

2025 October, 13-24

Innovative Biotechnological Approaches for Biofilm Control and Characterization

Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.

Fellowships

- 10 total fellowships that include air-tickets (only for South America countries), lodging, meals (coffee break and lunch).
- 5 partial fellowships: air-tickets and meals (coffee break and lunch).

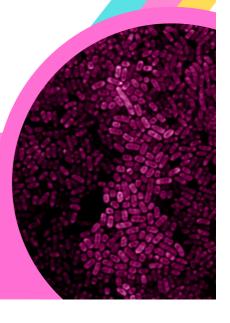
Speakers

Paola Scavone (UY) María José Gónzalez (UY)

Steffen Härtel (CL) Erlen Cruz (UY)

Pablo Zunino (UY)
Claudia Etchebehere (UY)
Luciana Robino (UY)
Jorge Jara (CL)

Etich Cid2 (OT)
Nicolás Navarro (UY)
Nicole Canales (UY)
Dante Castagnini (CL)
Eduardo de Mello (BR)


Karina Palma (CL)

Online registration deadline: August 1st

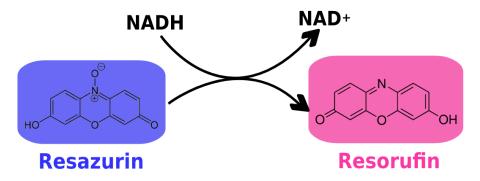
Uruguayan students should register in Bedelías Facultad de Ciencias after receiving the confirmation of selection (10 places).

	Estudiantes	Email		
	Florencia Colocho	florenciacolocho@gmail.com		
	Noelia Fernández Diaco	noeliafernandezdiaco@gmail.com		
	Maria Florencia de Lillo	florencia.delillo@gmail.com		
	Julián Berca Espinosa	bercaespinosa.julian@inta.gob.ar		
	Mayra Cecilia Obando	mcobandor@gmail.com		
	Joaquín Esteban Olivares Muñoz	jolivares2018@udec.cl		
	Francisca Urbina Arce	fran.urbina17@gmail.com		
Internacionales	Wendy Johana Velasco Garcia	wenyoa@hotmail.com		
	Anahi Ñacato	anahi.lizbeth2001@gmail.com		
	Marina Provenzal	marinaprovenzal@gmail.com		
	Elizabeth Ticona Morales	elizabeth.ticona.m28@gmail.com		
	Abraham David Guerra Ospino	abraham.guerra@unesp.br		
	Alfonso Alvarez Villa	alvarezvillaa@gmail.com		
	Lina Rocio Laymito Chumbimuni	lisdi_24@hotmail.com		
	Victoria Antonella Rodríguez	varodriguez@vet.unicen.edu.ar		
	Juan Moreno	juanmarcosmoreno@gmail.com		
	Josefina Vera	josevrmf@gmail.com		
Nacionales	Barbara Miller	barbimiller44@gmail.com		
	Ileana Suarez	isuarez@fcien.edu.uy		
	Constanza Ceretta García	cceretta@fcien.edu.uy		

ek	(1		Theorical classes	and practical			
ek	(2		Practical classes				
am	ns		Theorical exam fri	day session 5.			
	DATE	SESSION	SCHEDULE	ACTIVITIES	TEACHERS		
		WEE	PAGE				
			9:00 - 9:15	Introduction to the Course and Activities	PS / SH		
		Theorical	9:15 - 10:45 10:50 - 11:50	Students presentations (fellows) Microbial Biofilms Formation: Stages, Matrix, Gene Expression, Quorum Sensing	Tod@s PS		
	Session 1		12:00 - 13:00	Microscopy Introduction	SH		
	Monday 13th			Tutorials and Manuals Review (Huygens Introduction, Zeiss Manual - Principles of Confocal			
		Practical	14:00 - 16:00	Microscopy, FIJI / ImageJ)	JJ/KP		
				Software Installation and Configuration (Huygens - SVI, FIJI / ImageJ)			
			9:00 - 10:00	Image Acquisition and Analysis and Microscopy Applied to Microbiology	SH		
			10:05 - 11:20	Relevance of Biofilms / Control of Biofilms, Antimicrobial and Disruptive Molecules	PZ		
		Theorical	11:30 - 12:30	Deconvolution Introduction	SH		
	Session 2 Tuesday		12:35 - 13:45	Importance of Biofilms in Wastewater Treatment Systems I	AC		
	14th			Tutorials and Manuals Review (Huygens Introduction, Zeiss Manual - Principles of Confocal			
		Practical	14:30 - 16:30	Microscopy, FIJI / ImageJ)	_		
				Software Installation and Configuration (Huygens - SVI, FIJI / ImageJ)			
			8:00 - 9:15	Bacteriophages for Biofilm Control	EM		
1			9:20 - 10:20	Light Sheet Microscopy applied to Microbiology	JER		
		Theorical	10:25 - 11:20	Image Processing I	JJ		
	Session 3		11:35 - 12:35	Biofilms Study Models	MJG		
Wed	Wednesday 15th		12:45 - 13:30	Image Processing II	JJ		
	1501			Tutorials and Manuals Review (Huygens Introduction, Zeiss Manual - Principles of Confocal			
		Practical	14:30 - 16:30	Microscopy, FIJI / ImageJ)			
				Software Installation and Configuration (Huygens - SVI, FIJI / ImageJ)			
			9:00 - 10:00	Deconvolution Introduction I	SH		
		T1	10:15 - 11:00	Deconvolution Introduction II / Image Processing III	JJ		
5	Session 4	Theorical	11:20 - 12:20	Biofilms and the Health-Disease Process (discussion session)	LR/PZ/PS		
	Thursday		12:30 - 13:30	Tutorial Deconvolution in Bacterial Images	NC		
	16th			Review of Biofilm Formation Protocols			
		Practical	14:30 - 16:30	Deconvolution			
			0.00 0.50	Fundamental Missanson in Danksis and Disfilms	DC.		
		Theorical	9:00 - 9:50 10:00 -10:50	Expansion Microscopy in Bacteria and Biofilms	DC ECJ / NNN		
			Theorical	11:00 - 11:40	Nanotechnology Applied to Biofilms I Nanotechnology Applied to Biofilms II	ECJ / NNI	
				Theorical	Theorical	11:50 - 12:20	Image Processing IV
	Session 5 Friday 17th		12:45 - 13:30	Image Processing V	JJ		
	Thay Trui	Practical	14:30 - 15:30	Doubts	All		
			16:00-17:00	Theoretical Exam			
			9:00 - 10:00	Welcome			
	Session 6 Monday 20th	Practical	10:30 - 13:30	Pre-inoculum / BF Matrix staining / Nanoparticle Synthesis	PS / MJG / N / NNM / JJ ECJ / VI		
		Practical	14:30 - 16:30	Confocal LSM800 (14-18) / Image Processing (Uppsala)			
	Session 7 Tuesday	Practical	9:00-12:00	Inoculum / LiveDead staining / Nanoparticle Synthesisc/ Flow Cell System	PS / MJG / N / NNM / JJ ECJ / VI		
,	21st	Practical	13:00 - 15:00	Confocal LSM980 (14-18) / Image Processing (Uppsala)			
	Session 8 Wednesday	Practical	9:00 - 13:00	Biofilms 24, inhibition, erradication	PS / MJG / N / NNM / JJ ECJ / VI		
	22nd	Practical	14:30 - 16:30	Confocal LSM800 (14-18) / Image Processing (Uppsala)			
	Session 9 Thursday 23	Practical	9:00 - 13:00	Biofilms 48 crystal violet, Flow cell Sistem staining	PS/MJG/N /NNM/JJ ECJ/VI		
	rd	Practical	14:30 - 16:30	Confocal LSM980 (14-18) / Image Processing (Uppsala)			
	Session 10 Friday 24th	Final Presentation	9:00 - 13:00	Presentations of Practical Work			

TEACHERS
Paola Scavone (PS)
Jorge Jara (JJ)
Steffen Härtel (SH)
Pablo Zunino (PZ)
Angela Cabezas (AC)
Nicolas Navarro M. (NNM)
Erlen Cruz Jorge (ECJ)
Dante Castagnini (DC)
Nicole Canales (NC)
Karina Palma (KP)
Luciana Robino (LR)
Ma. José González (MJG)
Eduardo del Mello (EM)
Juan Eduardo Rodriguez (JER)

i) Protocolo Concentración Inhibitoria Mínima (CIM) y Concentración Bactericida Mínima (CBM)


- 1. Recuperar el microorganismo a ensayar en medio sólido. Incubar a 37°C por 24 horas.
- 2. En un tubo Falcon de 15 mL añadir 5 mL de medio líquido. A partir del cultivo fresco en medio sólido, tomar una o varias colonias con un ansa y resuspender en el tubo Falcon. Incubar 37°C por 24 horas (obtención de pre-inóculo). **Nota**: El microorganismo a ensayar debe encontrarse en la fase estacionaria de crecimiento, esto debe ponerse a punto previo al ensayo.
- 3. En una placa de 96 pocillos, colocar 90 µl de medio líquido en toda la placa, a excepción de los blancos que deben tener 100 µl de medio líquido.
- 4. Añadir 90 μ l del compuesto a testear en la primera columna de la placa (a excepción de la fila control y blanco). Realizar diluciones seriadas (90 μ l) desde la columna 1 hasta la columna 12 de la placa, descartando los últimos 90 μ l.
- 5. Añadir 10 μl del pre-inóculo previamente preparado en los pocillos control y tratamiento.
- 6. Incubar a 37°C por 24 horas.
- 7. La CIM visual corresponde al último punto en el que no se observa turbidez (crecimiento).
- 8. Para determinar la CBM, sembrar 5 μ l de los últimos 3 pocillos en lo que no se observa turbidez, en una placa de medio sólido. Incubar a 37°C por 24 horas.
- 9. La CBM corresponde a aquella en la cual no hay crecimiento en las placas de medio sólido.

Protocolo Concentración Inhibitoria Mínima (CIM) por método resazurina y determinación de IC50

- 1. Recuperar el microorganismo a ensayar en medio sólido. Incubar a 37°C por 24 horas.
- 2. En un tubo Falcon de 15 mL añadir 5 mL de medio líquido. A partir del cultivo fresco en medio sólido, tomar una o varias colonias con un ansa y resuspender en el tubo Falcon. Incubar 37°C por 24 horas (obtención de pre-inóculo). Nota: El microorganismo a ensayar debe encontrarse en la fase estacionaria de crecimiento, esto debe ponerse a punto previo al ensayo.
- 3. En una placa de 96 pocillos, colocar 90 µl de medio líquido en toda la placa, a excepción de los blancos que deben tener 100 µl de medio líquido.
- 4. Añadir 90 μ l del compuesto a testear en la primera columna de la placa (a excepción de la fila control y blanco). Realizar diluciones seriadas (90 μ l) desde la columna 1 hasta la columna 12 de la placa, descartando los últimos 90 μ l.
- 5. Añadir 10 μ l del pre-inóculo previamente preparado en los pocillos control y tratamiento.

- 6. Incubar a 37°C por 24 horas.
- 7. Añadir 10 μ l de una solución de resazurina 0.5 mg/mL en agua destilada previamente esterilizada por filtración (0.2 μ m).
- 8. Incubar a 37°C por 2 horas.
- 9. Medir fluorescencia de resorufina en equipo ClarioStar Ex = 530 nm y Em = 590 nm.
- 10. La CIM corresponde al último punto en el que no hubo cambio de color (último pocillo azul).
- 11. Para determinar la EC50 es necesario realizar al menos un duplicado biológico con tres réplicas técnicas cada uno (curva dosis-respuesta).

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
н												

Bibliografía:

Performance Standards for Antimicrobial Susceptibility Testing, M100 (31st Edition). Clinical and Laboratory Standards Institute, PA, USA (2021).

Jorge EC, Martínez NN, González MJ, Sánchez SV, Robino L, Morales JO, Scavone P. Gold-, silver- and magnesium-doped zinc oxide nanoparticles prevents the formation of and eradicates bacterial biofilms. Nanomedicine (Lond). 2023 Apr;18(10):803-818.

ii) Evaluación de biofilms estáticos mediante tinción Cristal Violeta

Día	1	2	3	4	5
Formación de biofilms	Cultivo de mo en medio sólido	Pre-inóculo	Inóculo	24 hs-CV	48 hs-CV

Microorganismos a estudiar:

Cada grupo tendrá un set de microorganismos:

Grupo 1: Erlen y Victoria Acinetobacter baumannii,

Grupo 2: Majo Escherichia coli,

Grupo 3: Nicole Pseudomonas aeruginosa,

Grupo 4: Nico, Staphylococcus aureus,

Si uno no conoce la capacidad de formación de biofilms de su microorganismo de estudio, lo primero es realizar el ensayo de formación de biofilms, evaluando distintos medios de cultivo así como distintos tiempos de formación de biofilms. Una forma de establecer cómo se clasifican los microorganismos de acuerdo a su capacidad de formar biofilms lo estableció Villegas et al., 2013.

Cuantificación de la biomasa de biofilms.

- 1. Recuperar el microorganismo a ensayar en medio sólido, incubar 24 hs a la temperatura de crecimiento (37°C por ej.)
- 2. En una placa de 96 pocillos, colocar 150 μl de medio líquido. A partir del cultivo fresco en medio sólido, tomar de a una colonia y resuspender en cada pocillo. Incubar 24hs a 37ºC.
- 3. Medir la DO 600nm de las bacterias planctónicas del pre-inóculo para evaluar que todas hayan crecido de igual forma y hayan llegado a fase estacionaria.
- 4. En otra placa de 96 pocillos, colocar 180 μl de medio líquido, tomar de los pre-inóculos 20 μl y colocarlos en cada pocillo (realizar triplicados de cada microorganismo a ensayar). Dejar al menos 3 pocillos solo con medio líquido para control negativo. Incubar 24 a 48 hs a 37°C sin agitación.
- 5. Medir la DO 600nm de las bacterias planctónicas.
- 6. Remover suavemente las bacterias planctónicas.
- 7. Realizar 3 lavados con PBS
- 8. Teñir las bacterias adheridas y el biofilm con una solución de cristal violeta al 0,1 %, poner 200 μl de CV en cada pocillo, incubar 15 minutos.
- 9. Remover el exceso de colorante mediante lavados con PBS (hasta que no salga más color).

- 10. Solubilizar el CV agregando etanol 95%. Agitar suavemente. Medir la absorbancia a 590 nm.
- 11. Si los valores de OD son > 1,5-2 realizar una dilución 1/10 en etanol y volver a medir.
- 12. Análisis de datos.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
н												

iii) Inhibición de la formación de biofilms por efecto de antimicrobianos/ moléculas/ extractos/ etc.

Día	D1	D2	D3	D4	D5
Inhibición	Recuperación en medio sólido	Pre-inóculo	Inóculo + antimicrobian o	24 hs	48 hs-CV

Procedimiento para determinar el efecto de distintos antimicrobianos o moléculas sobre el biofilm de 48 hs. Basado en Blango y Mulvey, 2010.

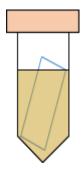
- 1. Recuperar el microorganismo a ensayar en medio sólido, incubar 24 hs a la temperatura de crecimiento (37°C por ej.)
- 2. En una placa de 96 pocillos, colocar 150 μl de medio líquido. A partir del cultivo fresco en medio sólido, tomar de a una colonia y resuspender en cada pocillo. Incubar 24hs a 37ºC.
- 3. Medir la DO 600nm de las bacterias planctónicas del pre-inóculo para evaluar que todas hayan crecido de igual forma y hayan llegado a fase estacionaria.
- 4. En otra placa de 96 pocillos, adicionar los 180 μl de medio líquido con las moléculas/antimicrobianos/etc que uno quiera ensayar en la concentración a estudiar. Tomar de los pre-inóculos 20 μl y colocarlos en cada pocillo (realizar triplicados). En este caso los blancos sin bacterias tienen que realizarse con las moléculas a evaluar. Se debe además colocar medio sin moléculas para usar como control positivo, ya que en estos pocillos si se va a formar el biofilm.
- 5. Incubar 24 a 48 hs a 37°C sin agitación.
- 6. Medir la DO 600nm de las bacterias planctónicas.
- 7. Remover suavemente las bacterias planctónicas.
- 8. Realizar 3 lavados con PBS
- 9. Teñir las bacterias adheridas y el biofilm con una solución de cristal violeta al 0,1 %, poner 200 μ l de CV en cada pocillo, incubar 15 minutos.
- 10. Remover el exceso de colorante mediante lavados con PBS (hasta que no salga más color).
- 11. Solubilizar el CV agregando etanol 95%. Agitar suavemente. Medir la absorbancia a 590 nm.
- 12. Si es necesario realizar una dilución 1/10 en etanol y volver a medir.
- 12. Análisis de datos.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
н												

iv) Erradicación de biofilms por efecto de antimicrobianos/moléculas/ extractos/ etc.

Día	D1	D2	D3	D4	D5
Erradicación	Pre-inóculo	Inóculo	24 hs	48 hs-cambio de medio/ adición antimicrobian o	24 hs-CV

- 1. Recuperar el microorganismo a ensayar en medio sólido, incubar 24 hs a la temperatura de crecimiento (37°C por ej.)
- 2. En una placa de 96 pocillos, colocar 150 μl de medio líquido. A partir del cultivo fresco en medio sólido, tomar de a una colonia y resuspender en cada pocillo. Incubar 24hs a 37ºC.
- 3. Medir la DO 600nm de las bacterias planctónicas del pre-inóculo para evaluar que todas hayan crecido de igual forma y hayan llegado a fase estacionaria.
- 4. En otra placa de 96 pocillos, colocar 180 μl de medio líquido, tomar de los pre-inóculos 20 μl y colocarlos en cada pocillo (realizar triplicados de cada microorganismo a ensayar). Dejar al menos 3 pocillos solo con medio líquido para control negativo y 3 pocillos como control positivo (180μl de medio líquido y 20 μl de preinóculo). Incubar 24 hs a 37°C sin agitación.
- 5. Medir la DO 600nm de las bacterias planctónicas.
- 6. Remover las bacterias planctónicas, realizar 3 lavados con PBS
- 7. Adicionar los 180 μl de medio líquido con las moléculas/antimicrobianos/etc que uno quiera ensayar en la concentración a estudiar.
- 8. Incubar 24 hs a 37°C.
- 9. Medir la DO 600nm de las bacterias planctónicas.
- 10. Remover suavemente las bacterias planctónicas.
- 11. Realizar 3 lavados con PBS
- 12. Teñir las bacterias adheridas y el biofilm con una solución de cristal violeta al 0,1 %, poner 200 μl de CV en cada pocillo, incubar 15 minutos.
- 13. Remover el exceso de colorante mediante lavados con PBS (hasta que no salga más color).
- 14. Solubilizar el CV agregando etanol 95%. Agitar suavemente. Medir la absorbancia a 590 nm.



- 15. Si es necesario realizar una dilución 1/10 en etanol y volver a medir.
- 16. Análisis de datos.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
Н												

v) Evaluación de biofilms estáticos sobre cubreobjeto

Día	1	2	3	4	5
Formación de biofilms	Cultivo de mo en medio sólido	Pre-inóculo	Inóculo	24 hs	

Día	6	7	8	9	10
Formación de biofilms	72 hs (3 días)		120 (5 días)		

Microorganismos a estudiar:

Cada grupo tendrá un set de microorganismos:

Grupo 1: Erlen y Victoria Acinetobacter baumannii,

Grupo 2: Majo Escherichia coli,

Grupo 3: Nicole *Pseudomonas aeruginosa,*

Grupo 4: Nico, Staphylococcus aureus,

Cada grupo tendrá 6 tubos, 2 para cada tinción y para cada tiempo a ensayar (24, 72, 120).

Procedimiento:

- 1. Recuperar el microorganismo a ensayar en medio sólido, incubar 24 horas a la temperatura de crecimiento (Ej: 37°C).
- 2. Preparar pre-inóculo de cada microorganismo a ensayar en un tubo Falcon estéril de 50 mL con 20 ml de medio de cultivo e incubar por 24 horas a la temperatura de crecimiento.
- 3. Medir la DO 600 nm de las bacterias planctónicas del pre-inóculo para evaluar que todas hayan crecido de igual forma y hayan llegado a fase estacionaria.
- 4. En un tubo Falcon estéril de 50 mL posicionar con cuidado el cubreobjeto y adicionar 18 mL de medio líquido. Tomar de los pre-inóculos 2 mL y colocarlos en cada tubo.

- 5. Incubar 24 horas (día 1), 72 horas (3 días) y 120 horas (5 días) a 37°C sin agitación.
- 6. Retirar los cubreobjetos con una pinza y sumo cuidado.
- 7. Realizar 3 lavados con PBS.
- 8. Limpiar con un algodón con alcohol 95% un lado del cubreobjetos.
- 9. Realizar tinción por inmunofluorescencia.

Inmunofluorescencia simple de biofilms:

Esta tinción se realiza sobre el biofilm fijado y permite el material genético, las bacterias y la matriz extracelular

Mezcla de tinción:

Fluoróforo	Volumen (μL)
Syto 9 (5 mM)	0.4
Anti <i>E. coli</i>	4
Hoechst (1 mg/ml)	2
Sypro Ruby	50
Buffer (BNP)	200

- 1. Fijar con 50 μL de PFA 4% e incubar por 15 minutos.
- 2. Lavar 3 veces con PBS.
- 3. Incubar con 50 μ L de Buffer de No Permeabilización (BNP) por 20 min, a temp. ambiente.
- 4. Lavar 3 veces con PBS.
- 5. Permeabilizar con Buffer de Permeabilización (BP) 15 min.
- 6. Lavar 3 veces con PBS.
- 7. Incubar con 50 μL de la solución de tinción (Syto9 (para *E. coli* anti *E. coli*) y Hoescht) e incubar 1 hora a temp. ambiente en oscuridad.
- 8. Lavar 3 veces con PBS.
- 9. Teñir con SyproRuby 50 μ L de de la solución sobre el cubre incubar por 30 min a temp. ambiente en cámara oscura.
- 10. Lavar 1 vez con H2O destilada estéril.
- 11. Montar los cubreobjetos con unas gotas de medio de montaje, evitar las burbujas.

Inmunofluorescencia vivas y muertas:

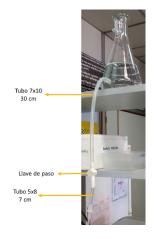
Este procedimiento se realiza generalmente sin fijar, pero para poder administrar los tiempos durante el curso, adicionamos un paso de fijación luego de realizar las tinciones.

Solución de tinción:

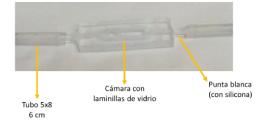
Fluoróforo	Volumen (μL)
Syto 9 (5 mM)	0.4
loduro de propidio (1 mg/ml)	1
Hoechst (1 mg/ml)	2
PBS	200

- 1. Preparar la solución de tinción en PBS en un tubo cubierto con papel aluminio.
- 2. Preparar la cámara húmeda con papel de aluminio por fuera y papel humedecido con agua destilada en el interior. Arriba colocar un trozo de parafilm.
- 3. Colocar 50 μ L de la solución de tinción, colocar el cubre encima del lado con BF, tapar e incubar 15 minutos.
- 4. Lavar 3 veces con PBS.
- 5. Fijar el preparado con PFA 4% durante 15 min.
- 6. Lavar 3 veces con PBS.
- 7. Montar los cubreobjetos con 20 µL de medio de montaje. Mantener en la oscuridad.

vi) Evaluación de biofilms en modelo dinámico


Planificación del ensayo

Día	Lunes	Martes	Miércoles	Jueves	Viernes
Semana 1	Armado de sistema Inóculos	24 hs tinción Observación al Confocal	48 hs tinción Observación al Confocal	72 hs tinción Observación al Confocal	Análisis de imágenes


Protocolo de biofilms en sistema de flujo

Materiales estériles

- o Caldo LB
- o PBS
- o 2 Kitasato conectados por el pico inferior a un tubo de 30 cm, conectado a una llave de paso y a un tubo de 7 cm
- o Tubos de bomba peristáltica
- o Tubos de 6 cm y de 4 cm

o Cámara con laminillas de vidrio pegadas en parte superior e inferior, y puntas blancas en sus extremos. La corona de cada punta se une a un tubo de 6 cm

- o Tubos de descarte (60-80 cm de largo)
- o Botellas de 1 L para descarte, cerradas con papel aluminio y papel
- o Conectores envueltos de forma individual:
 - x4: Conector blanco de 4 mm

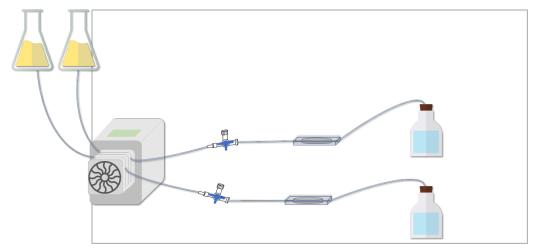
x4:Conectores azules con tuerca en el medio

x4: Conectores azules solos para reconectar la cámara (día 2)

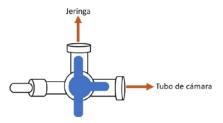
Armado del sistema

*Trabajar con guantes y en cabina de flujo laminar

- 1. Desenvolver el tubo del Kitasato, unir el tubo al conector blanco y este al tubo de la bomba peristáltica
- 2. Colocar en el otro extremo del tubo de la bomba peristáltica una llave de 3 vías nueva (cerrada, no se reutiliza)
- 3. Desenvolver la cámara, colocar un conector azul junto con un tubo de 5x8 de 6 cm del lado izquierdo. Unir el tubo en la llave de 3 vías
- 4. En el lado derecho, unir un conector azul a un tubo de 5x8 de 4 cm y a éste un conector blanco al cual se le une luego el tubo de descarte



- 5. Con las llaves de paso cerradas, colocar el medio de cultivo en el Kitasato (1 L en cada uno)
- 6. Llevar a la mesada y colocar los Kitasato elevados
- 7. Colocar el tubo de la bomba en uno de los carreteles de la bomba peristáltica
- 8. Colocar el extremo libre de los tubos de descarte en la botella de descarte correspondiente
- 9. Enumerar las cámaras


Esquema del sistema armado

Inicio del flujo y preparación del inóculo

- 1. Abrir las llaves de paso de los Kitasato
- 2. Abrir también la llave de 3 vías, ver que quede abierta solo en un sentido

- 3. Prender la bomba peristáltica, poner el carretel en el 4^{to} tope y setearla en 1,5
- 4. Asegurarse que las cámaras se llenen de medio de cultivo y que comience el descarte. El sistema tiene que quedar completamente lleno, sin burbujas
- 5. Inóculo
 - Microorganismo bacteriano
 - Preparar una suspensión de la cepa con una turbidez equivalente a 0,5 McFarland en PBS.
 - Volumen: Al menos 6 mL para cada cámara
 - Preparar en la cabina de flujo laminar y ahí mismo colocar la suspensión en una jeringa
- 6. Inocular cada cámara a través de la llave de 3 vías con una jeringa estéril. Asegurarse que la llave esté abierta hacia la entrada y hacia la cámara, y cerrada hacia la bomba (para que vaya solo en dirección de la cámara). Llenar completamente la cámara con el inóculo e incubar 1 hora. No quitar la jeringa ni mover la llave

 Pasado el tiempo de incubación, poner a funcionar nuevamente el sistema, con la bomba en el 4^{to} tope y seteada en 1,5.
 Medir el flujo durante 15 minutos. El flujo debería ser de 0,5 - 0,6 mL/min.

Dejar el sistema funcionando durante 24 horas.

Sabiendo que el flujo debe ser de 0,5 - 0,6 mL/min, calcular el volumen de medio de cultivo necesario para 12, 24, 48 y 72 horas:

Tiempo (h)	Tiempo (min)	Volumen (mL)
12 h		
24 h		
48 h		
72 h		

Tinción y visualización

- 1. Detener la bomba y cerrar la llave de paso
- 2. Registrar el volumen de los descartes: calcular el flujo
- 3. Pasar lentamente por cada cámara con una jeringa 6 8 mL de PBS para eliminar las células planctónicas
- 4. Pasar por cada cámara una solución de 6 7 mL de naranja de acridina 1/100 de 1 mg/mL e incubar 30 minutos
- 5. Desconectar las cámaras, y cerrarlas por los extremos con una punta sellada con silicona, sin que se escape la solución de naranja de acridina
- 6. Observar en microscopio laser confocal
 - Settings: Paola Biofilm (Zeiss). Canal verde AF514

Reconexión de las cámaras

- 1. Quitar las puntas de cada cámara
- 2. Desconectar los tubos de 6 cm de los lados de las cámaras y el conector azul al que están unidos
- 3. Conectar a la cámara un tubo nuevo y estéril con punta blanca, pegar con silicona
- 4. Conectar con un conector azul estéril
- 5. Cambiar las botellas de descarte
- 6. Al lado del mechero, rellenar uno de los Kitasato con medio LB fresco y al otro quitarle todo el volumen y ponerle medio LB con antibiótico
- 7. Reiniciar el flujo, cuidando que quede el sistema completamente lleno y sin burbujas

vii) Síntesis de nanopartículas de ZnO dopadas con magnesio

- 1. Preparación de soluciones
- **1.1.** Disolver 224 mg de acetato de zinc (2,0 mmol) y 25 mg de acetato de magnesio (0,2 mmol) en 15 mL de etanol, a 80 °C en reflujo, bajo agitación constante hasta lograr completa disolución.
- **1.2.** Disolver 144 mg de KOH (2,5 mmol) en 1 mL de agua destilada y añadir posteriormente 10 mL de etanol a temperatura ambiente.
- **2.** Enfriar ambas soluciones a -10 °C antes de la reacción de mezcla.
- **3.** Añadir rápidamente 5 mL de la solución de KOH a la solución de zinc y magnesio. Agitar a 500 rpm, durante 30 min, a 20 °C.
- **4.** Centrifugar a $936 \times g$ y lavar el pellet con una mezcla etanol:acetona (1:1, v/v).
- **5.** Suspender el pellet obtenido en agua destilada estéril para los ensayos de biofilm.

Síntesis de Au-Nps

- **1.** Preparación de la solución precursora
- **1.1.** En un matraz redondo de fondo plano con dos bocas, preparar una solución de HAuCl₄ 1 mM disolviendo 1 mL de HAuCl₄ 25 mM en 24 mL de agua Milli-Q.
- **1.2.** Calentar la solución hasta ebullición, bajo agitación constante a 500 rpm, durante 15 min en cabina de gases.
- 2. Inyectar rápidamente 2,5 mL de citrato de sodio (38,8 mM) en la solución en ebullición.
- **3.** Mantener la agitación a 500 rpm durante 30 min.
- **4.** Centrifugar la suspensión obtenida a 10 000 rpm, durante 1 h, a 4 °C.
- **5.** Recuperar el pellet y resuspender en agua destilada estéril para los ensayos de biofilm.

Síntesis de Ag-Nps

- 1. Preparación de la solución precursora
- 1.1. En un matraz redondo de fondo plano con dos bocas, preparar una solución de nitrato de plata (AgNO₃) 0,55 mM disolviendo 1,375 mL de una solución concentrada de AgNO₃ en

24,625 mL de agua Milli-Q.

- **1.2.** Llevar la solución a ebullición bajo agitación en cabina de gases.
- 2. Preparar una mezcla de citrato de sodio 28 mM y ácido tánico 0,12 mM.
- **3.** Inyectar rápidamente 1,91 mL de la solución de citrato de sodio/ácido tánico en la solución de nitrato de plata en ebullición.
- **4.** Mantener la agitación constante a 500 rpm durante 40 min.
- **5.** Centrifugar la suspensión obtenida a 10 000 rpm, durante 1 h, a 4 °C.
- **6.** Recuperar el pellet y resuspender en agua destilada estéril para los ensayos de biofilm.

Bibliografía:

Iribarnegaray V, Navarro N, Robino L, Zunino P, Morales J, Scavone P. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis. Nanomedicine 14(12), 1551–1564 (2019).

Jorge EC, Martínez NN, González MJ, Sánchez SV, Robino L, Morales JO, Scavone P. Gold-, silver- and magnesium-doped zinc oxide nanoparticles prevents the formation of and eradicates bacterial biofilms. Nanomedicine (Lond). 2023 Apr;18(10):803-818.