

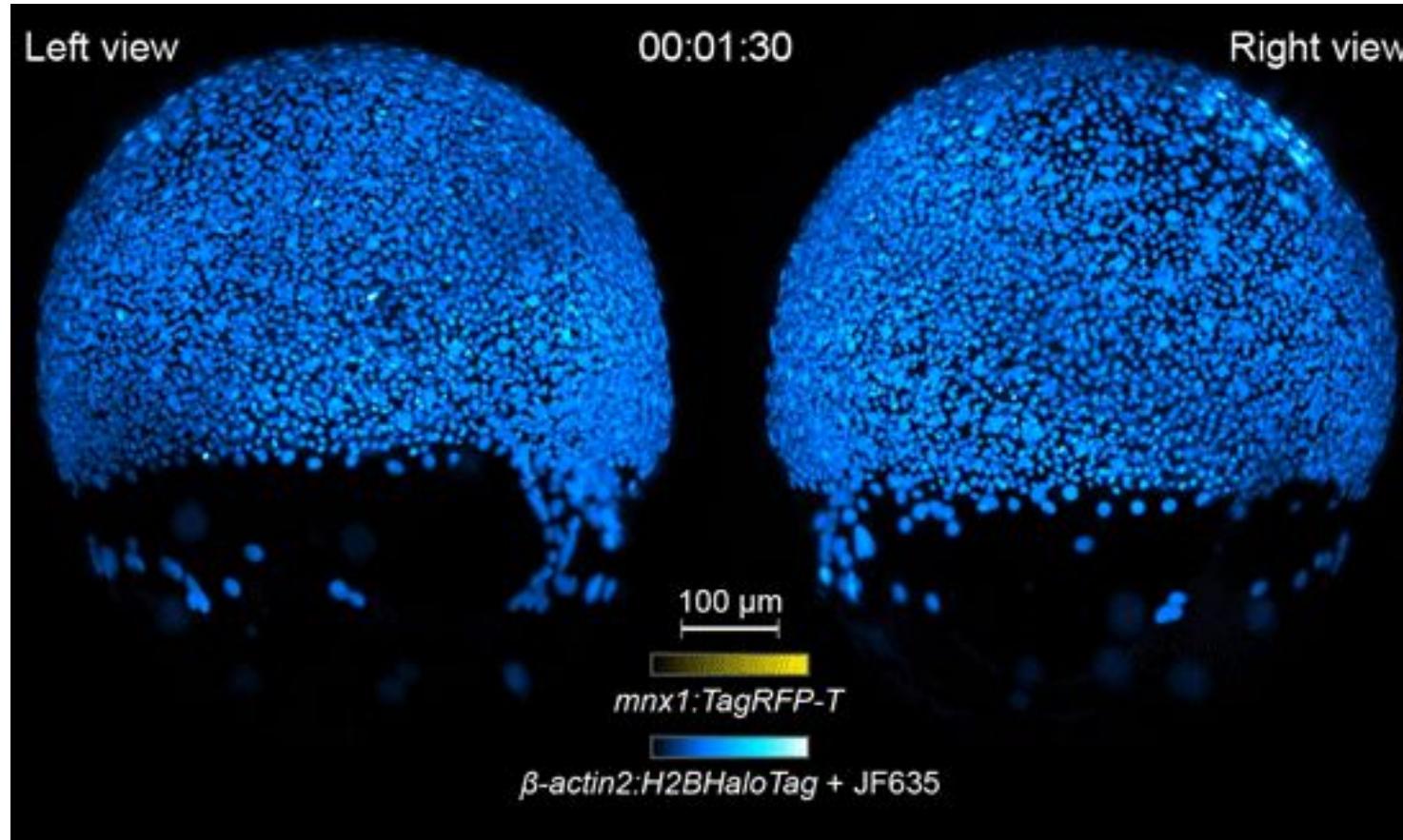
FACULTAD DE MEDICINA
UNIVERSIDAD DE CHILE

Applications of AI in image processing

Constanza Vásquez
Faculty of Medicine
Universidad de Chile
covasquezv@inf.udec.cl
www.scian.cl

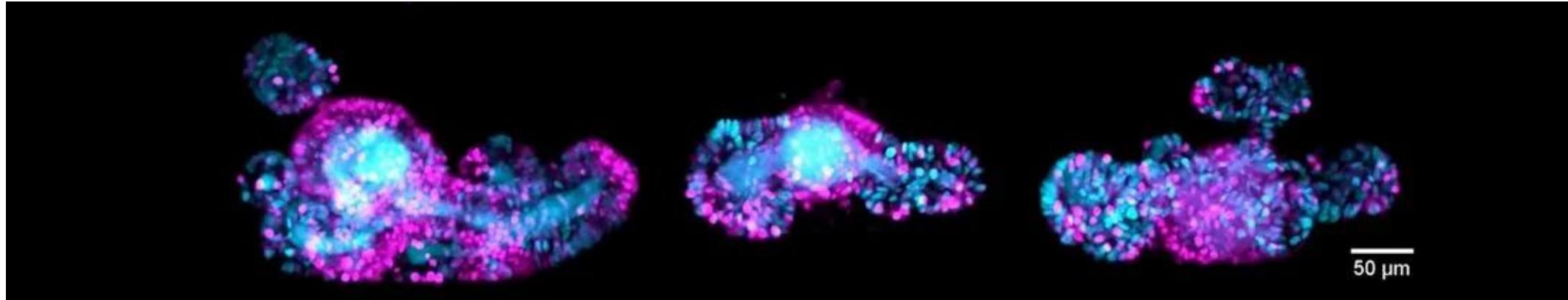
- Santiago 2026 -

A picture is worth a thousand words ...



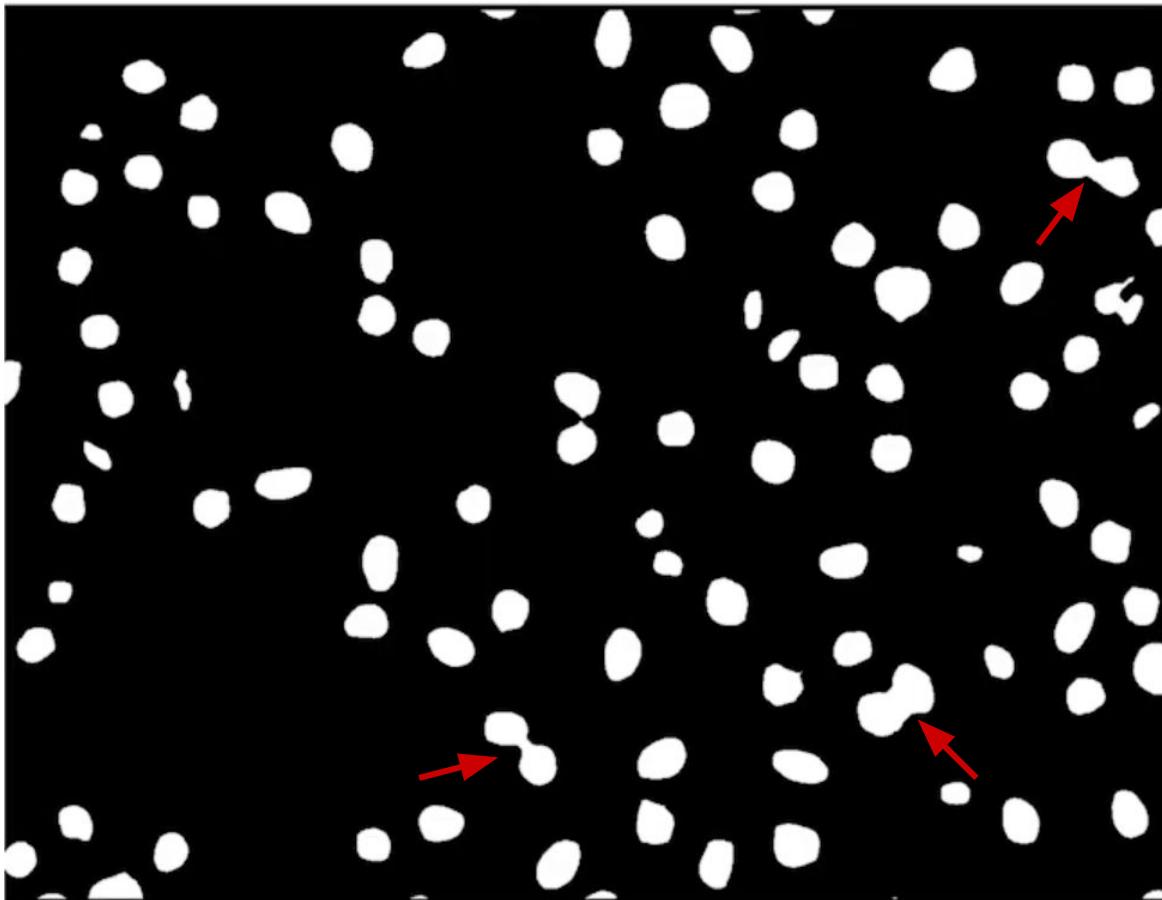
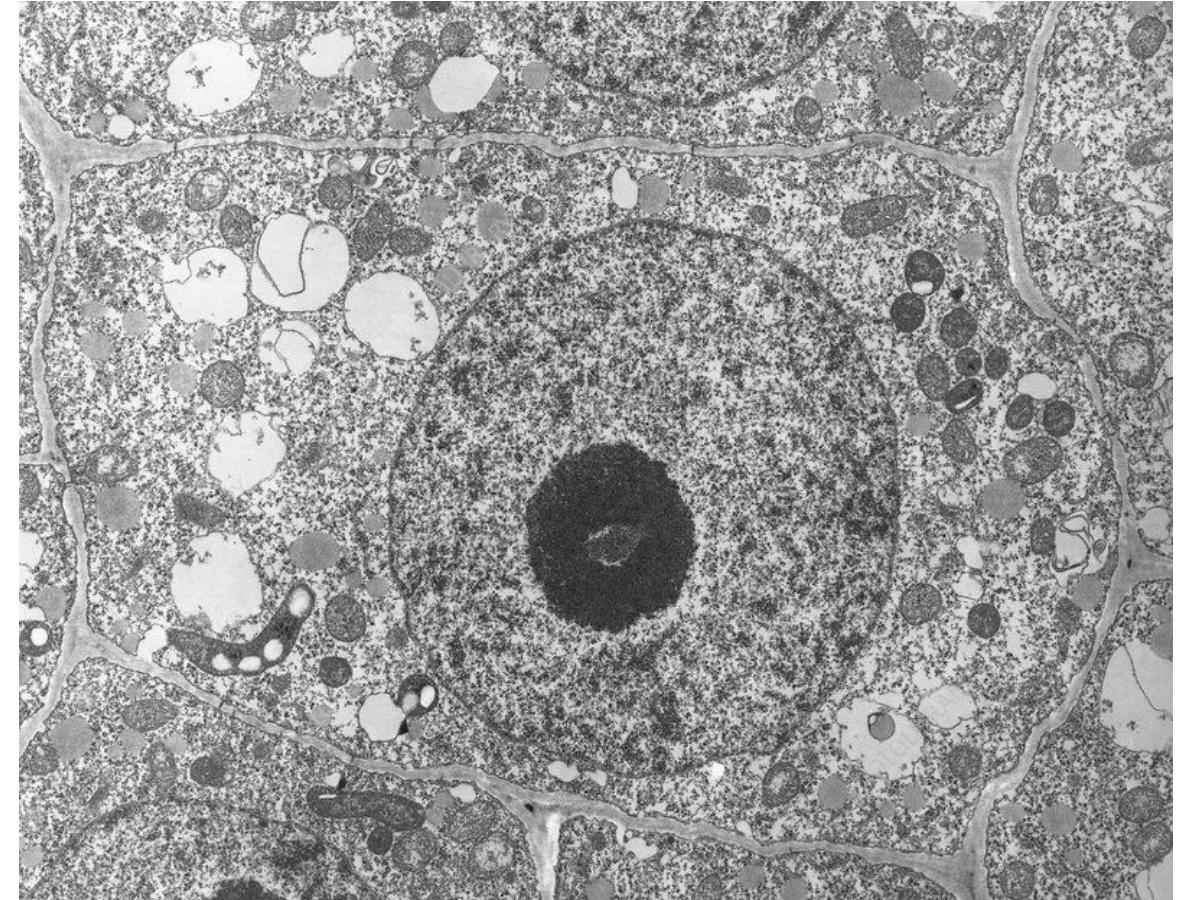
...but only when we can extract meaningful information from it.

Microscopy image analysis



- Highly dimensional and complex datasets
- Manual analysis can be time-consuming and tedious
- Manual analysis is prone to human error and bias

Limits of classical image analysis



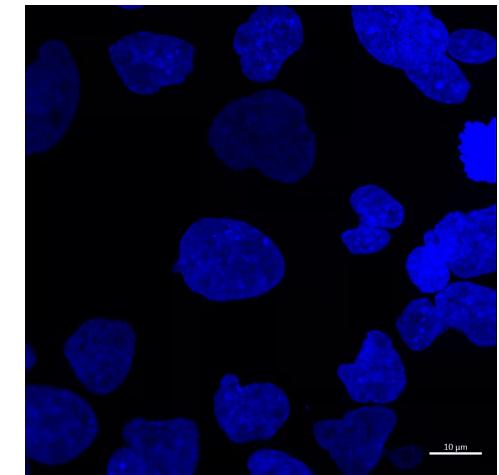
Learn from features

What is a feature?

An individual, measurable characteristic of a data sample

- ✓ Color: red
- ✓ Texture: soft
- ✓ Firmness: hard
- ✓ Shape: round

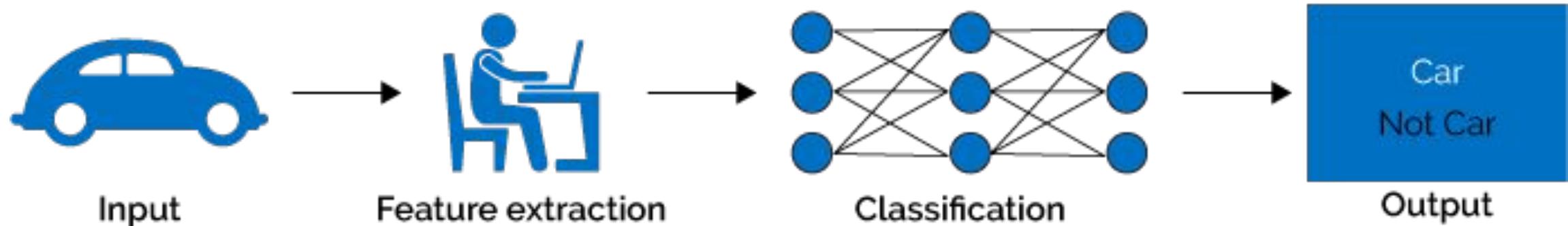
- ✓ Number of legs: 4
- ✓ Material: wood
- ✓ Backrest: high
- ✓ Seat height: 45 cm



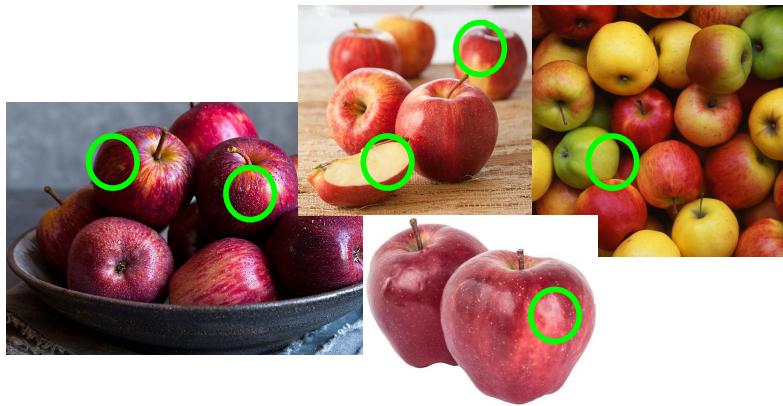
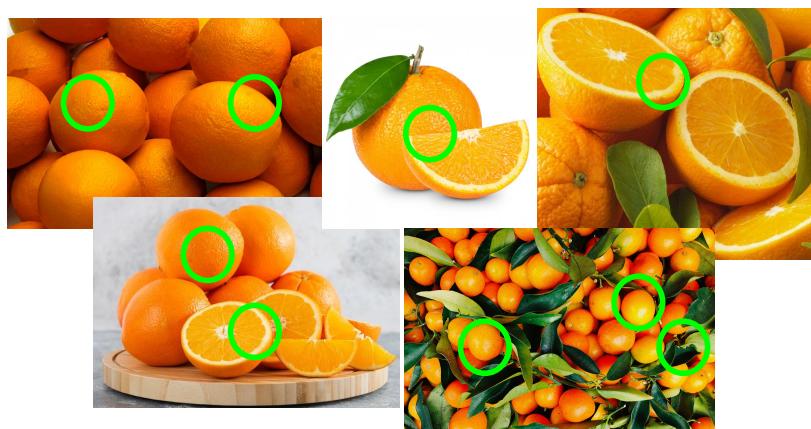
- ✓ Mean intensity
- ✓ Local texture
- ✓ Edge gradient
- ✓ Shape descriptors

Machine Learning

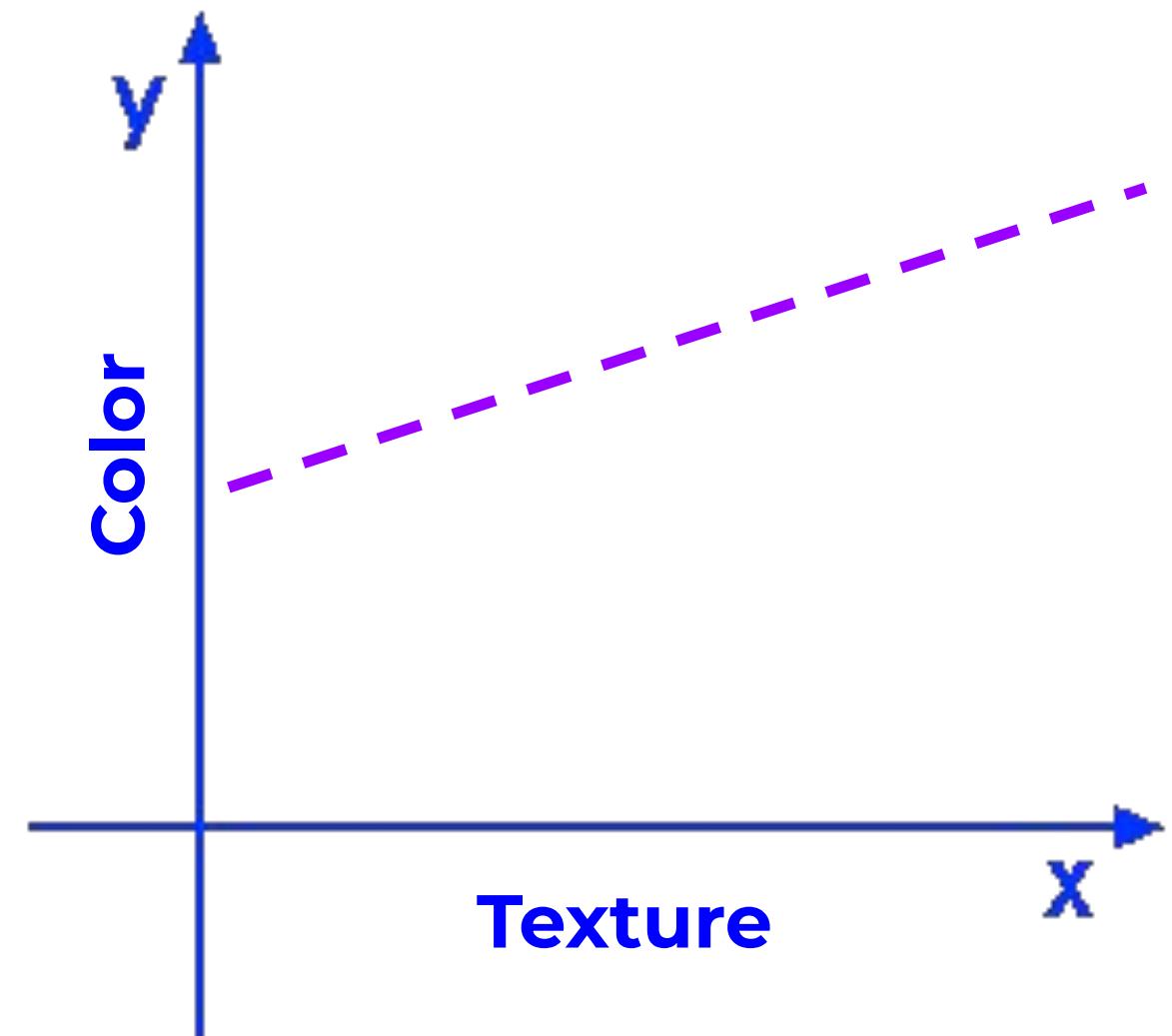
Systems that automatically learn from data



Machine Learning



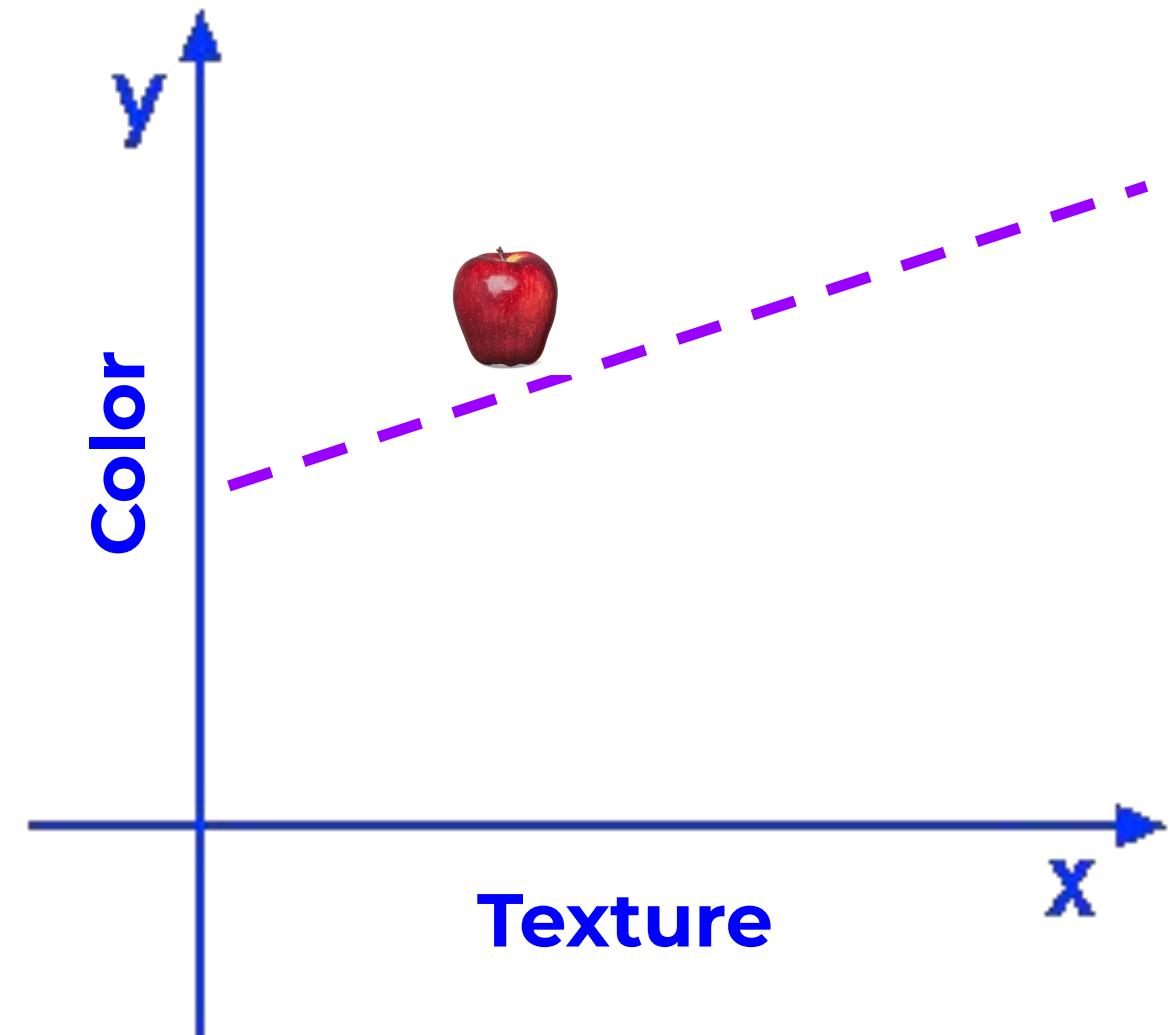
Handcrafted features



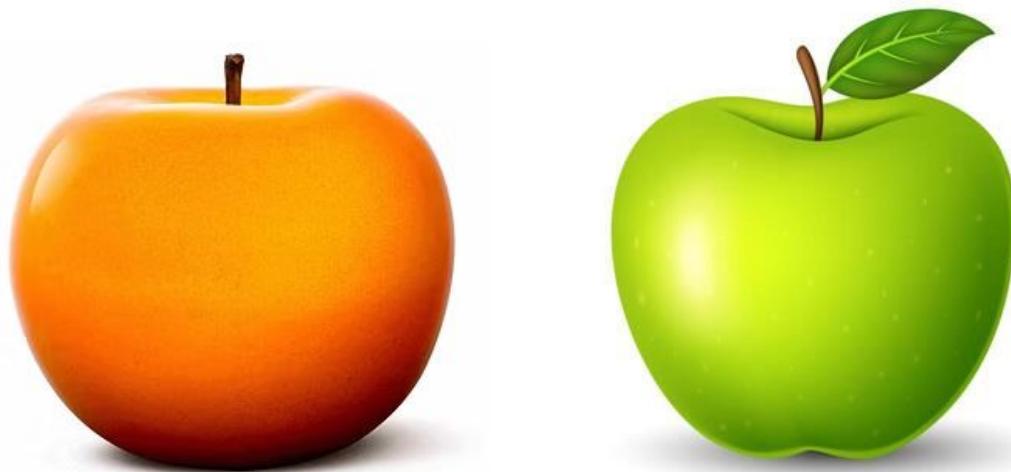
Feature space representation

Handcrafted features

Machine Learning



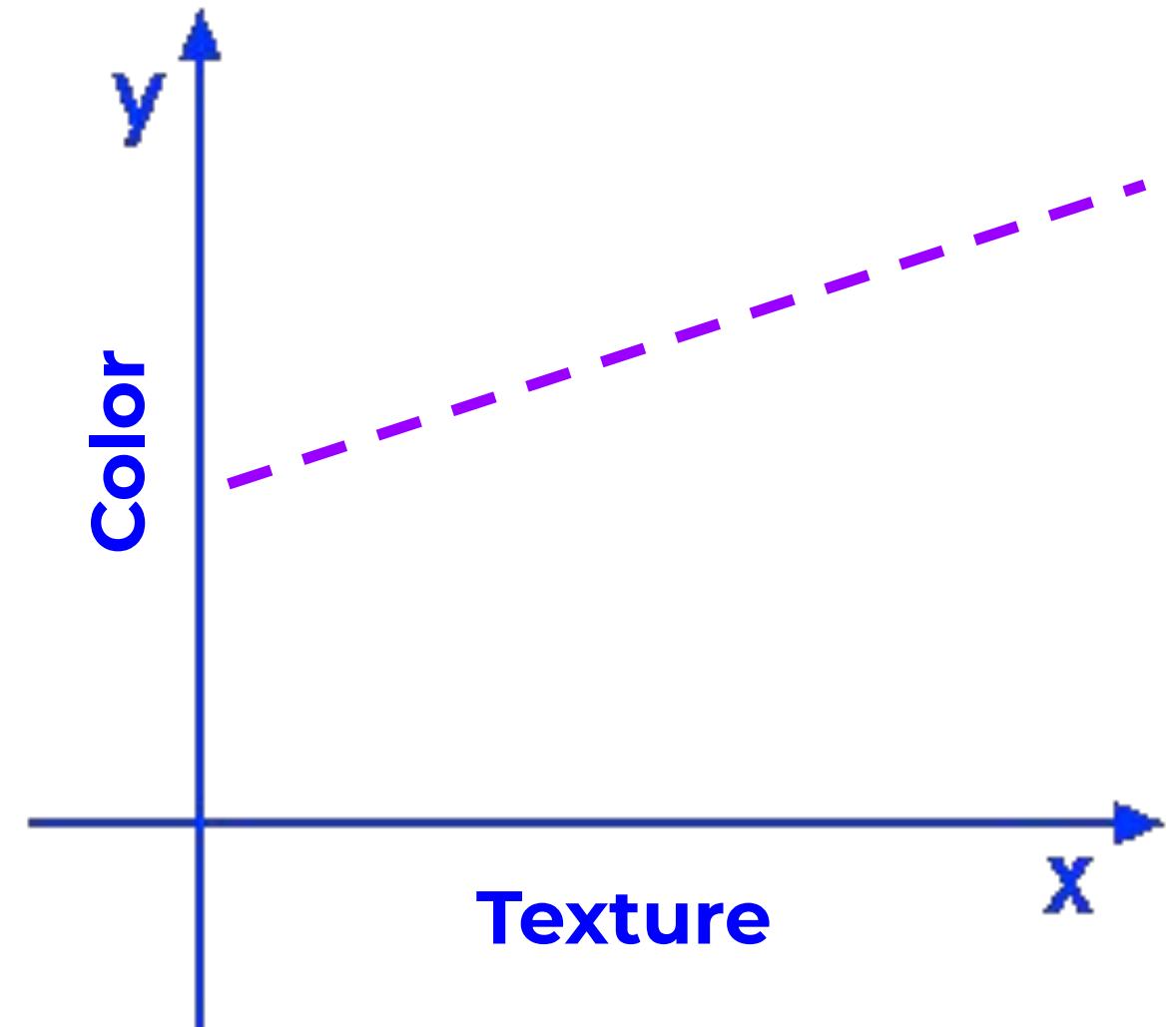
Feature space representation



Handcrafted features

Machine Learning

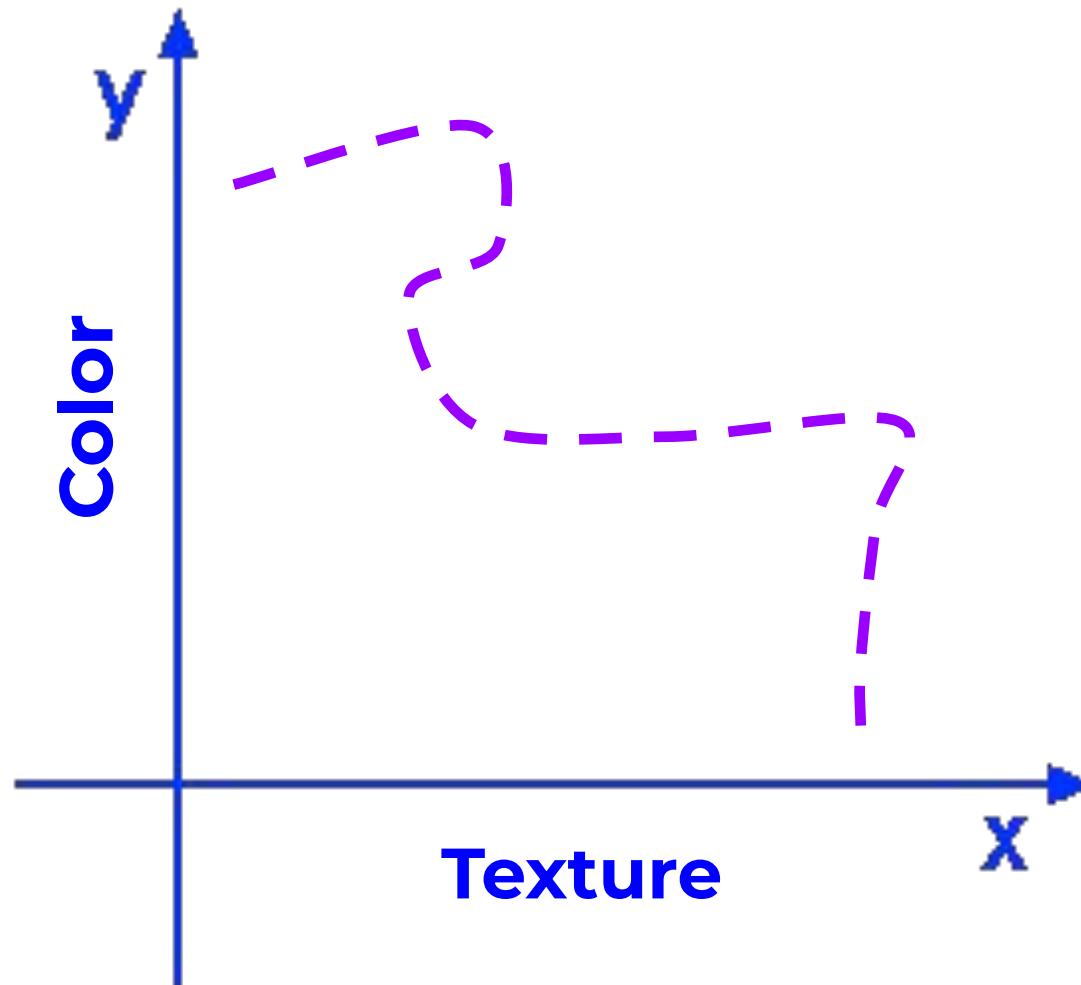
10



Feature space representation

Machine Learning

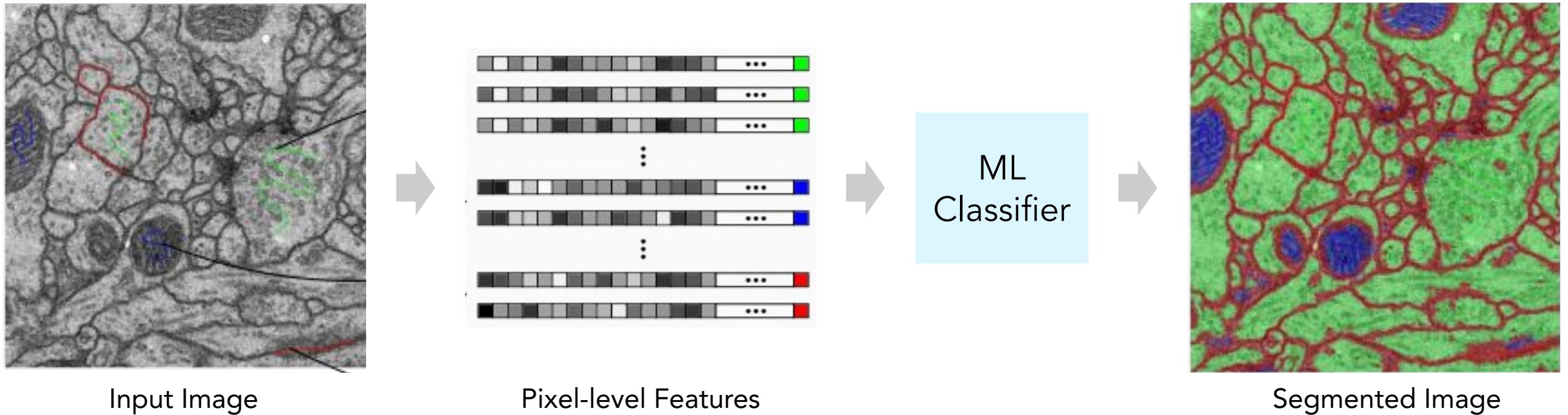
11



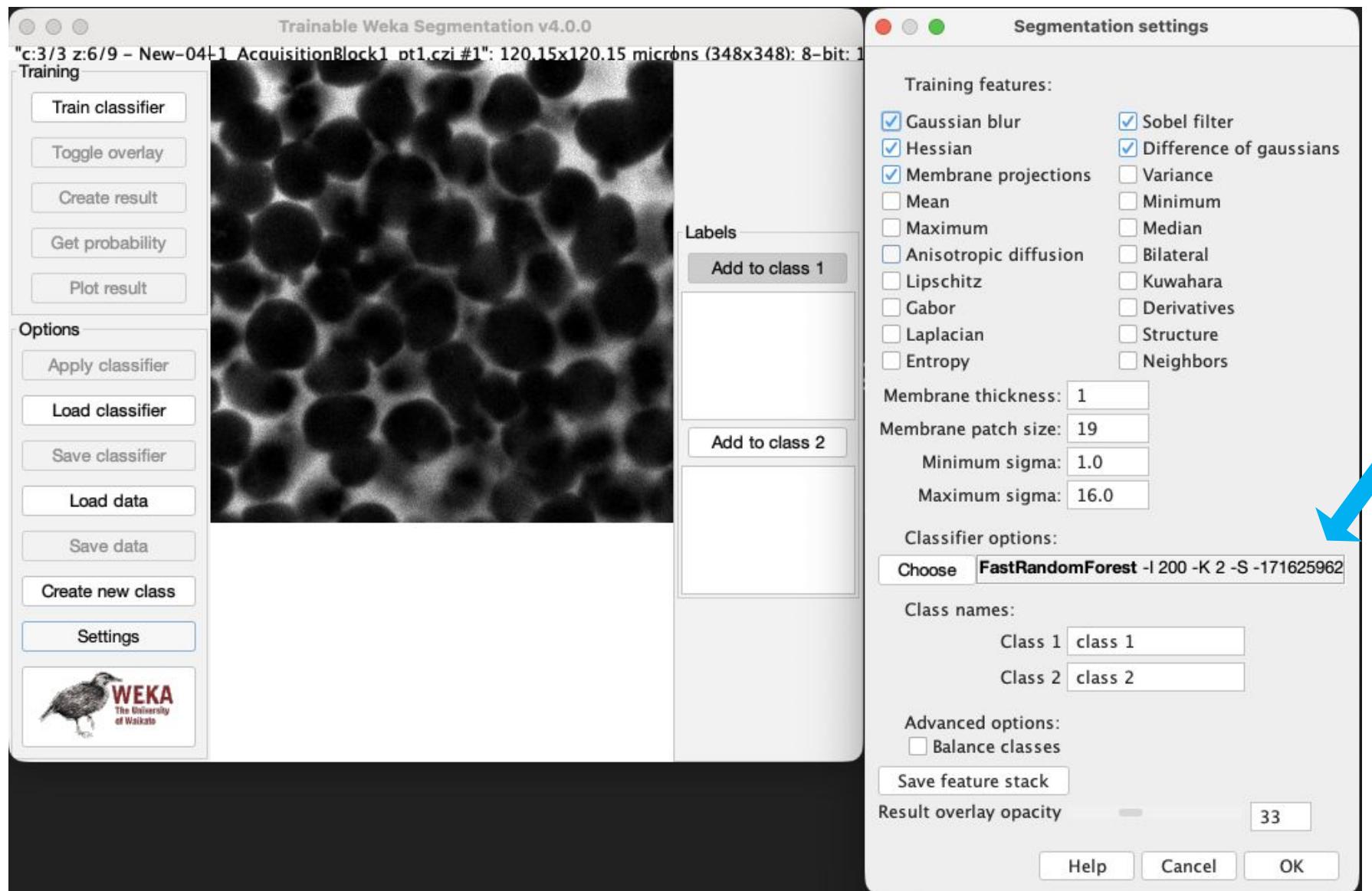
Feature space representation

Machine Learning Segmentation

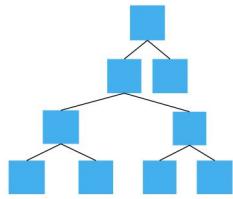
Segmentation with ML is simply classifying every pixel in an image



Random Forest



Decision Trees



Is a model which aims to solve a complex problem through smaller steps

Color	Diameter	Label
Red	3	Apple
Orange	3	Orange
Red	1	Cherry
Red	3	Apple
Orange	3	Orange
Red	1	Cherry
Red	1	Cherry
Orange	3	Orange
Red	3	Apple
Red	3	Apple
Red	1	Cherry

Decision Trees ~ Entropy and Information Gain

- Entropy measures the disorder or impurity of the class labels in a node
high entropy = labels are mixed, low entropy = labels are homogeneous
- Information Gain is the reduction in entropy after a split.
- A Decision Tree tests different feature splits and evaluates how much each split reduces entropy

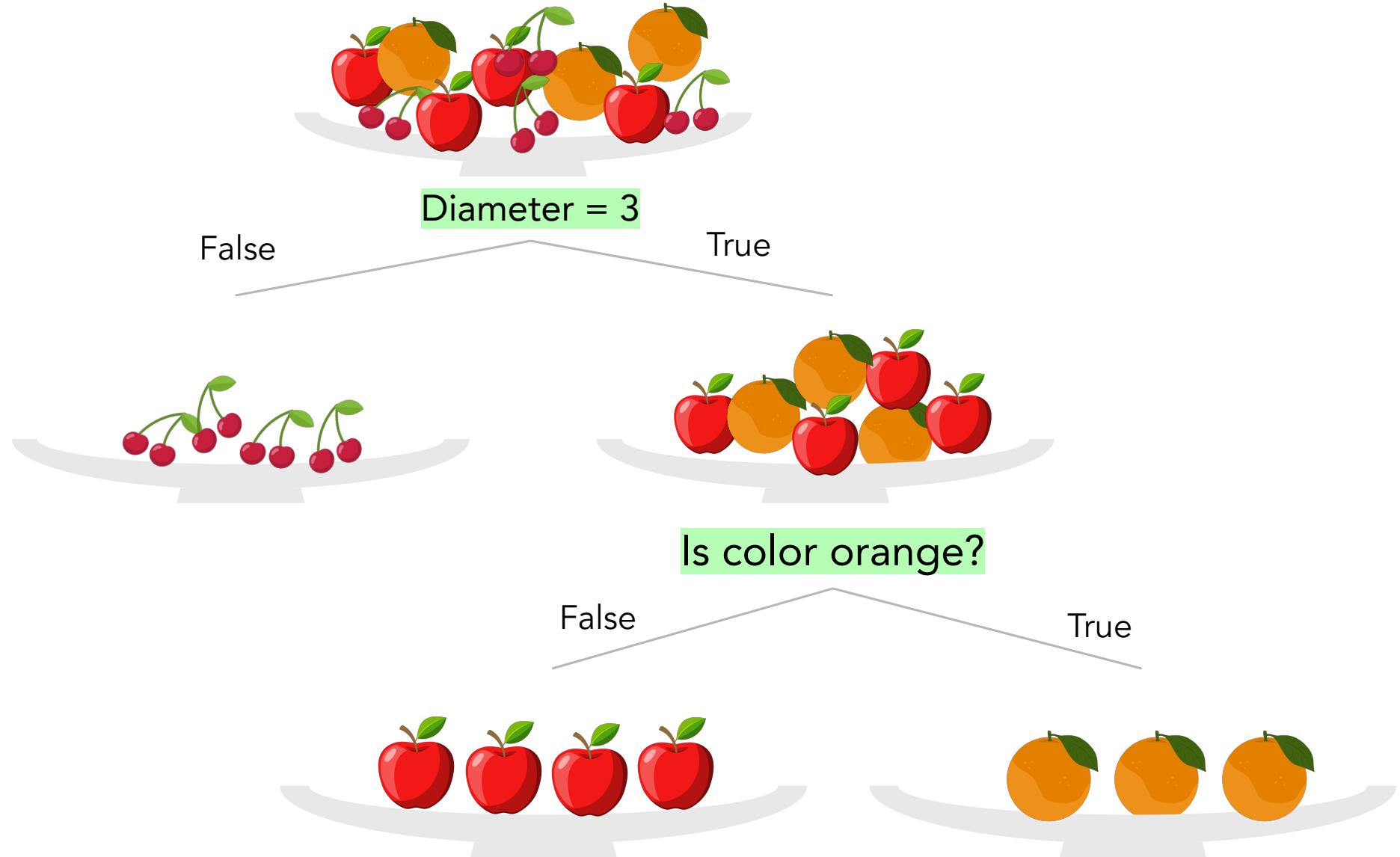
Decision Trees ~ Entropy and Information Gain

We have to select the condition that splits the data in a way that increases the information gain

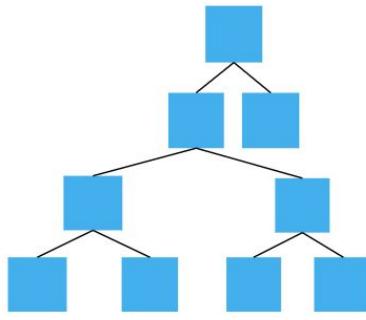
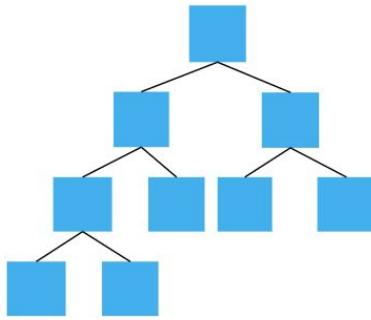
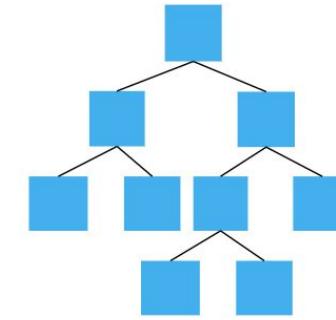
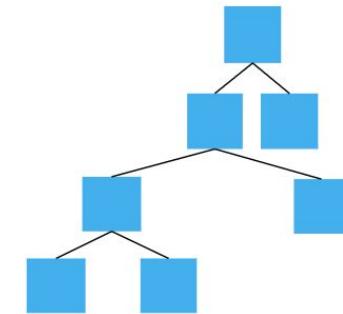
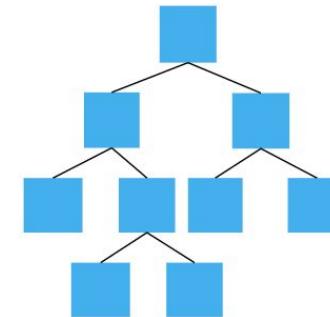
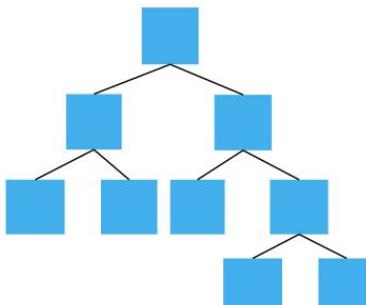
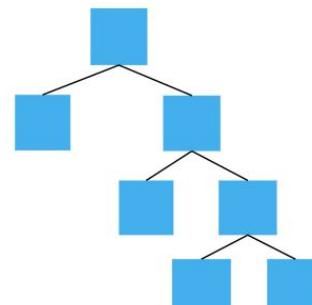
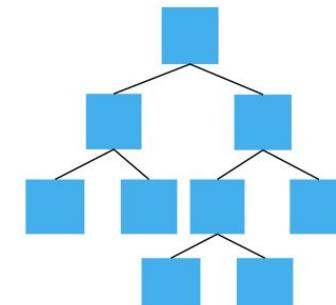
Diameter = 3

Color	Diameter	Label
Red	3	Apple
Orange	3	Orange
Red	1	Cherry
Red	3	Apple
Orange	3	Orange
Red	1	Cherry
Red	1	Cherry
Orange	3	Orange
Red	3	Apple
Red	3	Apple
Red	1	Cherry

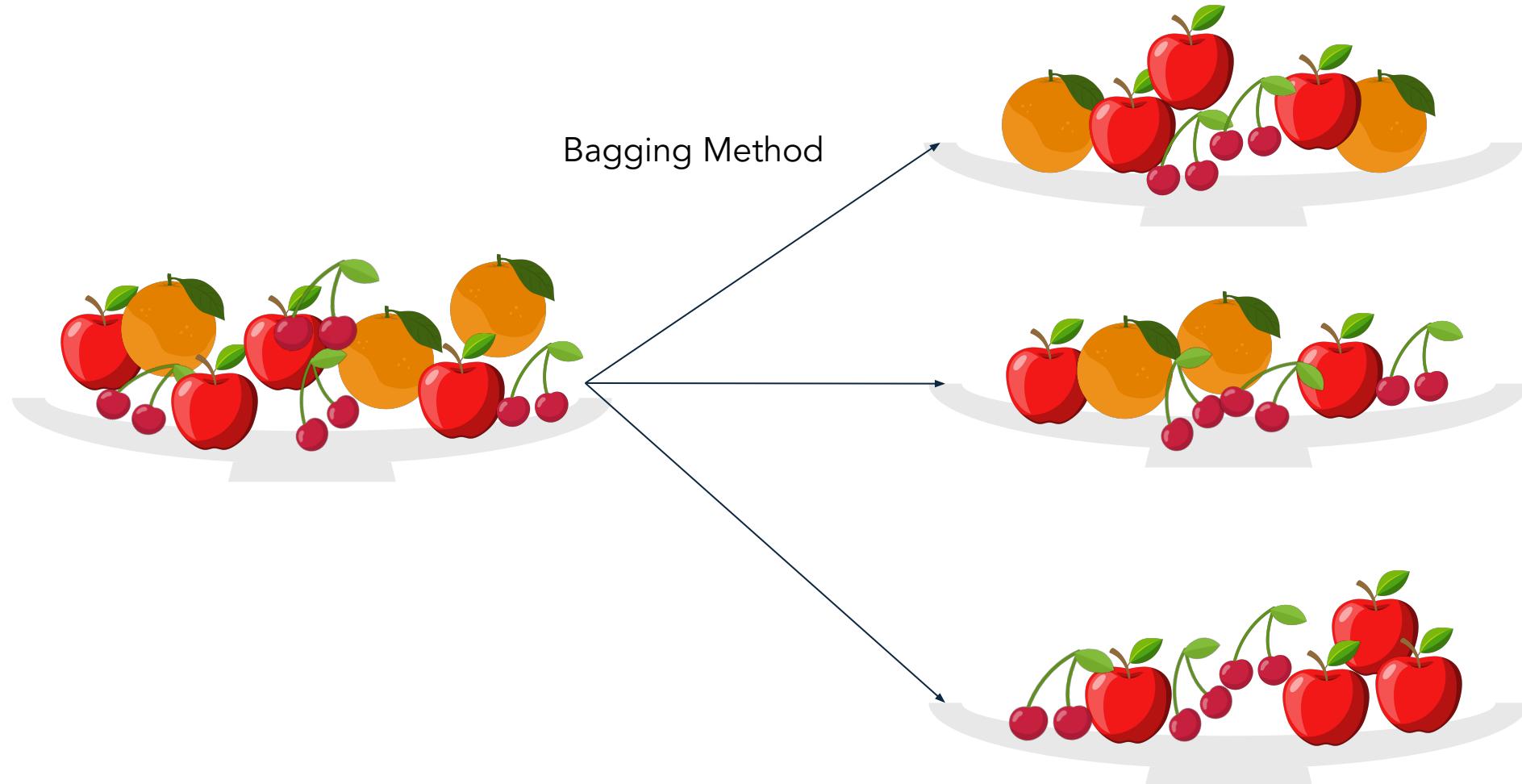
Decision Trees ~ Entropy and Information Gain



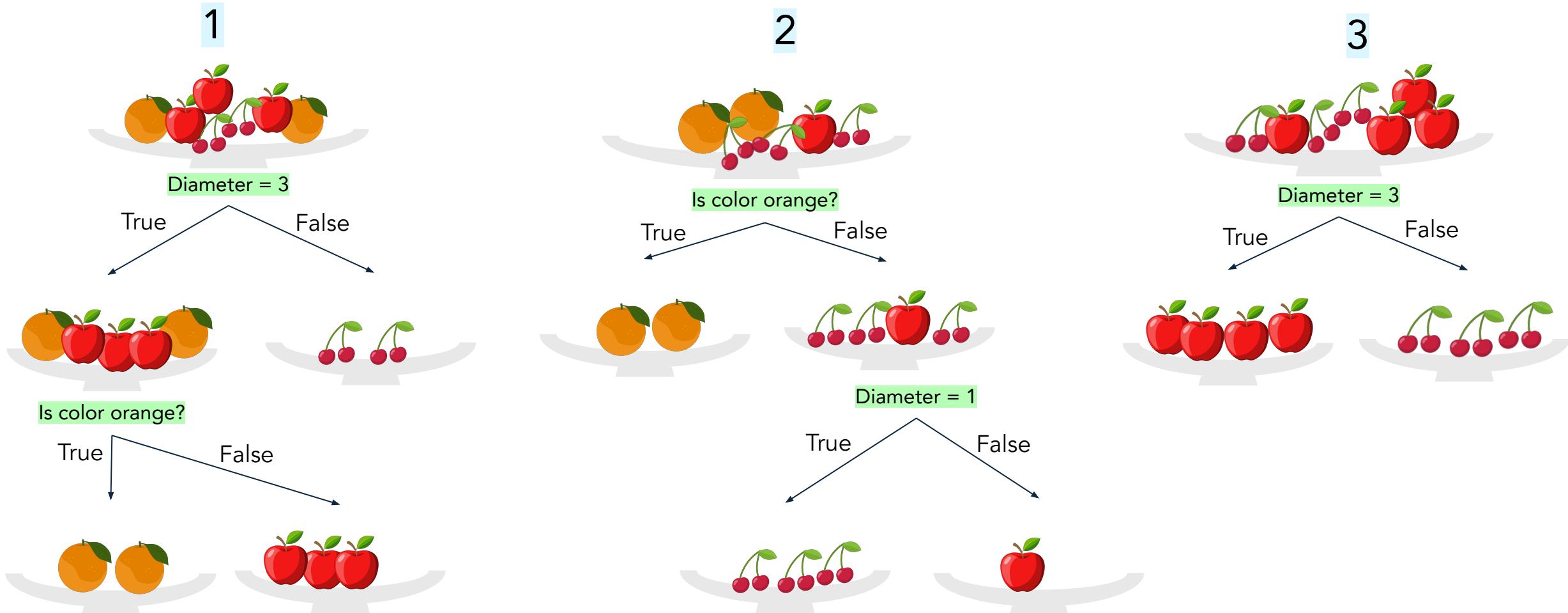
Random Forest



Random Forest



Random Forest



test sample:

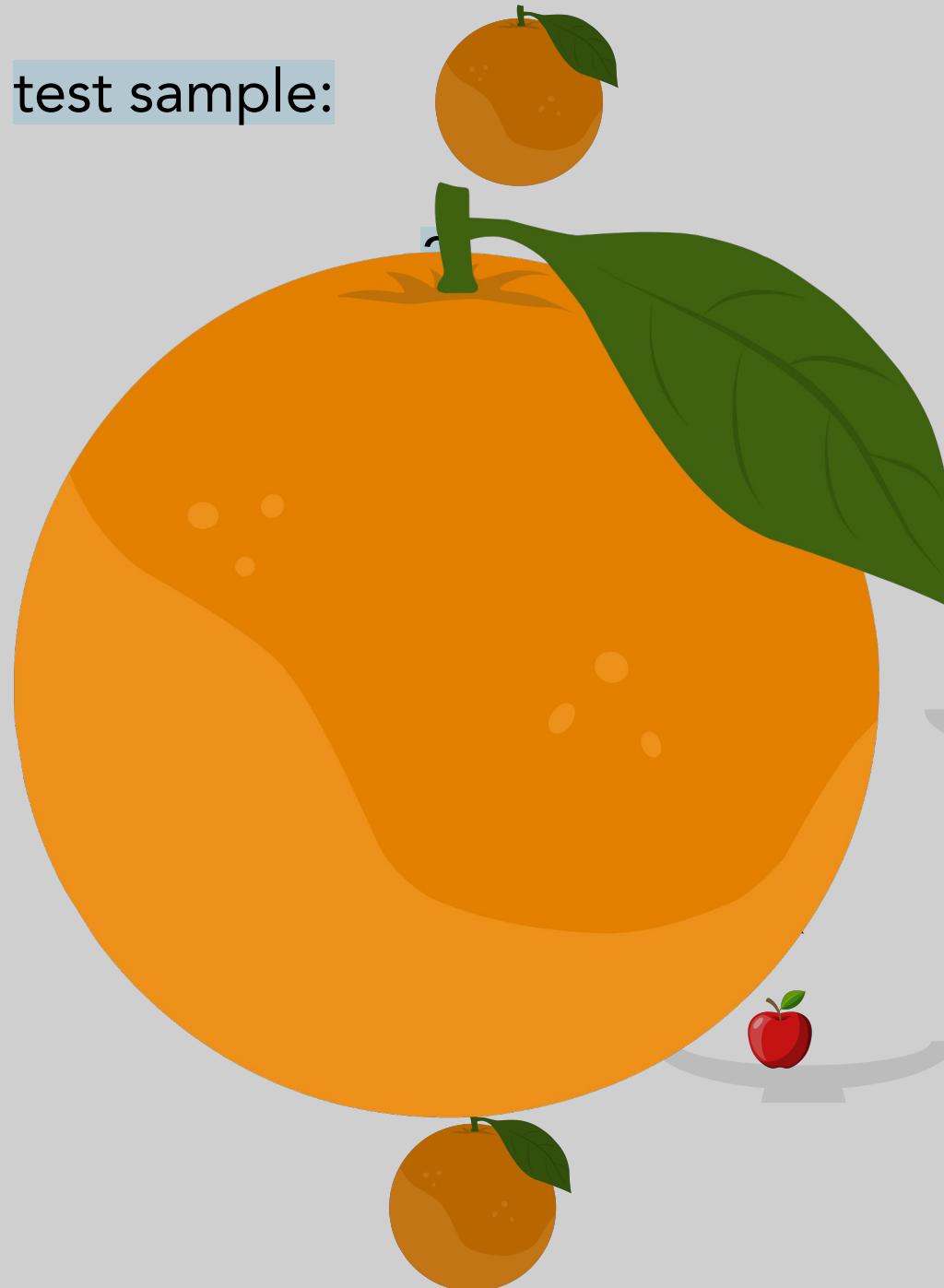
1

Diameter = 3

True False

Is color orange?

True False



3

Diameter = 3

True False

Traditional ML in Microscopy: Pros & Cons

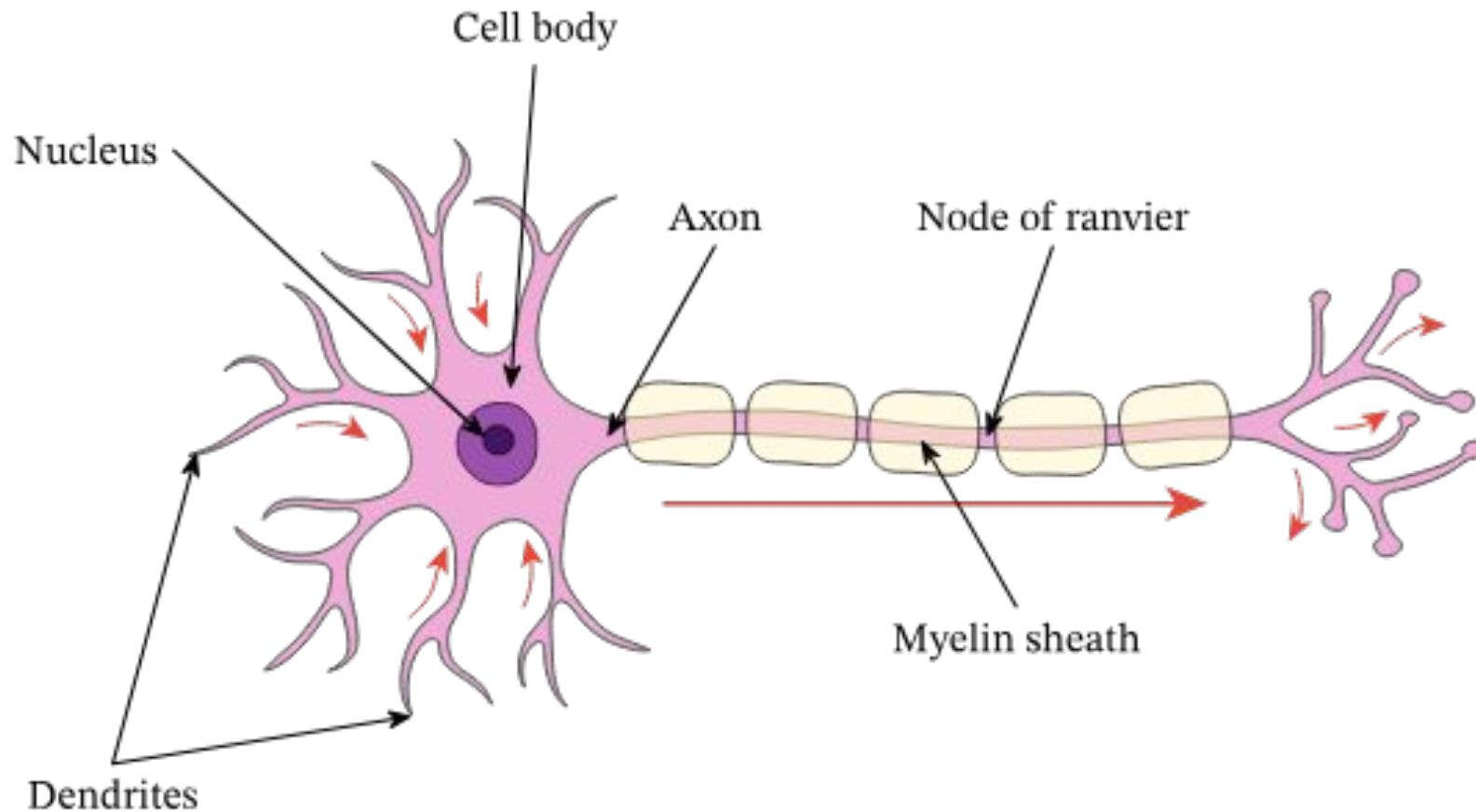
Pros

- Works with small datasets
- Fast training
- Interpretable decisions
- Easy to tune manually
- Useful for prototyping

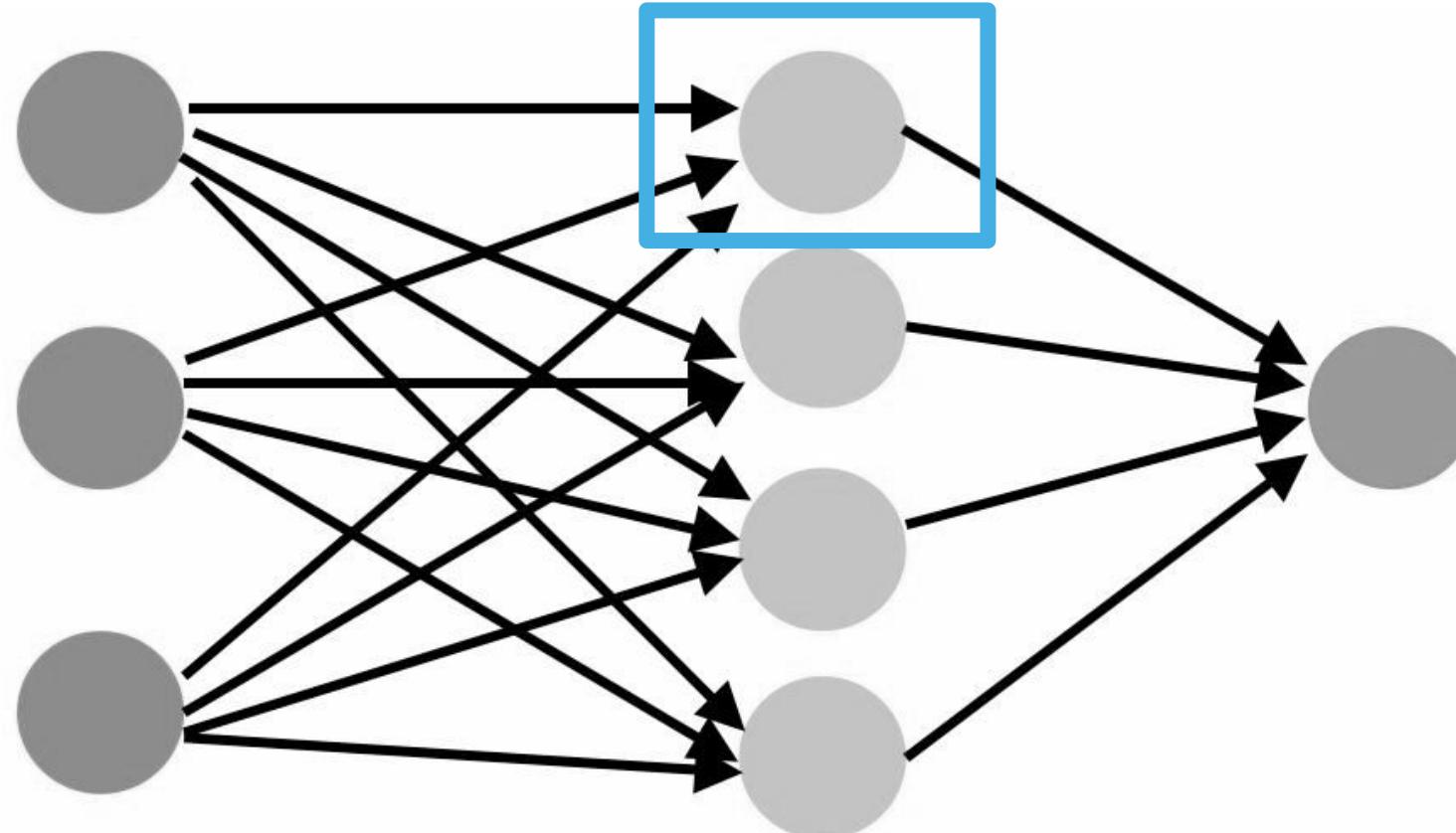
Cons

- Limited ability to capture hierarchical and global context
- Limited spatial understanding
- Sensitive to imaging variability
- Hard to scale to 3D
- Limited generalization

Artificial Neural Networks

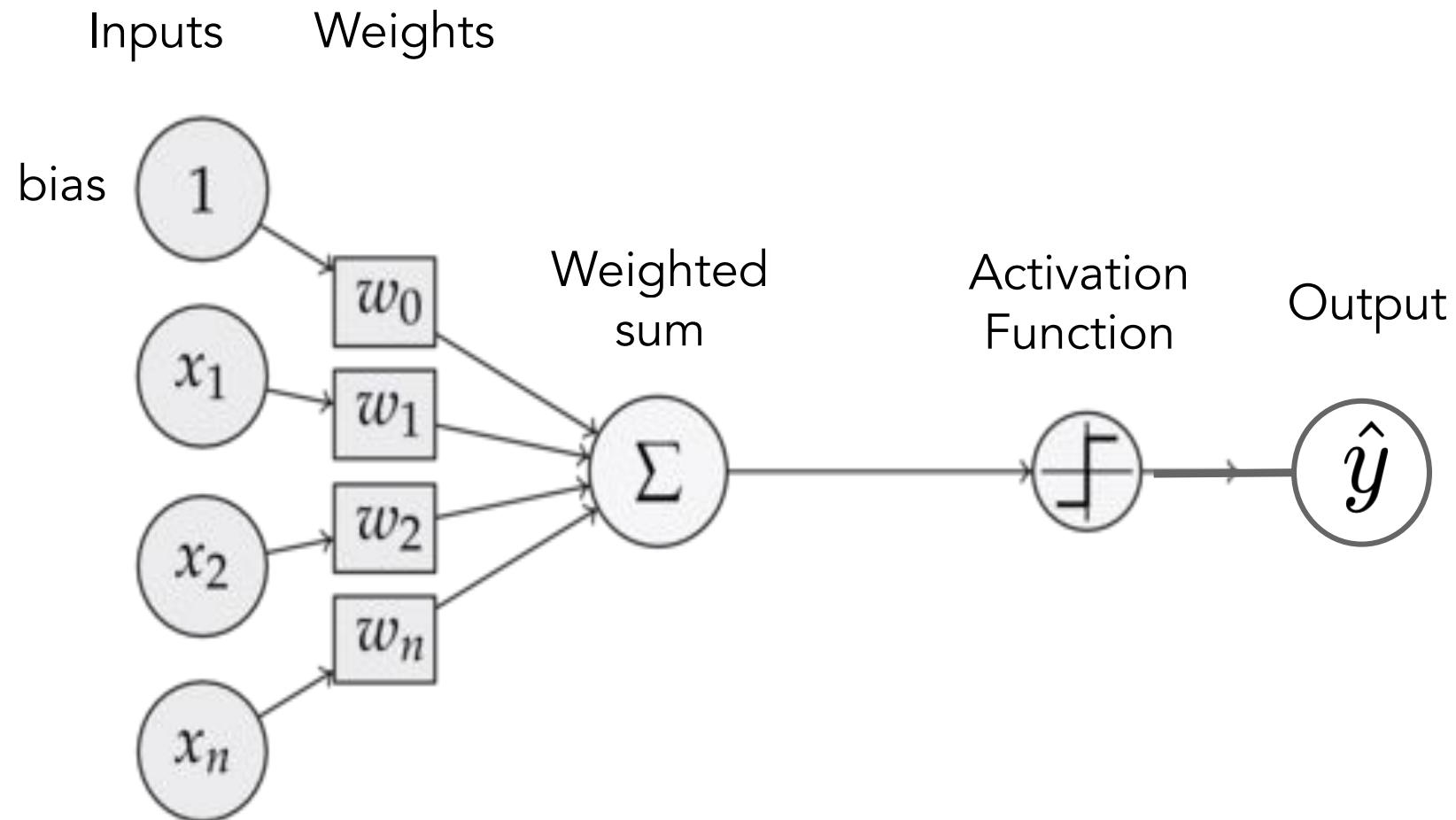


Artificial Neural Networks

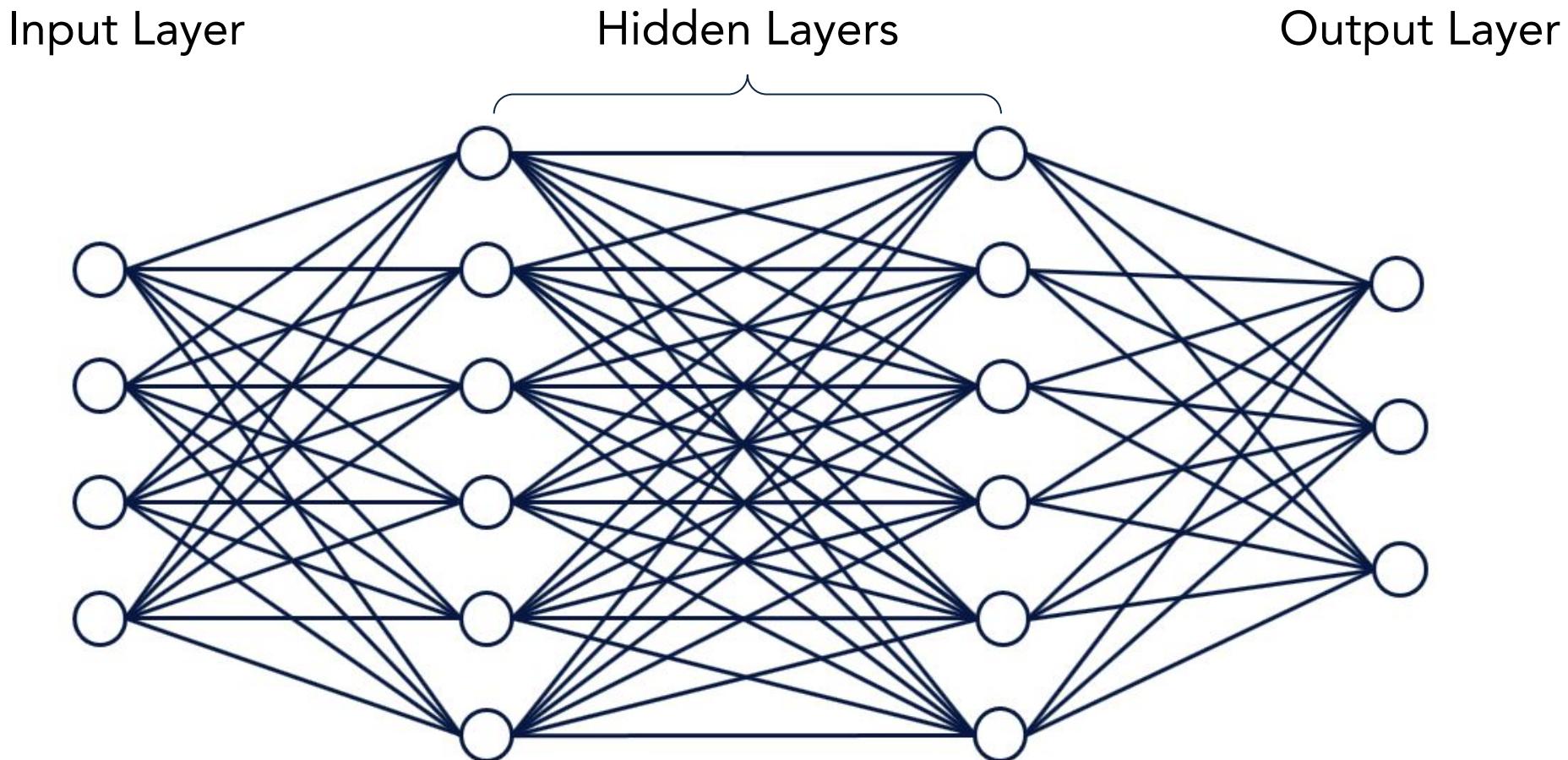


Artificial Neural Networks

A perceptron is the fundamental building block of artificial neural networks

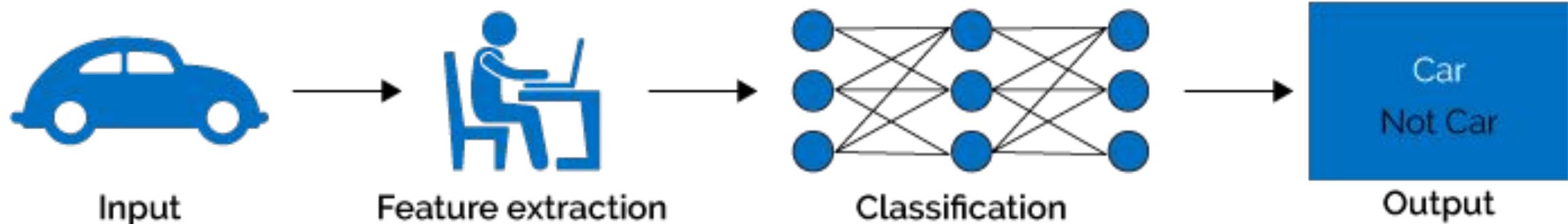


Multilayer Perceptron

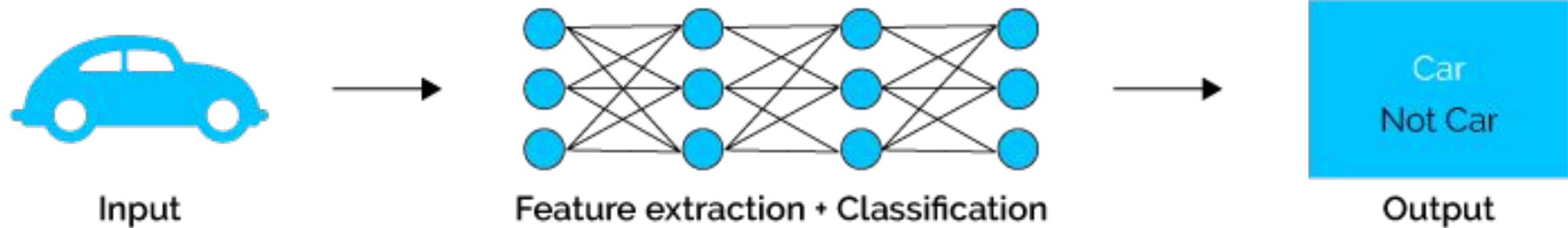


Traditional Machine Learning vs Deep Learning

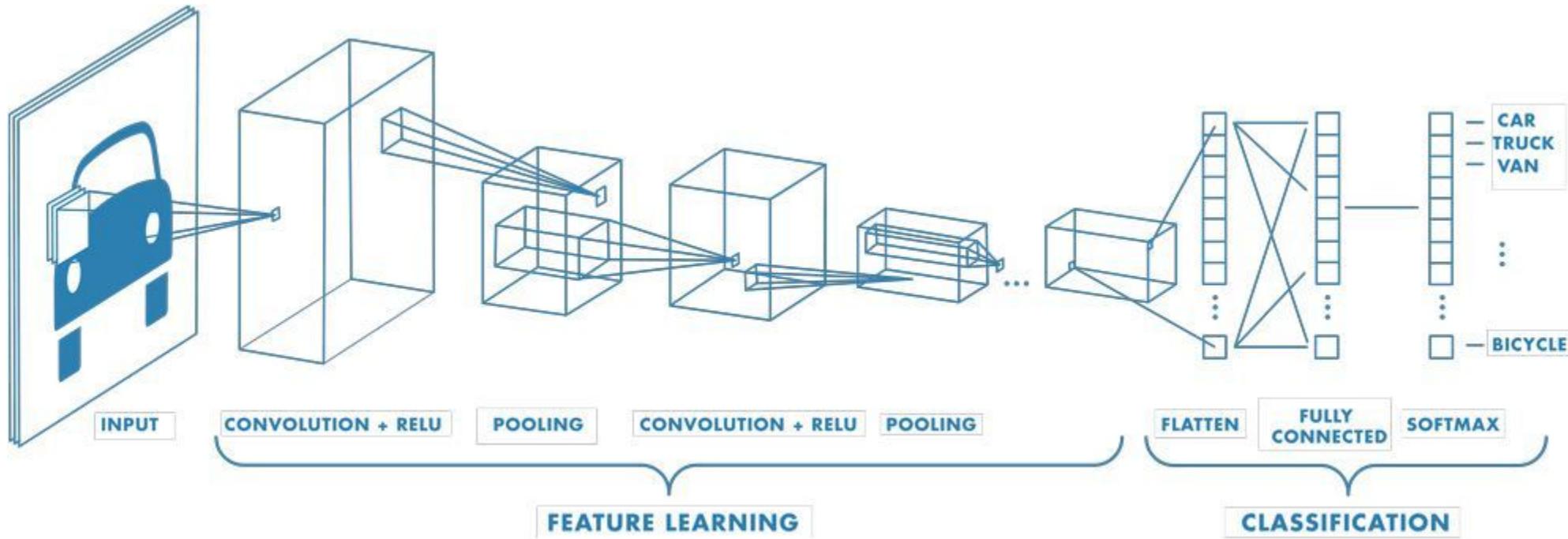
Traditional Machine Learning



Deep Learning



How Deep Learning works for images?



Convolution Operation

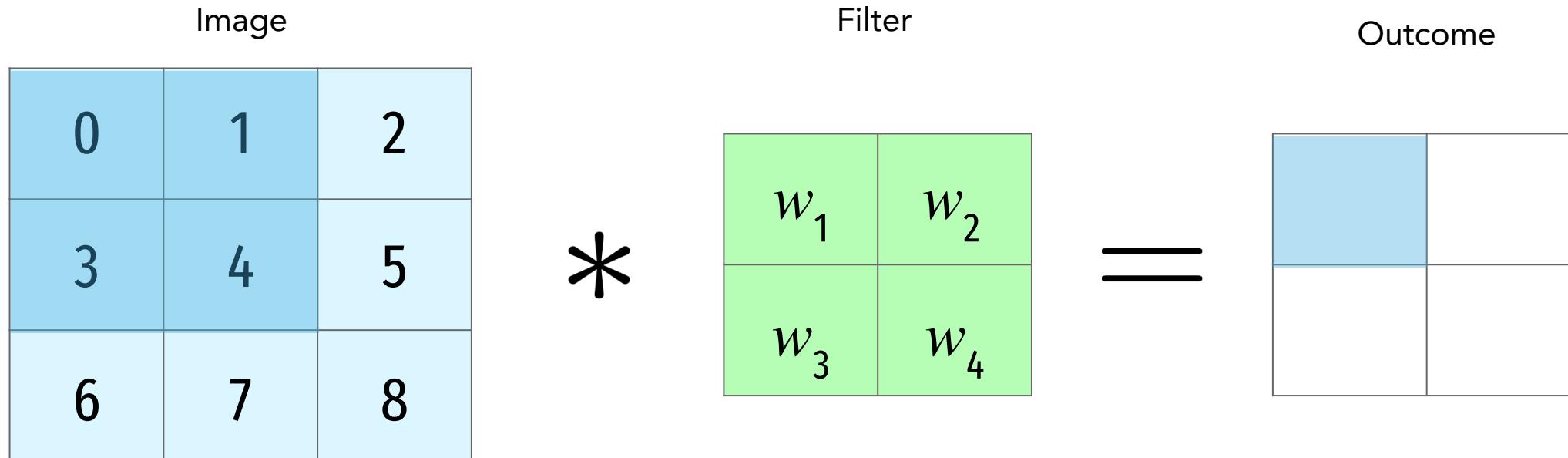
3 ₀	3 ₁	2 ₂	1	0
0 ₂	0 ₂	1 ₀	3	1
3 ₀	1 ₁	2 ₂	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

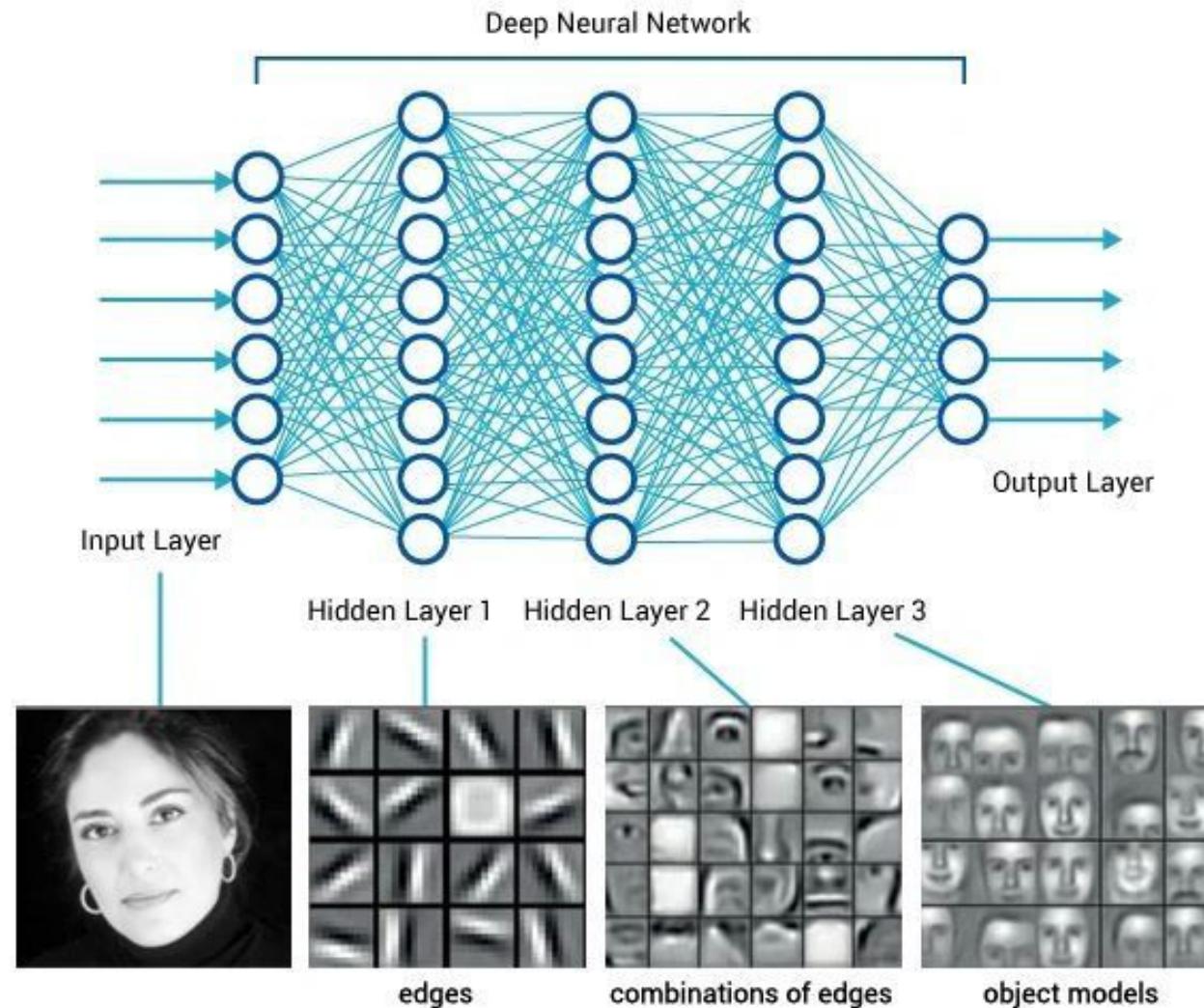
- Blue grid: Image (I).
- Shaded area: Filter (K).
- Green grid: $S(i, j)$

$$S(i, j) = (I * K)(i, j) = \sum_m \sum_n I(m, n)K(i - m, j - n).$$

Convolution Operation in Deep Learning



What do CNN filters learn?



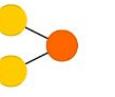
How do we solve different problems with CNNs?

- Input Cell
- Backfed Input Cell
- △ Noisy Input Cell
- Hidden Cell
- Probabilistic Hidden Cell
- △ Spiking Hidden Cell
- Capsule Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- △ Gated Memory Cell
- Kernel
- Convolution or Pool

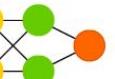
A mostly complete chart of Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

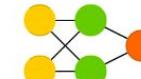
Perceptron (P)



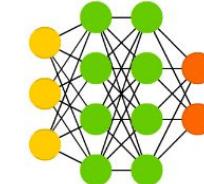
Feed Forward (FF)



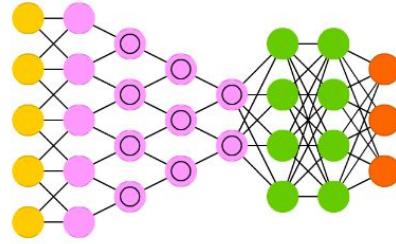
Radial Basis Network (RBF)



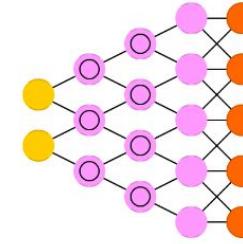
Deep Feed Forward (DFF)



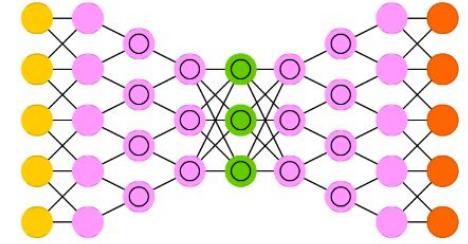
Deep Convolutional Network (DCN)



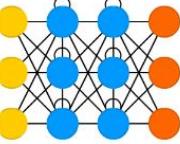
Deconvolutional Network (DN)



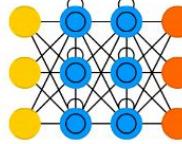
Deep Convolutional Inverse Graphics Network (DCIGN)



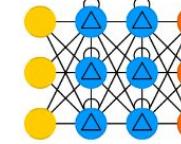
Recurrent Neural Network (RNN)



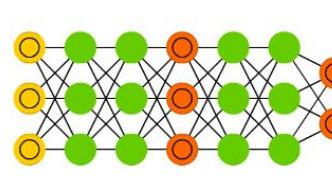
Long / Short Term Memory (LSTM)



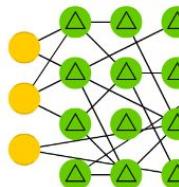
Gated Recurrent Unit (GRU)



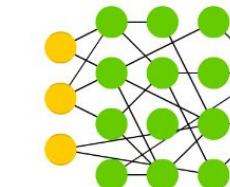
Generative Adversarial Network (GAN)



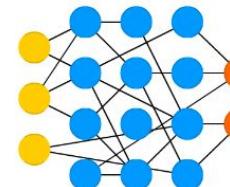
Liquid State Machine (LSM)



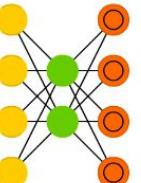
Extreme Learning Machine (ELM)



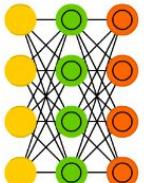
Echo State Network (ESN)



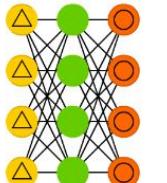
Auto Encoder (AE)



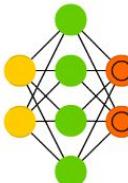
Variational AE (VAE)



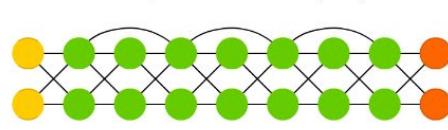
Denoising AE (DAE)



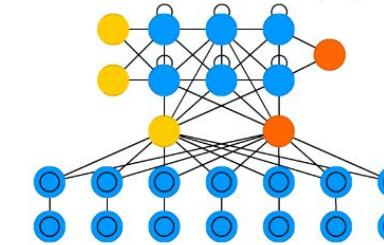
Sparse AE (SAE)



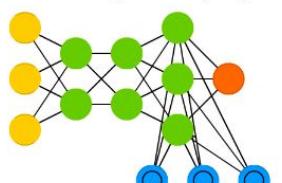
Deep Residual Network (DRN)



Differentiable Neural Computer (DNC)

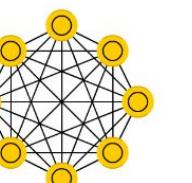


Neural Turing Machine (NTM)



Markov Chain (MC)

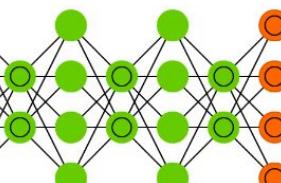
Hopfield Network (HN)



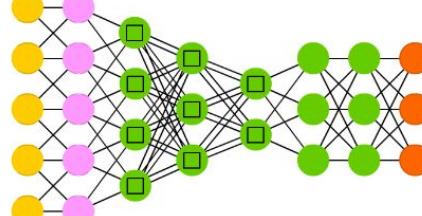
Boltzmann Machine (BM)

Restricted BM (RBM)

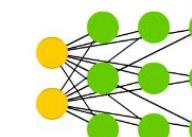
Deep Belief Network (DBN)



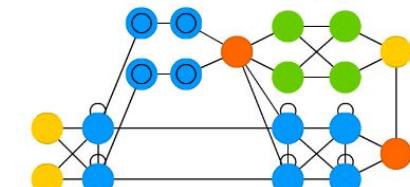
Capsule Network (CN)



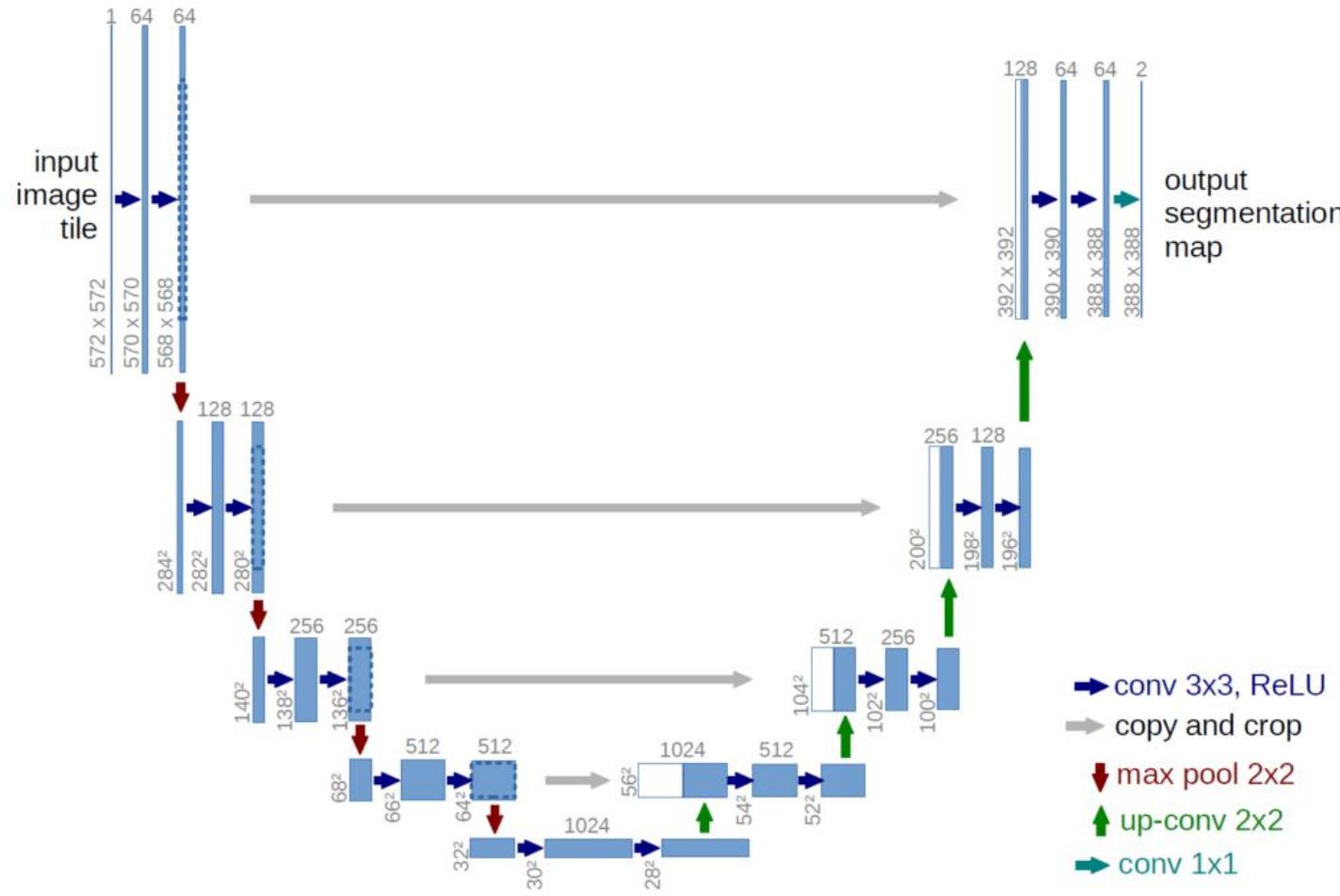
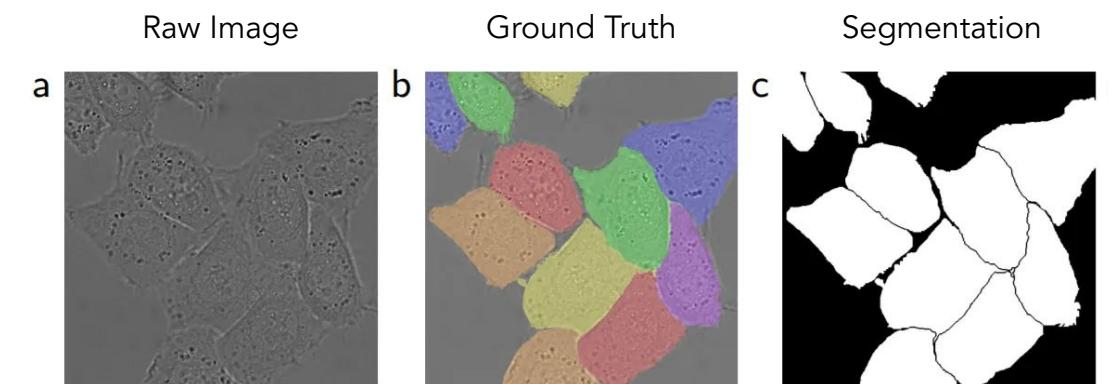
Kohonen Network (KN)



Attention Network (AN)



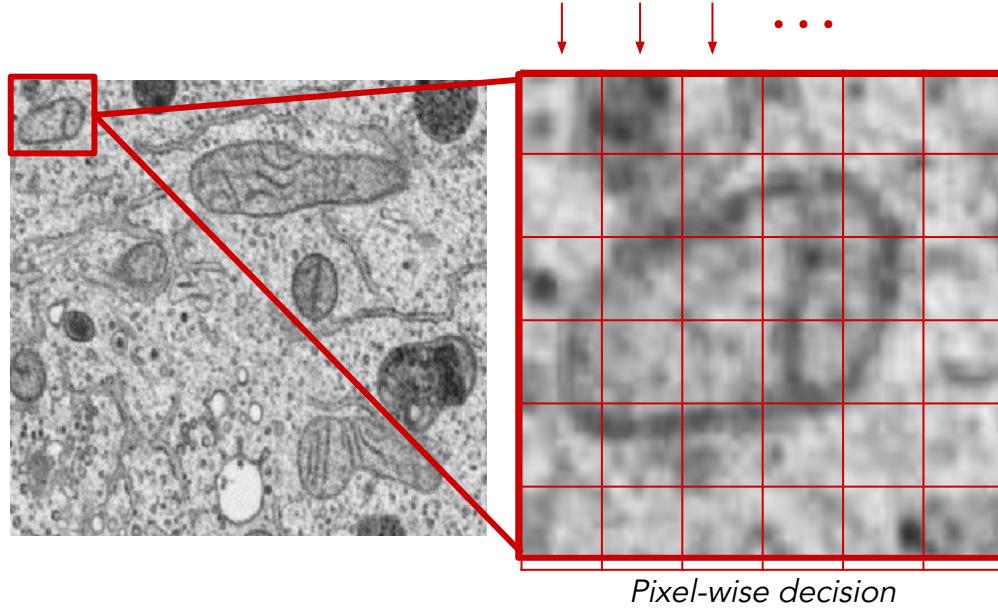
CNNs for Segmentation



HeLa cells on glass recorded with differential interference contrast microscopy

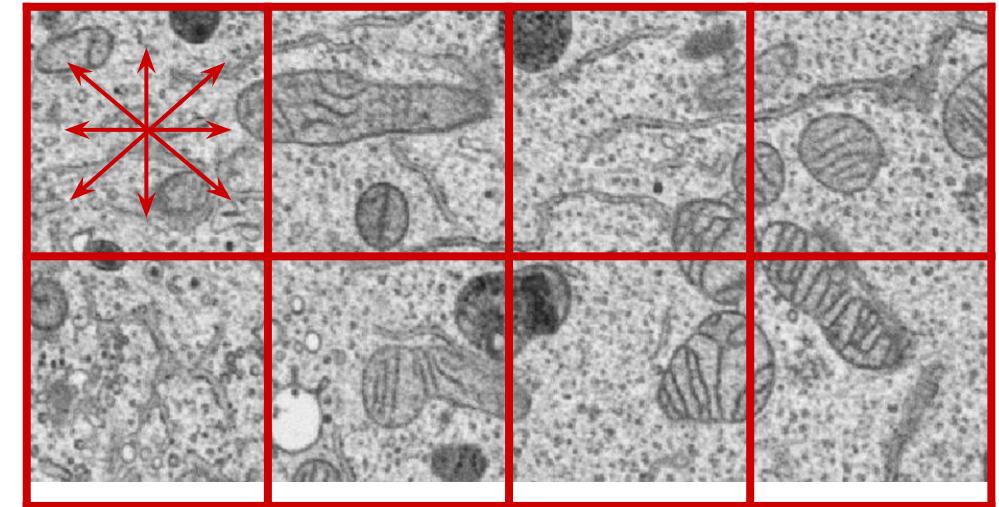
Why Convolution Helps

Traditional Machine Learning



- Classifies each pixel independently
- Relies on handcrafted features
- Fails when noise, illumination, or morphology changes
- No understanding of shapes or spatial relationships

CNNs



- Analyze local patches, not isolated pixels
- Learn features automatically
- Are translation-invariant (pattern recognized anywhere)
- Capture neighborhood, context, and object structure

Convolutional Neural Networks (CNNs): Pros & Cons

Pros

- Automatic Feature Learning
- Spatial context awareness
- Hierarchical representations
- Robust to noise and variability
- State-of-the-art performance

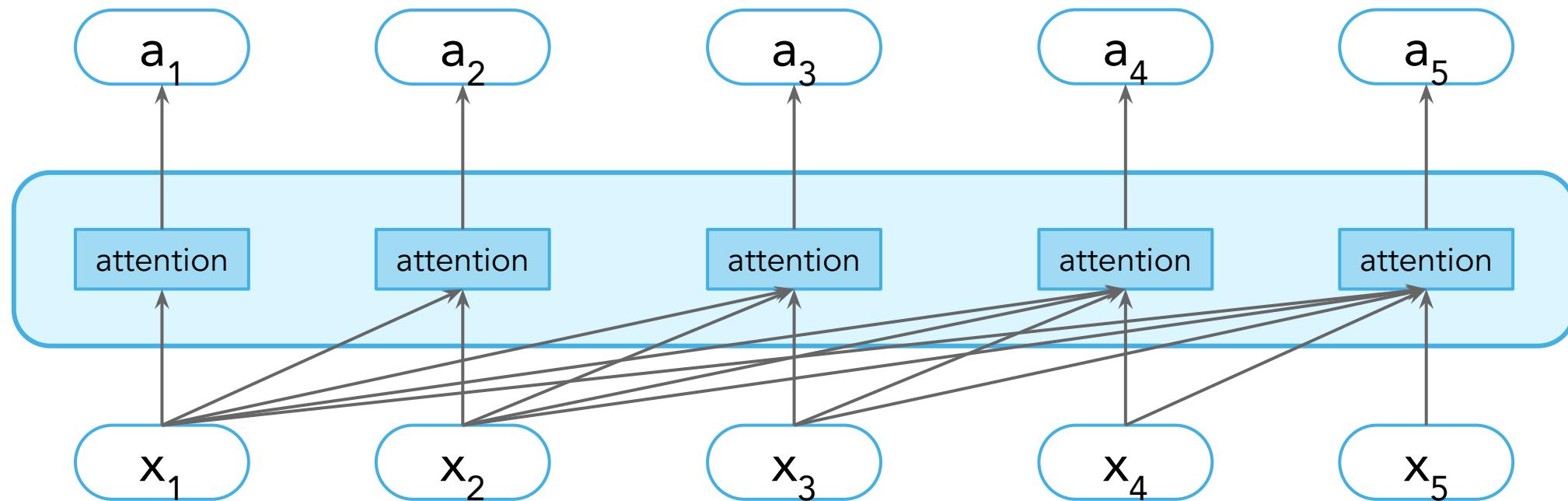
Cons

- Limited global context
- Fixed receptive field
- Frame-by-frame processing
- Scaling is expensive
- Hard to model long-range interactions

Vision Transformers

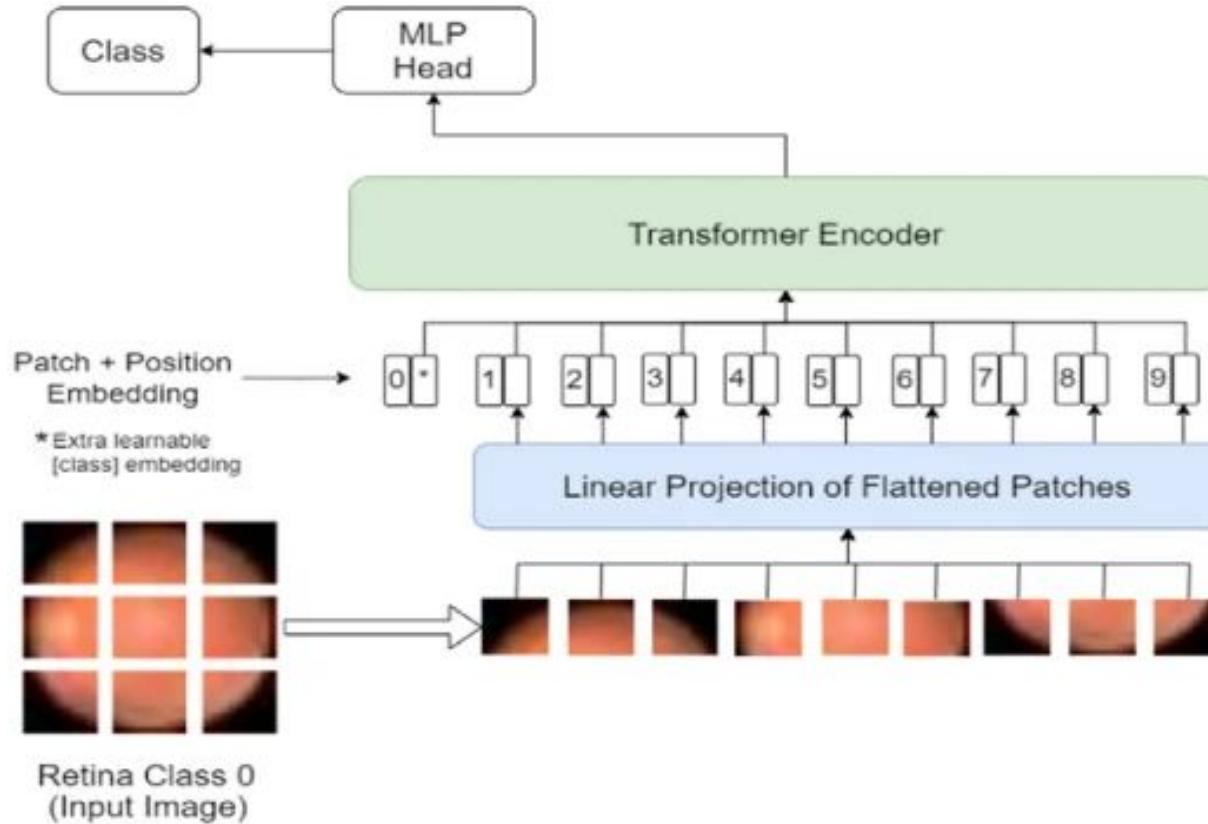
Self-attention in Transformers

Transformers are neural networks that use self-attention to understand global relationships within images or sequences.

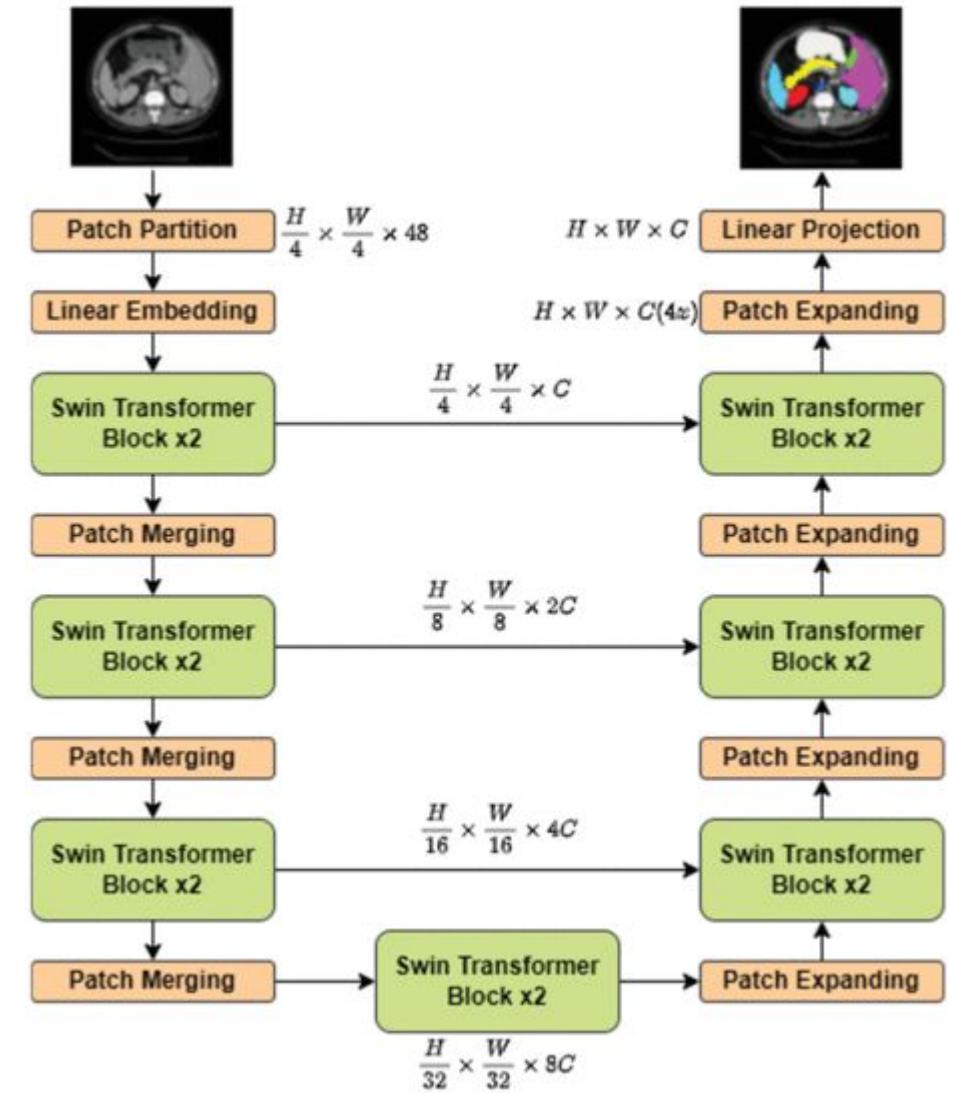


When processing each input x_i , the model attends to all the inputs up to, and including x_n .

Applications of Vision Transformers



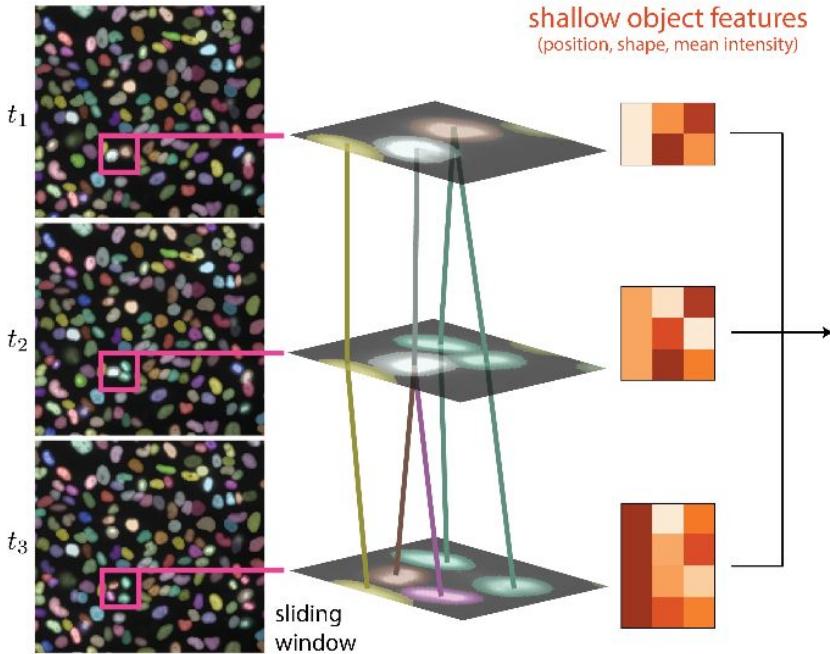
Halder, A., Gharami, S., Sadhu, P. et al. Implementing vision transformer for classifying 2D biomedical images. *Sci Rep* 14, 12567 (2024). <https://doi.org/10.1038/s41598-024-63094-9>



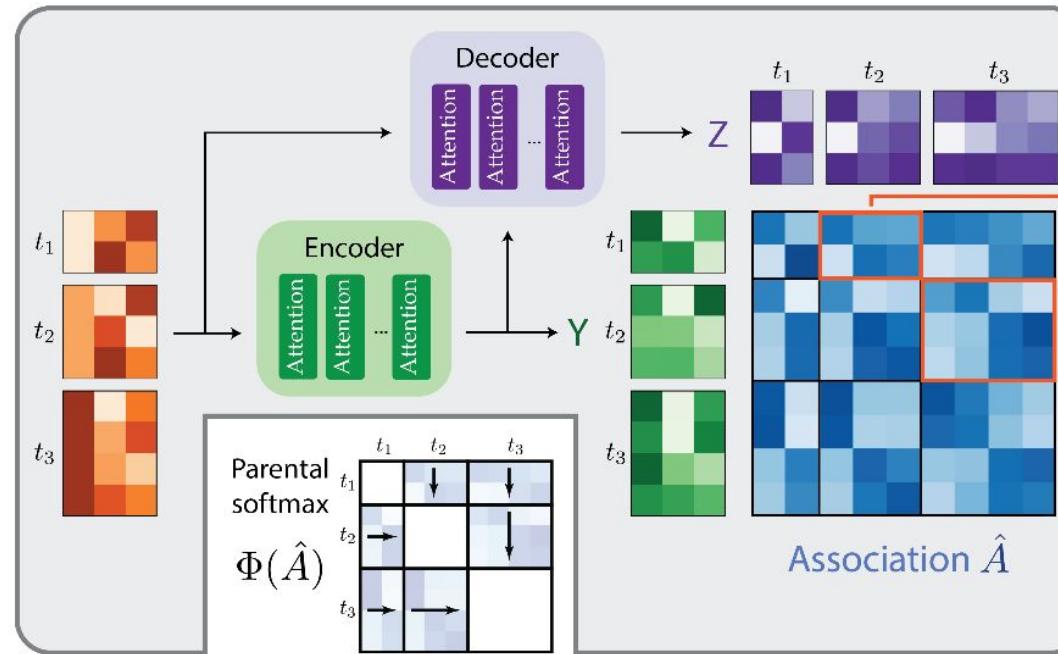
H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, "Swin-UNet: UNet-like pure transformer for medical image segmentation," in *Proc. Eur. Conf. Comput. Vis.-ECCV*, 2023, pp. 205–218, doi: 10.1007/978-3-031-25066-8_9.

Transformers for Tracking

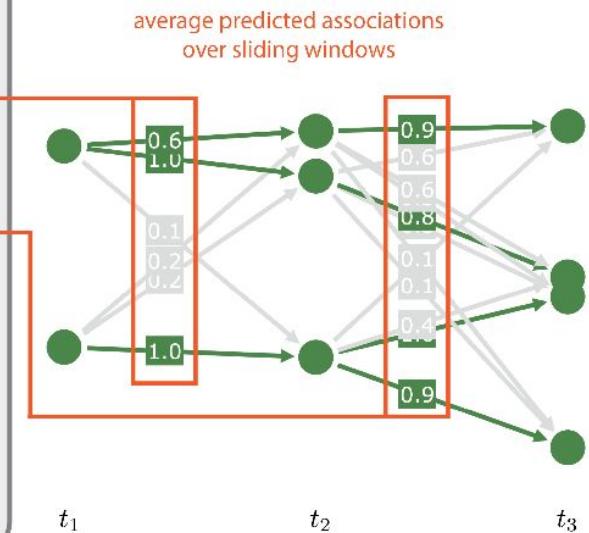
Image sequence with tracking ground truth



Trackastra

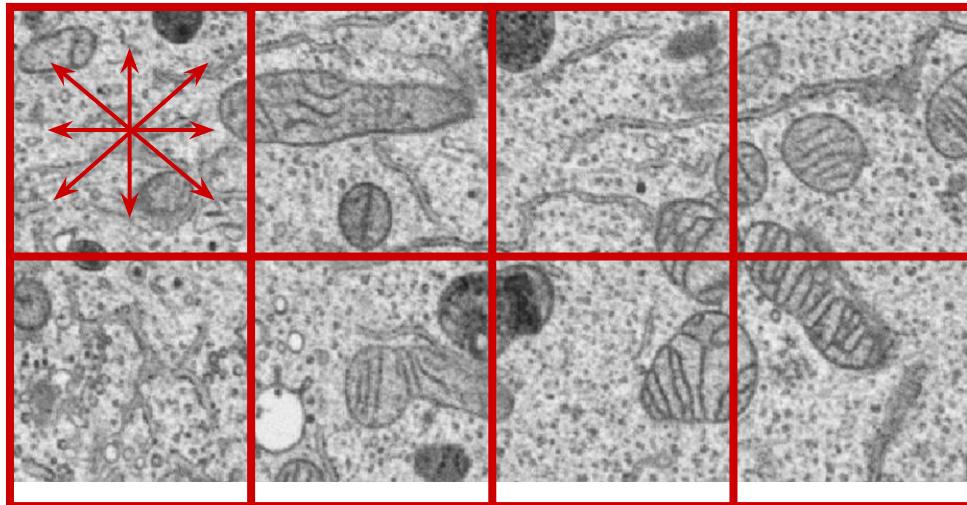


Linking (greedy, LAP, ILP)



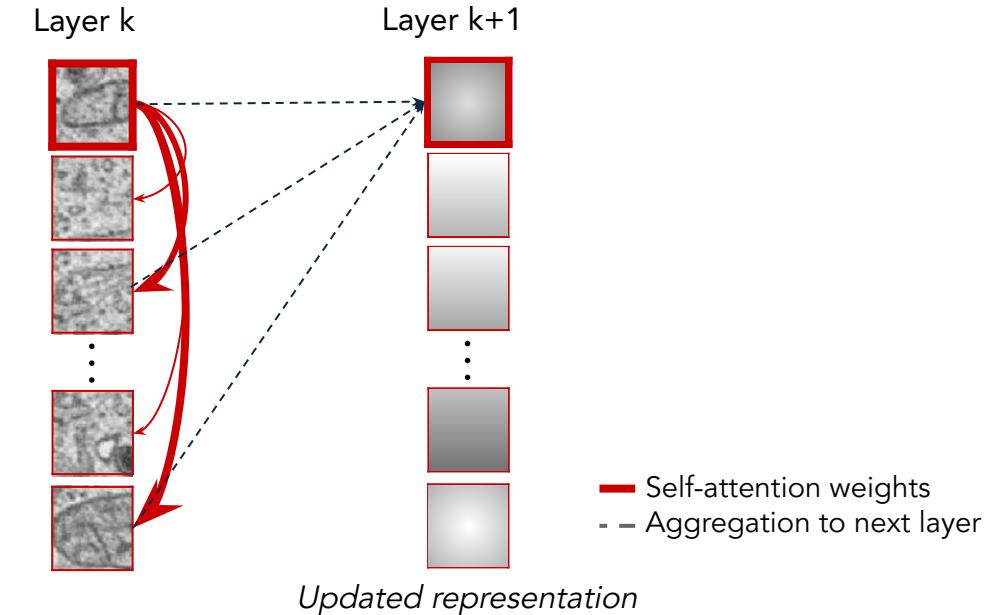
Why Transformers Help

CNNs



- Aggregate local context hierarchically
- Learn features automatically
- Are translation-invariant (pattern recognized anywhere)
- Capture neighborhood, context, and object structure

Transformer - self-attention across patches

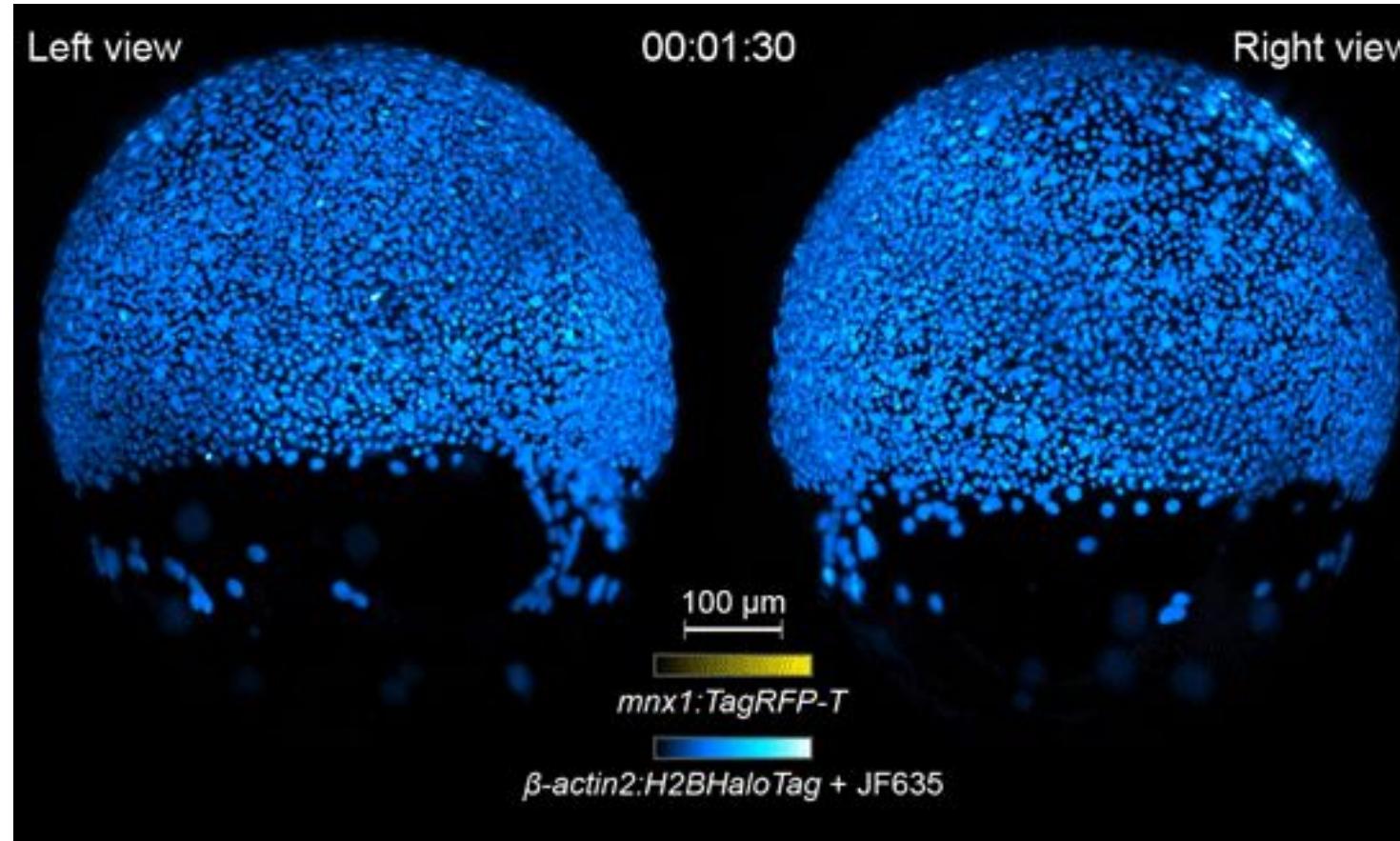


- Model global context via self-attention
- Capture long-range dependencies
- Relate distant regions of the image directly
- Provide a global view of object structure

Wrapping up: When to use each image analysis approach

Approach	Typical use cases	Strengths	Limitations
Traditional image processing	Simple images, high contrast, well-controlled acquisition	Fast, interpretable, no training data required	Fragile to noise, illumination changes, complex morphology
Machine learning (classical)	Moderate variability, limited data, need for interpretability	Uses handcrafted features, works with small datasets	Feature design is manual, limited spatial context
CNN	Complex shapes, crowded scenes, low contrast	Learns features automatically, captures spatial context	Requires more data and compute, limited global context
Transformers	Long-range dependencies, large structures, temporal consistency	Models global context directly, flexible representations	Computationally expensive, data-hungry

A picture is worth a thousand words ...



...but only when we can extract meaningful information from it.

FACULTAD DE MEDICINA
UNIVERSIDAD DE CHILE

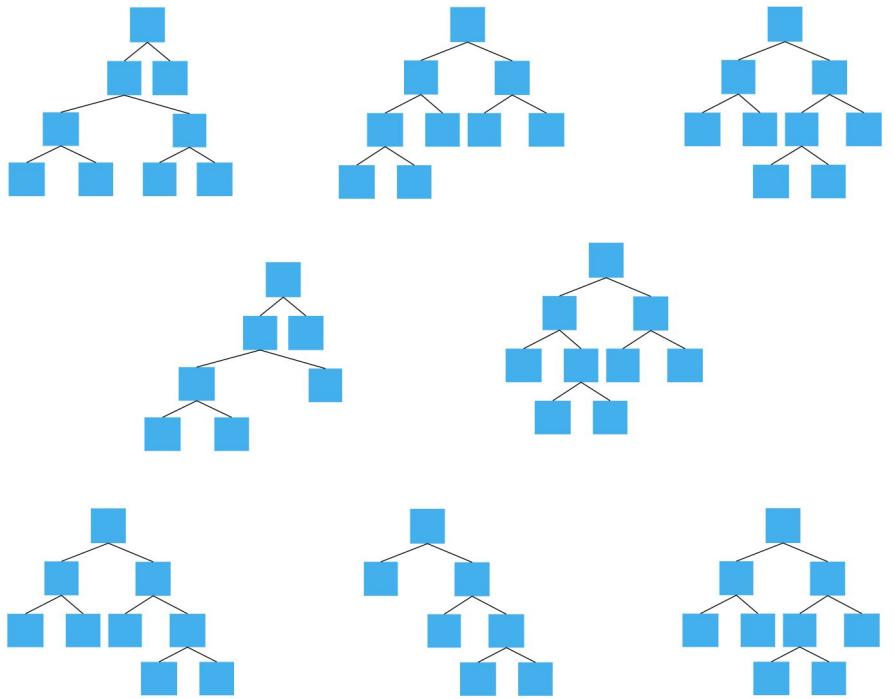
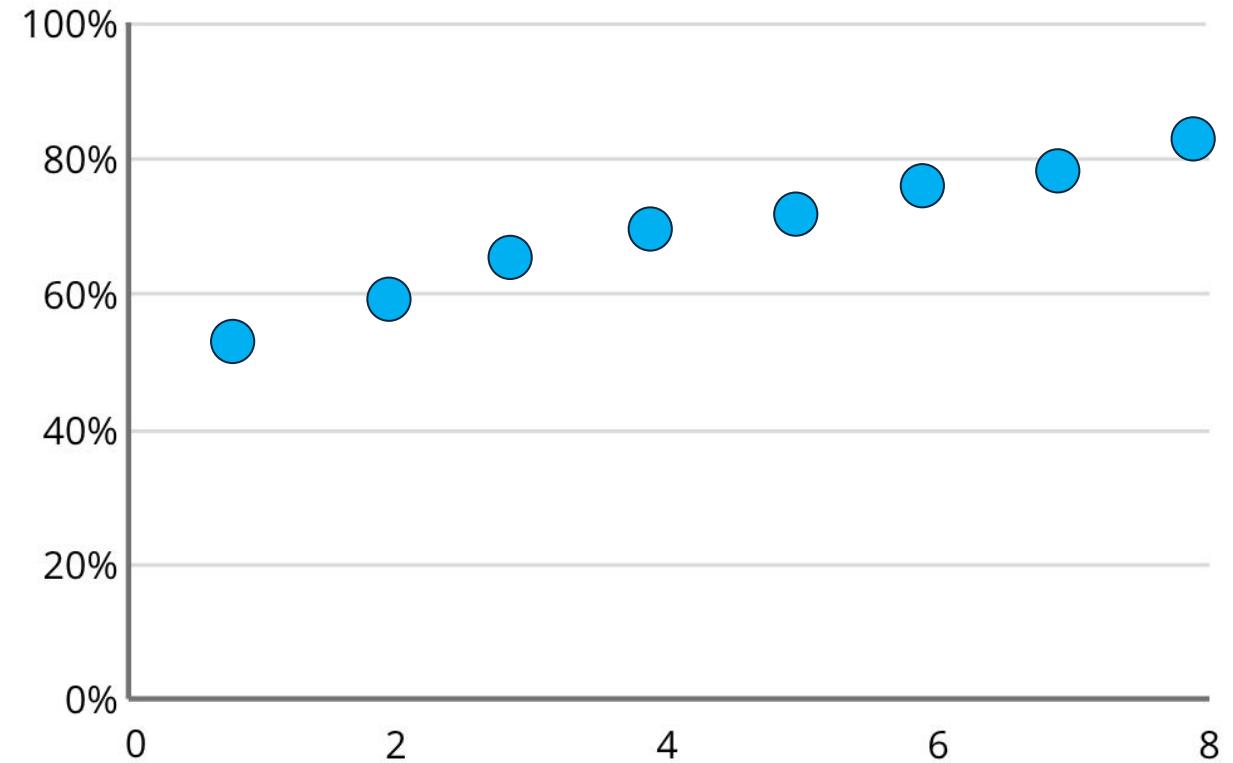
Applications of AI in image processing

Constanza Vásquez
Faculty of Medicine
Universidad de Chile
covasquezv@inf.udec.cl
www.scian.cl

- Santiago 2026 -

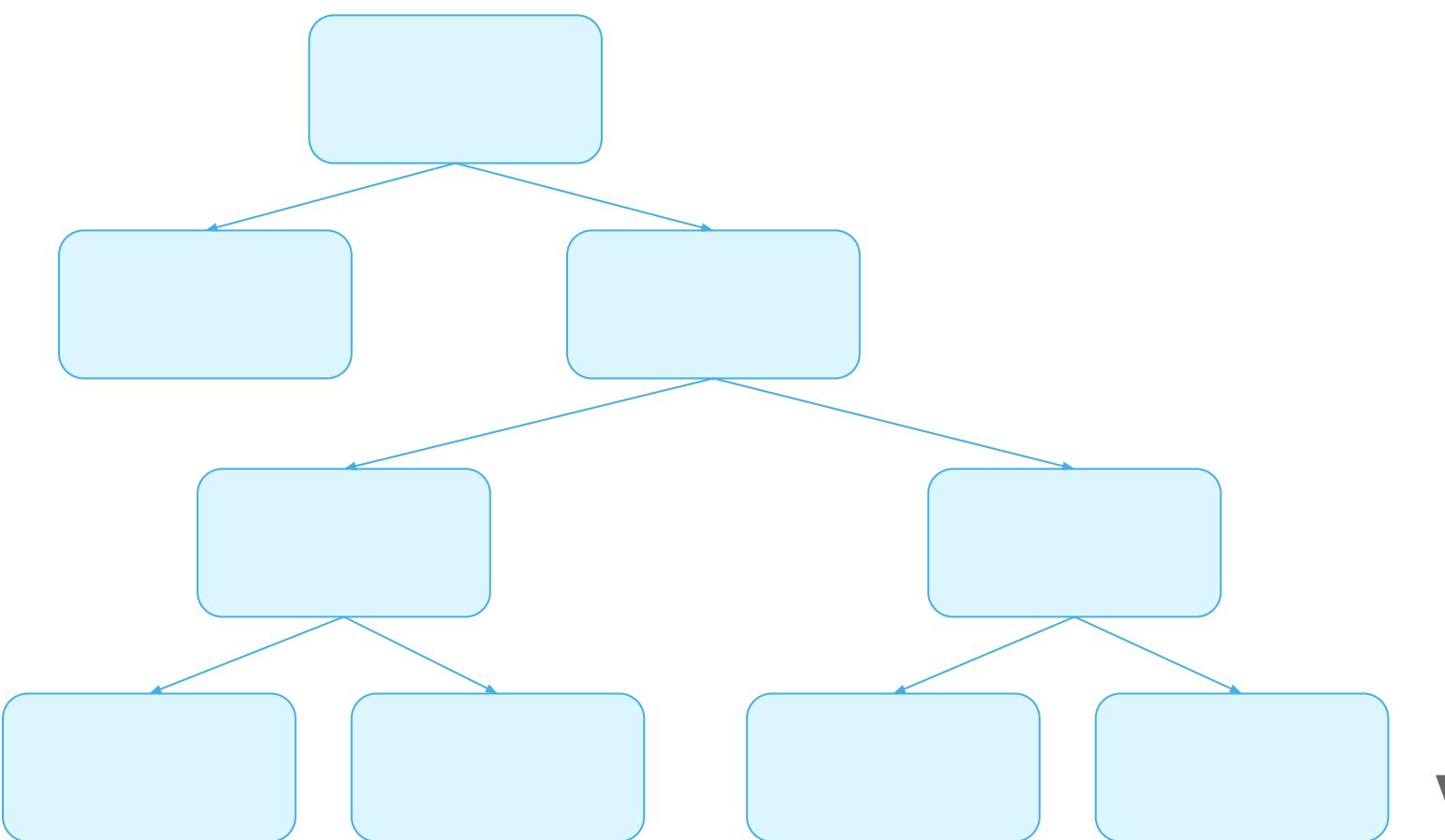
Decision Trees

Probability of the majority vote being correct can go up as we add more models



Ensemble learning creates a stronger model by aggregating the predictions of multiple weak models

How to find the optimum split of the features?



- In decision trees, we aim to reduce the impurity (or disorder) of the labels.
- The goal of a split is to separate the samples so that child nodes are more “pure”, meaning they contain mostly a single class.

How to find the optimum split of the features?

Entropy and Information Gain

- Entropy measures the disorder or impurity of the class labels in a node
high entropy = labels are mixed, low entropy = labels are homogeneous

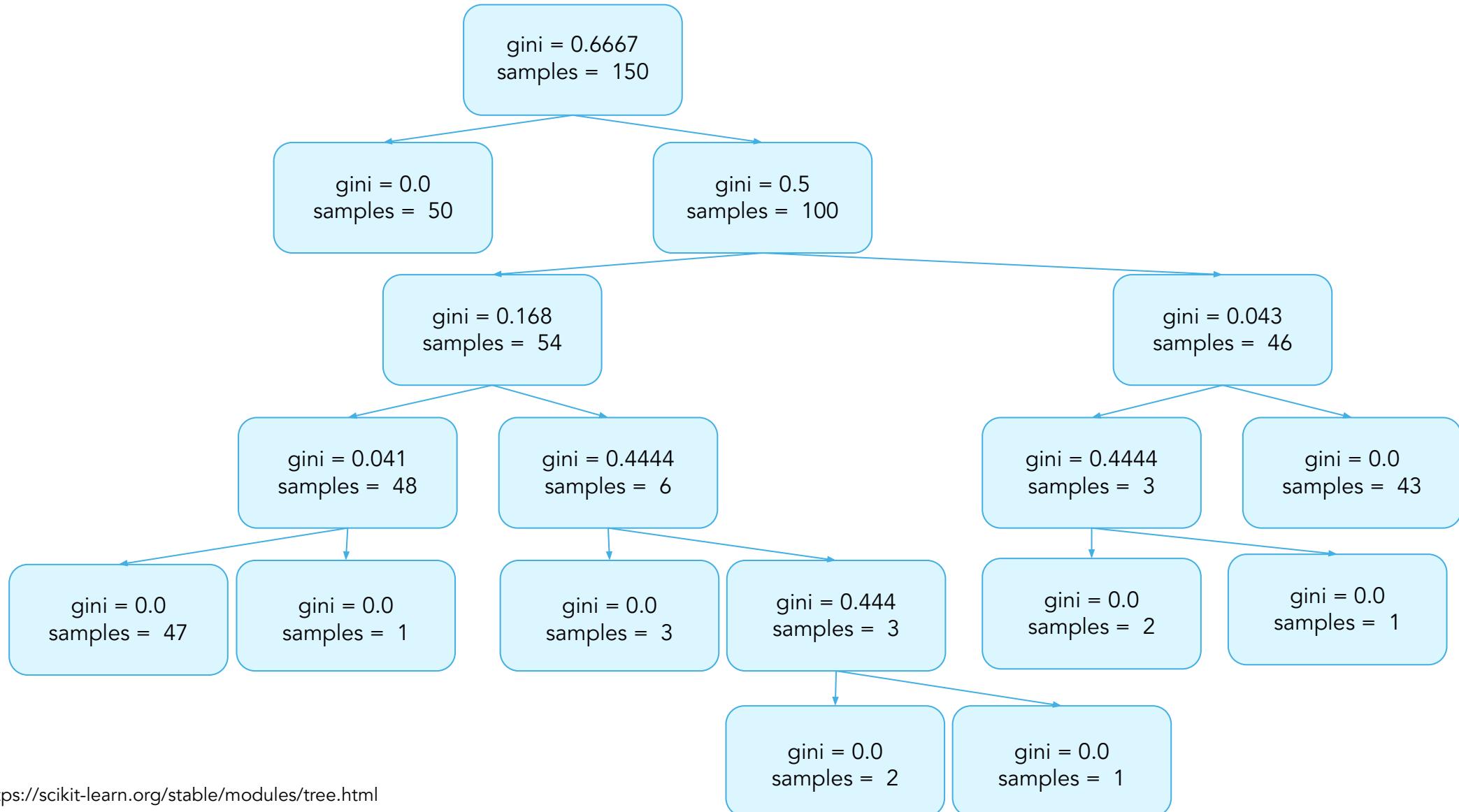
Entropy = 0 → node contains only one class

- Information Gain is the reduction in entropy after a split. It measures how informative a feature is for predicting the class
- A Decision Tree tests different feature splits and evaluates how much each split reduces entropy

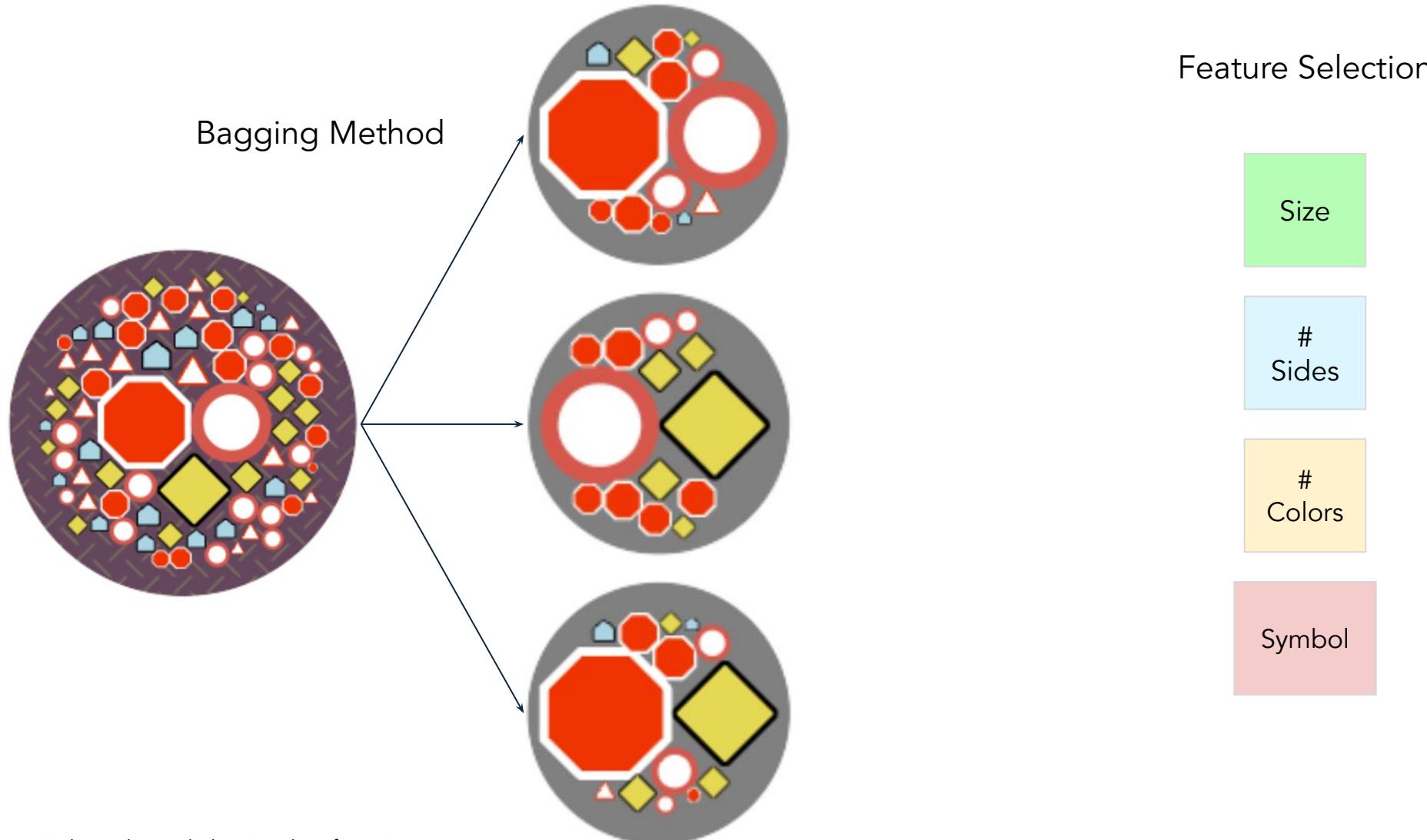
Gini Index

- The Gini index measures how heterogeneous the labels inside the node are. It estimates how often a randomly chosen sample would be misclassified.
- Gini = 0 → all samples are from the same class.
No mixture, no uncertainty, no misclassification, perfect purity
Gini increases as classes become more evenly mixed.
More mixture, more uncertainty, higher chance of misclassification
- Decision Trees test candidate splits and choose the one that minimizes the Gini index in the resulting child nodes

How to find the optimum split of the features?

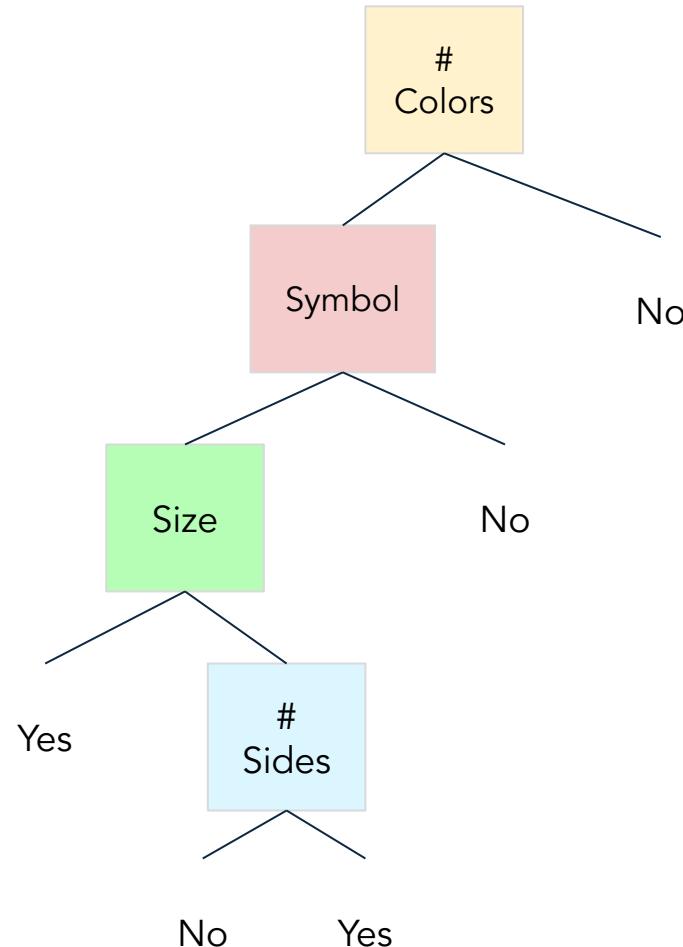
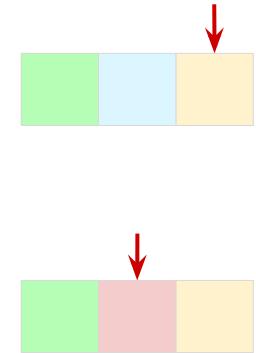


Random Forest

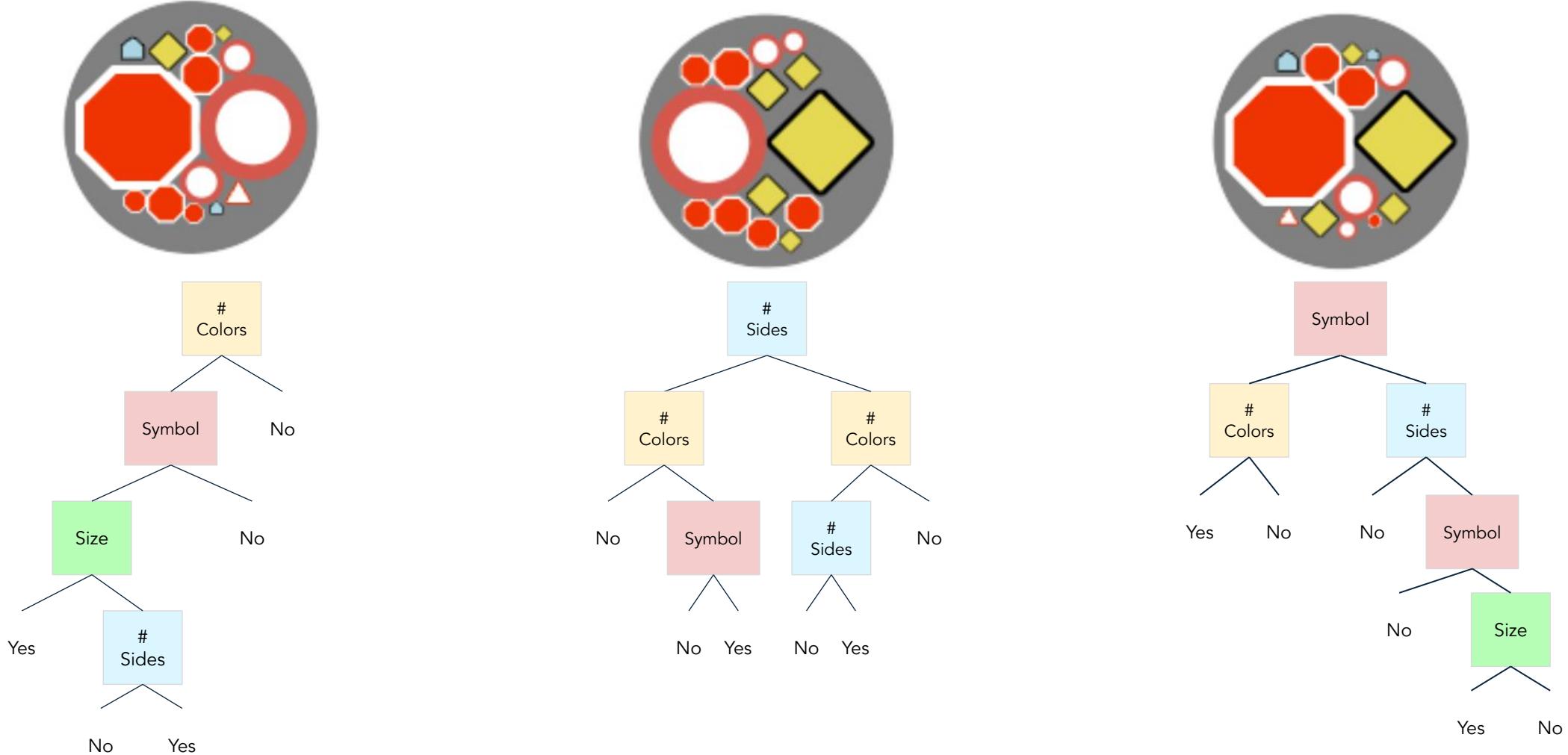


Random Forest

In each split of the tree, the feature for splitting is randomly selected from a subset of features.



Random Forest



Random Forest

