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Light sheet fluorescence microscopy



High contrast by light-sheet based microscopy
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Single molecule imaging in solution

Light sheet

Specimen [ T \
chamber™ |

Obijective lens




Comparison between epi- and light sheet illumination

500 kDa dextran-Atto633 in buffer

40X, NA 1.2W objective lens

Image field 19.2 ym

Image acquisition 100 Hz, display 33 Hz
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Principle of light sheet microscopy
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Shah,Weber and Huisken, Chapter 7 ,Light Sheet Microscopy* in ,,Fluorescence Microscopy*, ed. U. Kubitscheck, 2017 Wiley VCH



Light Sheet Microscopy using a cylindrical lens
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Tube lens

Top view
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Shah,Weber and Huisken, Chapter 7 ,Light Sheet Microscopy* in ,,Fluorescence Microscopy*, ed. U. Kubitscheck, 2017 Wiley VCH
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Scanned Light Sheet Microscopy
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Top view
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Shah,Weber and Huisken, Chapter 7 ,Light Sheet Microscopy* in ,,Fluorescence Microscopy*, ed. U. Kubitscheck, 2017 Wiley VCH



Scanned Light Sheet Microscopy
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Philipp J. Keller; et al., Science 322, 1065 (2008)



Focus of a Gaussian beam
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Relationship between light sheet dimensions and field of view

oL,

dgrp

Gaussian beam illumination:
limited observation field size
Width and length are closely related to each other

Shah,Weber and Huisken, Chapter 7 ,Light Sheet Microscopy* in ,,Fluorescence Microscopy*, ed. U. Kubitscheck, 2017 Wiley VCH



Light sheet fluorescence microscopy
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Light sheet fluorescence microscopy: LSFM

illumination from the side

imaging towards the top




Example of state-of-the-art setup (Jan Huisken)
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Schmid, .....and Huisken, 2013, Nature Comm. 4:2207



Light sheet microscopy of expanded samples




Light sheet microscopy of expanded samples




Image generation in confocal and light sheet microscopy
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Expansion microscopy
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How to image a large sample with sub-resolution features?

classical microscopy

4

points of interest



Increase optical resolution by ,,sharpening™ the point spread function

classical microscopy
STED, SIM, STORM
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. OF use expansion microscopy
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Biochemical procedure of expansion

Labeling

Advantages:
Transparent sample
Refractive index of water

Expansions up to 20x
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Expansion according to: Chozinski, ..... and Boyden, Nature Methods (2016)
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Brain organoid sample preparation for LFSM
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(A) Two months old brain organoid embedded in a polyachrylamide gel. (B) Two months old organoid after proteinase K digestion, which resulted in a clearing of the
organoid and an approximately 1.5-fold expansion. (C) The same organoid after expansion in bidistilled water, which yielded an approximately 4-fold expansion.

(D) Optical section of the cleared and 1.5-fold expanded organoid in a depth of 1.2 mm. (E) Pipeline for organoid sample preparation: fixation, permeabilization,
immunostaining for identifying specific cell types or structures and nuclear staining. The tight junction marker ZO1 - magenta, and nuclear staining Hoechst — cyan, are
used as example. Then the sample is embedded in and chemically linked to a polyacrylamide gel. Next, digestion using proteinase K (Prot-K) renders the sample

transparent. Placing the sample in PBS leads to expansion of 1.5x, while placing the sample in bi-distilled water leads to a 4x expansion. Optical sections of (F) a three

months old brain spheroid and (G) a two months old brain organoid. Rodriguez-Gatica et al., Development 2022



Five months old brain organoid containing GFP-positive cells

(A) 3D view, volume 13.1 x 14.9 x 5.2 mmas.

(B) Optical slice at a depth of 1.8 mm. The image was obtained using a 10x NA 0.3 objective lens. Size 13.1 x 14.9 mm2

(C) Rendering of a 3D stack with a volume of 1.25 x 1.55 x 1.3 mms as marked in (B). The image was obtained using a 25x NA 1.1 objective
in the same sample after a 4-fold expansion.

(D) Magnification of the region marked in (C), 185 x 132 ym2 revealing spine-like structures.

(E) Magnification of the region marked in (D). The adjusted scale bar 1 ym* considered the expansion and physically corresponded to 4 ym.
(F) Surface rendering of the neural projection revealed spine-like structures.

For (C) to (E), the shown image data were deconvolved.

Rodriguez-Gatica et al., Development 2022



Mouse brain: CAl-Region and Gyrus dentatus with granule cells

Kelly et al., submitted

Maximum-Intensity-Projection of 434 sections (10 tiles)
LSFM 4x/ NA 0.2 Air objective 25
Size 8.8 x 6.13 mm2




Mouse brain: CAl-Region and Gyrus dentatus with granule cells
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Maximum-Intensity-Projection of 434 sections (10 tiles)
LSFM 4x/ NA 0.2 Air objective 26

Size 8.8 x 6.13 mm2




Summary: light sheet fluorescence expansion microscopy

Imaging of extended brain slices

Super resolution (laterally = 80 nm, axially = 300 nm)

Neuronal connectivity details (spines, pre- and postsynaptic structures)
Imaging of organoids on the meso-, micro- and nanoscale

E.g., analysis of mouse brain connectomics
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Single molecule microscopy
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Sum of Point Spread Functions for Incoherent Point Objects

Intensity
<
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lateral distance, x

From “Fluorescence Microscopy: From Principles to Biological Applications®, edited by Ulrich Kubitscheck. Wiley-VCH, Weinheim, 2nd edition
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Single molecule microscope
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Localisation of single molecules

Single, surface-attached
Oyster565 molecules

ex 633 nm,em >650 nm, 2kW/cm-2, 100 ms
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Tracking and analysing motion of single molecules

a Tracking

Peak detection
Linking positions
into tracks

b Analysis tools

Parameter estimations
« Diffusion coefficients
« Fractions

« Transition rates

State predictions
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Framework for single-particle tracking. (a) movie acquisition, peak detection followed by a linking step to reconstruct tracks.
(b) Different analysis tools estimate parameters such as diffusion coefficients, fractions and transition rates of different states,
the number of states and the types of motion.

Tracks can also be labelled with time-dependent information.
Simon F, Weiss LE, Teeffelen S van. A guide to single-particle tracking. Nat Rev Methods Prim 2024; 4:66.



Tracking and jump distance mobility analysis
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Imaging single fluorescent proteins in solution

lgG-Alexa633 in buffer

Histogram for time step 8.8 ms

Imaging rate 340 Hz
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Single streptavidin-Cy5 molecules in living cells

Microinjection of streptavidin-Cy5 molecules
with nuclear localization signal into cytoplasm
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phase contrast SAv-Cy5 fluorescence

Grinwald et al., Biophys | 2008



Mobility of inert protein molecules in the cell nucleus

nuclear structure affects mobility and local concentration of proteins
retardation and a range of mobility
no restricted access to nucleoli or other nuclear compartments

fastest motions are 7-fold less than in aqueous buffer

Diffusion time from center to nuclear envelope (nucleus @ 25 pm):

43 kDa ovalbumin 8.3 s

60 kDa streptavidin 16s

Grinwald et al., Biophys | 2008, Speil & Kubitscheck, BBA 2010



Different 2D-SMT and imaging techniques
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(2) Epi/HILO/TIRF microscopy (87), HILO (80), and TIRF (88). (b) SPIM (83). (c) DSLM (89). (d) Bessel beam light-sheet microscopy (90). (e) Lattice light-
sheet microscopy (91) for generating an ultrathin illumination plane and a large field of view.The dashed circle at the BFP denotes the critical angle position
(assuming a glass/water interface). Abbreviations: 2D, two-dimensional; BFP, back focal plane; CL, cylindrical lens; DSLM, digital scanned laser light-sheet
fluorescence microscopy; Epi, epiluminescence; GM, galvo mirror; HILO, highly inclined and laminated optical sheet; NA, numerical aperture; SLM, spatial light
modulator; SMT, single-molecule tracking; SPIM, selective plane illumination microscopy; TIRF, total internal reflection fluorescence; TL, tube lens.

Nguyen TD, Chen Y-I, Chen LH,Yeh H-C. Recent Advances in Single-Molecule Tracking and Imaging Techniques. Annu Rev Anal Chem 2023; 16:253-84.



Different 3D-SMT and imaging techniques
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(a) MPM: (left) biplane microscopy and (right) 9-plane MPM. (b) PSF engineering with astigmatism. (c) PSF engineering using a phase mask in the Fourier
plane. LI and L2: two lenses in the 4f system. (d) iPALM. Abbreviations: 3D, three-dimensional; BS|, 66:33 beam splitter; BS2, 50:50 beam splitter; dz,
focus step between successive planes; f, lens focal length; IP, intermediate plane; iPALM, interferometric photoactivation and localization microscope;
MFG, multifocus grating; MPM, multifocal plane microscopy; PSF, point-spread-function;TL, tube lens.

Nguyen TD, Chen Y-I, Chen LH,Yeh H-C. Recent Advances in Single-Molecule Tracking and Imaging Techniques.Annu Rev Anal Chem 2023; 16:253-84.



