amoxicillin	8 ¹	8	-	NoteC	Note ^C	2. For susceptibility testing purposes, the concentration of sulbactam is fixed at 4 mg/L.			
Amoxicillin-clavulanic acid	8 ^{1.3}	8 ³	20-10	19 ^{A,B}	19 ^B	For susceptibility testing purposes, the concentration of clavulanic acid is fixed at 2 mg/L. For susceptibility testing purposes, the concentration of tazobactam is fixed at 4 mg/L.			
Amoxicillin-clavulanic acid (uncomplicated UTI only)	321,3	32 ³	20-10	16 ^{A,B}	16 ^B	5/D. Mecillinam (pivmecillinam) breakpoints relate to E. coli, Klebsiella spp. and P. mirabilis only.			
Piperacillin	8	16	30	20	17	3b. Weeliman (princellinary breakpoints relate to 2. ooi, recovers spp. and r. minabilio only.			

Métodos	Modelo de biopelícula	Placas microtiter	Dispositivo de Calgary		Modelo de biopelícula	Modelo en celda de flujo	Reactor CDC
de estudio	Disponibilidad de nutrientesª	Sistema cerrado (estático)	Sistema cerrado (estático)		Disponibilidad de nutrientesª	Sistema abierto (dinámico)	Sistema abierto (dinámico)
Biofilm	Formación de biopelícula	Adherencia a los pocillos (poliestireno, polipropileno o policarbonato)	Adherencia a los pinchos/púas (poliestireno, polipropileno o policarbonato)		Formación de biopelícula	Adherencia a la superficie de vidrio de un cubre-objetos	Adherencia a cupones (policarbonato, silicona, acero inoxidable, etc)
	Pocillos incubados con los antimicrobianos Estudio antimicrobianos Lavado, aclarado y renovación del medio diariamente Pocillos incubados con los antimicrobianos. Lavado, aclarado y renovación del medio diariamente				Estudio antimicrobiano	Los antimicrobianos se añaden al bote de medio y circulan a través de la celda de flujo durante el tiempo necesario	Los antimicrobianos se añaden a la fase fluida y así todos los cupones están expuestos simultáneamente
Cerrados o estáticos (batch cultures)	Biomasa/recuento UFC	Tinción con CV Disolución con etanol Lectura de la absorbancia a 570 nm (lector de placas de micropocillos)	Transferencia de las biopelículas por centiffugación o sonicación. Medida de la DO a 650 nm. (0-6h a 37°C) Siembra de diluciones seriadas 1/10	Abiertos o continuos	Biomasa/recuento UFC	Despegado de las biopelículas y recolección tras lavado de los canales con perlas de vidrio en solución salina. Siembra de diluciones seriadas 1/10	Transferencia de las biopelículas por sonicación y agitación vigorosa. Siembra de diluciones seriadas 1/10
Sencillos	Análisis microscópico	Estudios de viabilidad (proporción de vivos/muertos)	MEB MLC Ambas requieren fijación y tinción, técnicas destructivas para las biopelículas	Mayor <mark>fidelidad</mark> Observación al	Análisis microscópico	MLC Las bacterias están marcadas previamente con PF	MEB MLC Se necesita tinción
Reproducibles Bajo costo Sin contaminaciones	Análisis estructural	No se ha descrito	Estudios de imagen 3D y viabilidad (proporción de vivos/muertos)	Estudios de imagen 3D y viabilidad (proporción de Eliminación de célula	Análisis estructural	rugosidad, coeficiente de rugosidad, etc) con el <i>software</i> Comstat	Estudios de imagen 3D y viabilidad (proporción de vivos/muertos)
Destructivos	Características relevantes	Sencillo y reproducible. Bajo riesgo de contaminación Grosor de la biopelícula<50 µm	Sencillo y reproducible. Bajo riesgo de contaminación Grosor de la biopelícula<50 µm	Laboriosos	Características relevantes	Visualización directa y seguimiento en tiempo real no destructivo para la biopelícula Grosor de la biopelícula>50 µm	Permite el análisis simultáneo de las bacterias en crecimiento planctónico y en biopelícula
Del Pozo L (SEIMC); 60: 2017	Microorganismos estudiados	Staphylococcus aureus Candida albicans Pseudomonas aeruginosa Streptococcus pneumoniae Listeria monocytogenes	Pseudomonas aeruginosa Staphylococcus spp. Streptococcus spp Mycobacterium spp. Candida spp. Burkholderia spp.		Microorganismos estudiados	Pseudomonas aeruginosa Staphylococcus spp.	Pseudomonas aeruginosa Candida spp. Staphylococcus spp

Estudios de sensibilidad en placas de microtitulación o multipocillo.

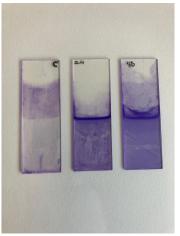


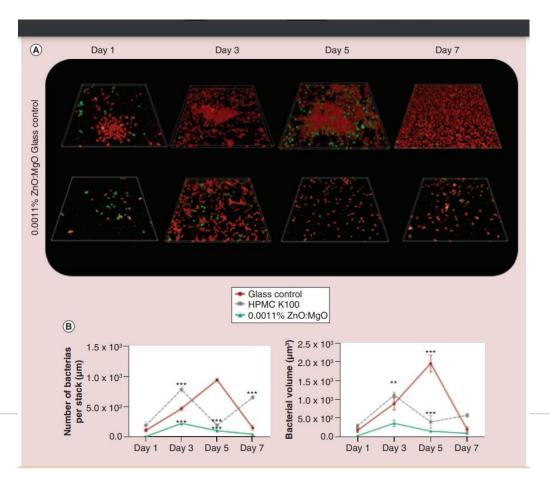
Estudios de sensibilidad en dispositivo de Calgary.

Sabino 2022. DOI 11:813076

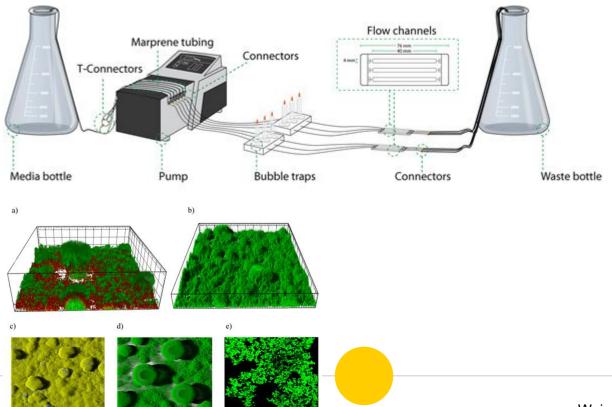
PARÁMETROS FARMACODINÁMICOS DE ACTIVIDAD ANTIBIÓTICA SOBRE BIOFILMS

Parámetro	Abreviatura	Definición
Concentración mínima inhibitoria de la biopelícula	СМІВ	La mínima concentración de antimicrobiano que resulta en una diferencia de DO650 ≤10% (1 log de diferencia en crecimiento tras 6 h de incubación) de la media de lectura de dos controles positivos (pocillos)
Concentración bactericida de la biopelícula	СВВ	La mínima concentración de antimicrobiano que produce una reducción del 99,9% en las UFCs recuperadas del cultivo de la biopelícula comparado con un control de crecimiento
Concentración mínima de erradicación de la biopelícula	CMEB	La mínima concentración de antimicrobiano que previene un crecimiento visible en el medio de recuperación/recolección de las biopelículas
Concentración preventiva de la biopelícula	СРВ	Igual que la CMIB pero la inoculación y la exposición al antimicrobiano son simultáneos

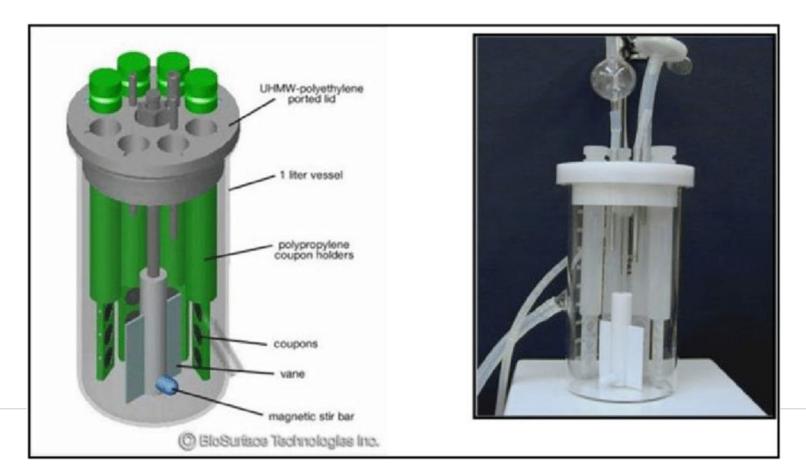

Del Pozo L (SEIMC); 60: 2017



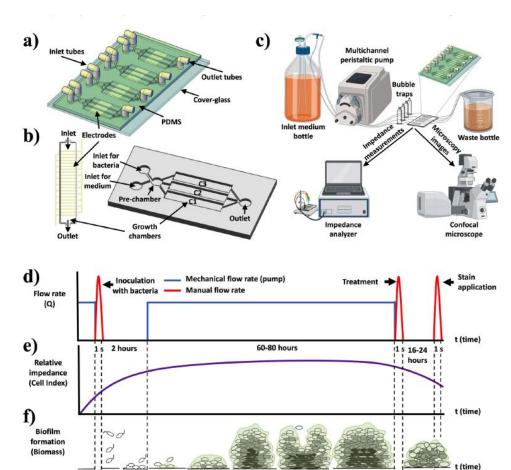
Estudios de sensibilidad estáticos en tubo con lámina



Estudios de sensibilidad en celdas de flujo



Estudios de sensibilidad en biorreactores: reactor de biopelículas CDC



Biofilm Chip device

Biofilm growth

Attachment

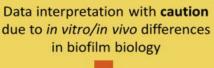
Treatment

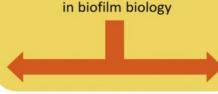
Clinical Microbiology and Infection

Commentary

Should standardized susceptibility testing for microbial biofilms be introduced in clinical practice?

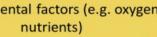
T. Coenye 1, 2, *, D. Goeres 3, F. Van Baml


Standardized biofilm models more predictive than planktonic cultures viz.


- → Antibiotic activity against sessile bacteria
- → Resistance and tolerance mechanisms in biofilms

Possible applications

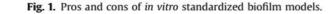
- → Drug/device registration
- Drug/device comparisons
- → Support to move forward with a clinical trial
- → Basic biology of biofilms



Modulation of drug activity by

PK/PD parameters, host (e.g. immune response, host tissue) and environmental factors (e.g. oxygen,

Not predictive of clinical success due to differences in


- → Underlying biofilm biology
- → Environment (flow, shear stress)
- → Matrix composition
- > Interplay with host

PK/PD issues limiting applicability

- → Access of drugs to biofilms in deep tissues
- → Effective antibiotic concentration not achievable
- → Drug tolerant phenotypes

- Biofilms: A Survival and Resistance Mechanism of Microorganisms Castrillón Rivera Laura Estela and Palma Ramos Alejandro Universidad Autónoma Metropolitana, Departamento de Sistemas Biológicos, México . IntechOpen
- Applying insights from biofilm biology to drug development can a new approach be developed?. Bjarnsholt T. Nature reviews | Drug Discovery
- Evolution of AntibioticResistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to subinhibitory Levels of Ciprofloxacin. <u>Ahmed MN</u>. AAC.
- Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. <u>Sherrard LJ</u>-Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Sherrard LJ. <u>Lancet</u>. 2014.
- Antibiotic Resistance, Biofilms and Quorum Sensing in Acinetobacter Species.<u>K. Prashanth</u>. IntechOpen. 2013.
- Mechanisms of antibiotic resistance in bacterial biofilms. Stewart PS. IJMM. 2002.
- Characterization of Colony Morphology Variants Isolated from Pseudomonas aeruginosa Biofilms. Kirisits MJ. <u>Appl Environ Microbiol</u>. 2005.
- Procedimientos en Microbiología Clínica. Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica Diagnóstico microbiológico de las infecciones relacionadas con la formación de biopelículas Capitulo 60. 2017.
- Análisis farmacocinético-farmacodinámico en Microbiología: herramienta para evaluar el tratamiento antimicrobiano. Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Capitulo 46. 2013.
- Combination antibiotics against Pseudomonas aeruginosa, representing common and rare cystic fibrosis strains from different Irish clinics. Kapoor P. Heliyon. 2018.
- Diagnóstico microbiológico de las infeccio<mark>nes rela</mark>cionadas con la formación de biopelículas. Macià MD. Enferm Infecc Microbiol Clin. 2018.

Sabino HAC, Valera FCP, Santos DV, Fantucci MZ, Titoneli CC, Martinez R, Anselmo-Lima WT and Tamashiro E (2022) Biofilm and Planktonic Antibiotic Resistance in Patients With Acute Exacerbation of Chronic Rhinosinusitis. Front. Cell. Infect. Microbiol. 11:813076. doi: 10.3389/fcimb.2021.813076

Weiss Nielsen, M., Sternberg, C., Molin, S., Regenberg, B. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells. J. Vis. Exp. (47), e2383, doi:10.3791/2383 (2011).

Blanco-Cabra, N., López-Martínez, M.J., Arévalo-Jaimes, B.V. et al. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. npj Biofilms Microbiomes 7, 62 (2021). https://doi.org/10.1038/s41522-021-00236-1

Should standardized susceptibility testing for microbial biofilms be introduced in clinical practice?. Coenye T. Clinical Microbiology and Infection. 2018.

- Heterogeneous bacterial persisters and engineering approaches to eliminate them. Allison K. R. Curr. Opin. Microbiol. 2011.

Persister cells. Lewis, K. Annu. Rev. Microbiol. 2010.

Jorge EC, Martínez NN, González MJ, Sánchez SV, Robino L, Morales JO, Scavone P. Gold-, silver- and magnesium-doped zinc oxide nanoparticles prevents the formation of and eradicates bacterial biofilms. Nanomedicine (Lond). 2023 May 31. doi: 10.2217/nnm-2022-0239. Epub ahead of print. PMID: 37254888.