Biophysical journal, 88(1), 287-304.

Härtel, S., Fanani, M. L., & Maggio, B. (2005).


Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SMCer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (Π = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of the molecular dipole moments perpendicular to the air/water interface. In consequence, protein-driven generation of specific out-of-equilibrium states, an accepted concept for maintenance of transmembrane lipid asymmetry, must also be considered on the lateral level. Lateral enzyme-specific out-of-equilibrium organization of lipid domains represents a new level of signal transduction from local (nm) to long-range (μm) scales. The cross-talk between lateral domain structures and dipolar electrostatic fields adds new perspectives to the mechanisms of SMase-mediated signal transduction in biological membranes.