Journal of Clinical Medicine, 2024, 13, 5231.
The accurate quantification of ground-glass opacities (GGOs) and consolidation volumes has prognostic value in COVID-19 patients. Nevertheless, the accurate manual quantification of the corresponding volumes remains a time-consuming task. Deep learning (DL) has demonstrated good performance in the segmentation of normal lung parenchyma and COVID-19 pneumonia. We introduce a Human-in-the-Loop (HITL) strategy for the segmentation of normal lung parenchyma and COVID-19 pneumonia that is both time efficient and quality effective. Furthermore, we propose a Gaussian Mixture Model (GMM) to classify GGO and consolidation based on a probabilistic characterization and case-sensitive thresholds. Methods: A total of 65 Computed Tomography (CT) scans from 64 patients, acquired between March 2020 and June 2021, were randomly selected. We pretrained a 3D-UNet with an international dataset and implemented a HITL strategy to refine the local dataset with delineations by teams of medical interns, radiology residents, and radiologists. Following each HITL cycle, 3D-UNet was re-trained until the Dice Similarity Coefficients (DSCs) reached the quality criteria set by radiologists (DSC = 0.95/0.8 for the normal lung parenchyma/COVID-19 pneumonia). For the probabilistic characterization,
a Gaussian Mixture Model (GMM) was fitted to the Hounsfield Units (HUs) of voxels from the CT scans of patients with COVID-19 pneumonia on the assumption that two distinct populations were superimposed: one for GGO and one for consolidation. Results: Manual delineation of the normal lung parenchyma and COVID-19 pneumonia was performed by seven teams on 65 CT scans from 64 patients (56 ± 16 years old (μ ± σ), 46 males, 62 with reported symptoms). Automated lung/COVID-19 pneumonia segmentation with a DSC > 0.96/0.81 was achieved after three HITL cycles. The HITL strategy improved the DSC by 0.2 and 0.5 for the normal lung parenchyma and
COVID-19 pneumonia segmentation, respectively. The distribution of the patient-specific thresholds derived from the GMM yielded a mean of −528.4 ± 99.5 HU (μ ± σ), which is below most of the reported fixed HU thresholds. Conclusions: The HITL strategy allowed for fast and effective annotations, thereby enhancing the quality of segmentation for a local CT. dataset Probabilistic characterization of COVID-19 pneumonia by the GMM enabled patient-specific segmentation of GGO and consolidation. The combination of both approaches is essential to gain confidence in DL approaches in our local environment. The patient-specific probabilistic approach, when combined with the automatic quantification of COVID-19 imaging findings, enhances the understanding of
GGO and consolidation during the course of the disease, with the potential to improve the accuracy of clinical predictions.
Keywords: COVID-19; Chest CT; Artificial Intelligence; Deep Learning; Human-in-the-Loop; Gaussian
Mixture Model