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A picture is worth a thousand words ...

Left view 00:01:30 Right view

100 pym
mnx1:TagRFP-T

.
B-actin2:H2BHaloTag + JF635

...but only when we can extract meaningful information from it.

Wan, Y., Wei, Z., Looger, L. L., Koyama, M., Druckmann, S., & Keller, P. J. (2019). Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell, 179(2), 355-372.



Microscopy image analysis

Highly dimensional and complex datasets

Manual analysis can be time-consuming and tedious
Manual analysis is prone to human error and bias

Moos, F., et al. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nat Methods 21, 798-803 (2024).



Limits of classical image analysis
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Learn from features
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What is a feature?

An individual, measurable characteristic of a data sample

v Color: red v Number of legs: 4 v Mean intensity
v Texture: soft v Material: wood v Local texture
v Firmness: hard v Backrest: high v Edge gradient

v Shape: round v Seat height: 45 cm v/ Shape descriptors



Machine Learning

Systems that automatically learn from data

60—ty 73

Input Feature extraction Classification Output

Source: https://viso.ai/deep-learning/deep-learning-vs-machine-learning/



Machine Learning
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Machine Learning
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Machine Learning

Texture

Handcrafted features Feature space representation
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Machine Learning
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Machine Learning Segmentation

Segmentation with ML is simply classifying every pixel in an image

‘ ML
L_EEES SEE S0 ST e
EETT lii ST Classifier
|__"HEE = EES __ NESCTTES
|
Input Image Pixel-level Features Segmented Image

Source: https://imagej.net/plugins/tws/



Random Forest
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Decision Trees
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s a model which aims to solve
a complex
smaller steps

problem through

Color Diameter Label
Red 3 Apple
Orange 3 Orange
Red 1 Cherry
Red 3 Apple
Orange 3 Orange
Red 1 Cherry
Red 1 Cherry
Orange 3 Orange
Red 3 Apple
Red 3 Apple
Red 1 Cherry




Decision Trees ~ Entropy and Information Gain

Entropy measures the disorder or
impurity of the class labels in a node
high entropy = labels are mixed, low
entropy = labels are homogeneous

Information Gain is the reduction in
entropy after a split.

A Decision Tree tests different feature
splits and evaluates how much each split
reduces entropy

15



Decision Trees ~ Entropy and Information Gain

We have to select the condition that
splits the data in a way that increases the
information gain

Diameter = 3

Color Diameter Label
Red 3 Apple
Orange 3 Orange
Red 1 Cherry
Red 3 Apple
Orange 3 Orange
Red 1 Cherry
Red 1 Cherry
Orange 3 Orange
Red 3 Apple
Red 3 Apple
Red 1 Cherry
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Decision Trees ~ Entropy and Information Gain
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Random Forest




Random Forest
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test sample: ‘
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Traditional ML in Microscopy: Pros & Cons

Pros
Works with small datasets
Fast training
Interpretable decisions
Easy to tune manually

Usetul for prototyping

22

Cons

Limited ability to capture hierarchical
and global context

Limited spatial understanding
Sensitive to imaging variability
Hard to scale to 3D

Limited generalization



Artificial Neural Networks
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Artificial Neural Networks




Artificial Neural Networks

A perceptron is the fundamental building block of artificial neural networks
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Multilayer Perceptron

OUtp ut Layer
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Traditional Machine Learning vs Deep Learning

Traditional Machine Learning

G — |y — 373

Input Feature extraction Classification Output

Deep Learning

Gap — TESET —

Input Feature extraction + Classification Output




How Deep Learning works for images?
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Source: https://la.mathworks.com/discovery/convolutional-neural-network.html



Convolution Operation

= Blue grid: Image (I).
= Shaded area: Filter (K).
= Green grid: S(i, j)

S(,7) =T xK)(i,j) = ZZI(m,n)K(i—m,j—n).

29



Image

Filter

Convolution Operation in Deep Learning

Outcome
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What do CNN filters learn?

Deep Neural Network
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Output Layer
Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

edges combinations of edges object models

Source: https://arunaddagatla.medium.com/the-deep-learning-bc4db7959cbd



How do we solve different problems with CNNs?
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Deep Belief Network (DBN)
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CNNs for Segmentation
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Ronneberger, O., et al. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Cham:
Springer international publishing.



Why Convolution Helps
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Traditional Machine Learning
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Pixel-wise decision
Classifies each pixel independently
Relies on handcrafted features

Fails when noise, illumination, or
morphology changes

No understanding of shapes or spatial
relationships

« Analyze local patches, not isolated
pixels

= Learn features automatically

« Are  translation-invariant  (pattern
recognized anywhere)

« Capture neighborhood, context, and
object structure



Convolutional Neural Networks (CNNs): Pros & Cons :

Pros Cons
Automatic Feature Learning Limited global context
Spatial context awareness Fixed receptive field
Hierarchical representations Frame-by-frame processing
Robust to noise and variability Scaling is expensive

State-of-the-art performance Hard to model long-range interactions



Vision Transformers

Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

36



37

Self-attention in Transformers

Transformers are neural networks that use self-attention to understand global relationships
within images or sequences.

A A

attention attention attention attention attention

X X X X < X; )

When processing each input x,, the model attends to all the inputs up to, and including x .
| n
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Applications of Vision Transformers
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Halder, A., Gharami, S., Sadhu, P. et al. Implementing vision transformer for classifying 2D H. Cao, Y. Wang, J. C,he_n D. Jiang, X. Zh§”9 Q T|an and M. Wang, “Swin- QNet UNet-like pure
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Transformers for Tracking

Image sequence with tracking ground truth

shallow object features
(position, shape, mean intensity)

sliding
window

Trackastra

[

Encoder

Attention

o
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Decoder

Attention
Attention
Attention

Parental ,
&l

softmax

Linking (greedy, LAP, ILP)

Association /Al

0

average predicted associations
over sliding windows
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Gallusser, B., & Weigert, M. (2024, September). Trackastra: Transformer-based cell tracking for live-cell microscopy. In European conference on computer vision (pp. 467-484). Cham: Springer Nature

Switzerland.



Why Transformers Help
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CNNs

Aggregate local context hierarchically
Learn features automatically

Are  translation-invariant  (pattern
recognized anywhere)

Capture neighborhood, context, and
object structure

Transformer - self-attention across patches

Layer k Layer k+1

== Self-attention weights
- — Aggregation to next layer

Updated representation

Model  global context via
self-attention

Capture long-range dependencies

Relate distant regions of the image
directly

Provide a global view of object
structure



Wrapping up: When to use each image analysis approach

Approach

Traditional image
processing

Machine learning
(classical)

CNN

Transformers

Typical use cases Strengths

Simple images, high contrast,

Fast, interpretable, no
well-controlled acquisition

training data required

Moderate variability, limited
data, need for interpretability

Uses handcrafted features,
works with small datasets

Complex shapes, crowded
scenes, low contrast

Learns features automatically,
captures spatial context

Long-range dependencies,
large structures, temporal
consistency

Models global context
directly, flexible
representations

41

Limitations

Fragile to noise, illumination
changes, complex morphology

Feature design is manual, limited
spatial context

Requires more data and compute,
limited global context

Computationally expensive,
data-hungry



A picture is worth a thousand words ...

Left view 00:01:30 Right view

100 pym
mnx1:TagRFP-T

.
B-actin2:H2BHaloTag + JF635

...but only when we can extract meaningful information from it.

Wan, Y., Wei, Z., Looger, L. L., Koyama, M., Druckmann, S., & Keller, P. J. (2019). Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell, 179(2), 355-372.

42



AVe
NS

(B

INSTITUTO
DE CIENCIAS

FACULTAD DE MEDICINA BIOMEDICAS

UNIVERSIDAD DE CHILE

Applications of Al in image

processing

Constanza Vasquez
Faculty of Medicine
Universidad de Chile
covasquezv@inf.udec.cl
www.scian.cl

Laboratory for CENTRO DE
INFORMATICA MEDICA
Y TELEMEDIGISA

ientific mage alysis

EMBO Practical Course

Opties, Forces & Development

07-17 JarJUa_fy 2026 | Santiago, Chile

- Santiago 2026 -


http://www.scian.cl/

44




Decision Trees
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Probability of the majority vote being correct can go up as we add more models

100%

80% ®
5% ‘.i;.;.\- '%' o O ®
60% O
@
40%

20%
0%

Ensemble learning creates a stronger model by aggregating the predictions of multiple weak models

0 2 4 6
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How to find the optimum split of the features?

In decision trees, we aim to
reduce the impurity (or
disorder) of the labels.

The goal of a split is to
separate the samples so that
child nodes are more “pure”,
meaning they contain mostly a
single class.




How to find the optimum split of the features?

Entropy and Information Gain Gini Index

Entropy measures the disorder or
impurity of the class labels in a node

Entropy = 0 — node contains only one
class

Information Gain is the reduction in
entropy after a split. It measures how
informative a feature is for predicting
the class

A Decision Tree tests different feature
splits and evaluates how much each split
reduces entropy

The Gini index measures how
heterogeneous the labels inside the
node are. It estimates how often a
randomly chosen sample would be
misclassified.

Gini = 0 — all samples are from the
same class.

Gini increases as classes become more
evenly mixed.

Decision Trees test candidate splits and
choose the one that minimizes the Gini
index in the resulting child nodes



How to find the optimum split of the features?

gini = 0.6667
samples = 150
gini = 0.0
samples = 50
gini = 0.168

samples = 54

gini = 0.041 gini = 0.4444
samples = 48 samples = 6

gini = 0.0 gini = 0.0 gini = 0.0
samples = 47 samples = 1 samples = 3

Source: https://scikit-learn.org/stable/modules/tree.html

gini = 0.5
samples = 100

gini = 0.444
samples = 3

gini = 0.0
samples = 2

48

gini = 0.043
samples = 46

gini = 0.4444 gini = 0.0
samples = 3 samples = 43
gini = 0.0 gini = 0.0
samples = 2 samples = 1
gini =0.0

samples = 1



Random Forest
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Bagging Method

Source: https://mlu-explain.github.io/random-forest/

Feature Selection

Size

Sides

#
Colors

Symbol
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Random Forest

In each split of the tree, the feature for splitting is
randomly selected from a subset of features.

. \

Colors

: # #
S Sides Colors <Hmlet) /\

Source: https://mlu-explain.github.io/random-forest/



Random Forest

#
Colors
Symbol No
Size No
#
Yes Sides
No Yes

Source: https://mlu-explain.github.io/random-forest/

Sides

Colors Colors

No Symbol

No Yes No Yes

# #
Colors Sides

N TN

Yes No No Symbol

N

No Size

PN

Yes No



Random Forest

#
Colors
Symbol No
Size No
#
Yes Sides
No Yes

No

Source: https://mlu-explain.github.io/random-forest/

Sides

/\

# #
Colors Colors

N

#
Sides

/NN

No Yes No Yes

No Symbol No

Yes
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Symbol

—

# #
Colors Sides

NN

Yes No No Symbol
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No Size

PN

Yes No
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